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An Expanding and Shift Scheme for Constructing

Fourth-Order Difference Co-Arrays
Jingjing Cai, Wei Liu, Ru Zong, and Qing Shen

Abstract—An expanding and shift (EAS) scheme for efficient
fourth-order difference co-array construction is proposed. It
consists of two sparse sub-arrays, where one of them is modified
and shifted according to the analysis provided. The number of
consecutive lags of the proposed structure at the fourth order is
consistently larger than two previously proposed methods. Two
effective construction examples are provided with the second
sparse sub-array chosen to be a two-level nested array, as such
a choice can increase the number of consecutive lags further.
Simulations are performed to show the improved performance
by the proposed method in comparison with existing structures.

Index Terms—Sparse arrays, fourth-order difference co-array,
second-order difference co-array, cumulant.

I. INTRODUCTION

Recently, the sparse array concept combined with co-array

equivalence has attracted significant interest in the community

[1], [2], and two representative examples are the co-prime

arrays [3]–[5], and the nested arrays [6], [7]. Sparse arrays can

form a larger aperture size given the same number of antennas

and more importantly provide much more degrees of freedom

(DOFs) than traditional uniform arrays. Many methods have

been proposed for underdetermined DOA estimation based

on such arrays, such as the spatial smoothing-based subspace

methods [8], [9], or compressive sensing (CS)-based methods

[4], [10]–[13].

So far the majority of work for virtual array generation

is based on the second-order statistics (SOS). However, it is

possible to exploit the fourth-order statistics (FOS) to generate

even more DOFs, such as the cumulant-based DOA estimation

methods studied in [14]–[20] and the method based on quasi-

stationary signals [21], [22]. Therefore, how to construct a

sparse array with maximum fourth-order virtual array sensors

has become a very important problem. In [22], [23], the

existing nested arrays and co-prime arrays were extended for

effective fourth-order virtual array generation by adding to

the structure a third uniform linear array. It was shown that in
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this way, the number of consecutive virtual sensor lags can be

increased significantly.

In this work, by analysing the generated fourth-order dif-

ference lags, we can consider them as the sum of two second-

order difference lags with the same range. Based on this

observation, we propose a new sparse array construction

scheme aiming to maximize the consecutive lags in the fourth

order virtual co-array.

We start from two separate sparse sub-arrays, and each of

them is configured at the second-order difference co-array

(SODCA) level, such as the existing co-prime arrays or nested

arrays. Then one of them is expanded uniformly by increasing

the adjacent physical sensor spacing according to the number

of second-order consecutive virtual array sensors of the other

sparse sub-array. The last step is shifting the newly expanded

array to a new position so that the number of fourth-order

consecutive virtual array sensors is further increased and the

first sensor of the expanded sub-array coincides with one of the

physical sensors of the other sub-array. Due to the coincidence,

one of the two physical sensors can be removed without

affecting the resultant fourth-order DOFs in the consecutive

range. It is also shown that if the second sub-array is a two-

level nested array, the fourth-order consecutive virtual sensor

range can be further increased. Compared with the fourth-

order difference co-arrays (FODCAs) proposed in [22], [23], a

higher number of consecutive lags is achieved by the proposed

scheme.

This paper is organized as follows. The cumulant-based

FODCAs are analyzed in Sec. II, and the proposed con-

struction is introduced in detail in Sec. III. A comparison of

the different fourth-order construction schemes is performed

in Sec. IV. Simulation results are provided in Sec. V and

conclusion drawn in Sec. VI.

II. CUMULANT-BASED FOURTH-ORDER DIFFERENCE

CO-ARRAY

Suppose there are K far-field independent non-Gaussian

narrowband signals sk(t)(k = 1, . . . ,K) impinging on a

sparse linear array (SLA) of M sensors. Denote the unit

spacing by d, which is equal to half wavelength λ/2. Then,

positions of the SLA sensors can be expressed as

P = {p1 · d, p2 · d, . . . , pm · d, . . . , pM · d} . (1)

With the angle of arrival of the kth source being θk, the

observed signal xm(t) at the mth sensor is given by

xm(t) =

K∑

k=1

exp(−j2πpmdcosθk/λ)sk(t) + nm(t) , (2)
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where nm(t) is the additive Gaussian noise of the mth sensor,

and it is independent of the signals. Suppose 1 ≤ i, j, u, v ≤
M and {i, j, u, v} ∈ Z. The fourth-order cumulant value

C(i,−j, u,−v) of the ith, jth, uth and vth sensor observed

signals can be expressed as [14]

C(i,−j, u,−v) = cum[xi(t), x
∗

j (t), xu(t), x
∗

v(t)]

=
K∑

k=1

exp[−j2π(pi − pj + pu − pv)dcosθk/λ]·

cum(x1(t), x
∗

1
(t), x1(t), x

∗

1
(t))

(3)

where ()∗ denotes complex conjugate, and cum() denotes the

fourth-order cumulant operation. The fourth-order difference

co-array not only has a much larger number of virtual sensors

than the physical SLA, but also removes the Gaussian noise

components, which will help improving the DOA estimation

result further.

The fourth-order difference lag (pi − pj + pu − pv) corre-

sponding to the new virtual sensors can be written as

pi − pj + pu − pv = (pi − pj) + (pu − pv) (4)

Clearly, this fourth-order difference lag expression can be seen

as two second-order difference lags added together. As a result,

we could construct the FODCA by two separate SODCAs

with different ranges. Although this will not be optimal, it

could provide an effective solution for FODCA construction,

as shown later.

III. PROPOSED EXPANDING AND SHIFT (EAS) SCHEME

FOR CONSTRUCTING FODCAS

A. The EAS Scheme

We start from two separate sparse sub-arrays which are

configured for SODCA generation. They can be different types

of sparse arrays and have different number of physical sensors.

Assume the first sub-array contains M physical sensors, while

the second one contains N sensors. Their array position

settings are defined as

P = {p1 · d, p2 · d, . . . , pm · d, . . . , pM · d}

Q = {q1 · d, q2 · d, . . . , qn · d, . . . , qN · d}
(5)

where pm ·d and pn ·d, m = 1, 2, . . . ,M , n = 1, 2, . . . , N , are

the physical sensor positions of the two sub-arrays. We further

assume that the number of consecutive SODCA sensors for the

first sub-array P is CM , while it is CN for Q.

Based on the two sparse arrays, we can generate the fourth-

order difference lags using the expression (pi−pj)+(pu−pv)
in (4), where one choice is that the lags (pi − pj) come from

the second-order co-array of P , while (pu − pv) from that

of Q. When adding these two together, the segment of CM

consecutive virtual sensors from P are then shifted one by one

by the second-order virtual co-array sensors of Q, and there

are at least CN copies of the same CM consecutive points

from P , which are then added together to form the FODCA.

To make sure there are no overlaps or gaps among the CN

copies of the continuous segment of length CM so that the

maximum number of consecutive fourth-order virtual sensors

are achieved, we can increase the unit spacing of the sub-array

Q to CM · d. As a result, the second sparse array is changed

to

Q̃ = {q1, q2, . . . , qn, . . . , qN} · CMd , (6)

and the number of consecutive fourth-order virtual co-array

sensors is CL = CMCN .

Note that the CL consecutive lags in the fourth-order co-

array is independent of the relative positions of the two sparse

arrays P and Q̃, since any shift will be canceled by the

operation of (pi − pj) and (pu − pv). As a result, we can

shift the starting position of the second array Q̃ by ∆s · d so

that one of the physical sensors of the second sparse array

will be co-located with one of the physical sensors of the first

array, i.e. qnCM = pm for a specific pair of (m,n). Then,

one of the co-located sensors can be removed and the total

number of physical sensors will be L = M + N − 1 with

the same number of consecutive fourth-order co-array sensors

CL. To have a larger aperture, we can choose q1CM = pm,

i.e. the first sensor of the second array will coincide with one

arbitrary sensor of the first array. Without loss of generality,

we remove the first sensor of the second array Q̃. Then, the

pair of sparse sub-arrays becomes

P = {p1 · d, p2 · d, . . . , pm · d, . . . , pM · d}

Q̂ = {q2, . . . , qn, . . . , qN} · CMd ,
(7)

Interestingly, as we will show in the next part, this choice

of shift will have the advantage of generating additional

consecutive lags of 2(pm − p1) if the second sparse array

is chosen to be a two-level nested array (referred to as

EAS-NA in the following). Under this condition, if the first

array is further chosen to be either a nested array or a co-

prime array, we can have q1CM = pM , so that the total

number of consecutive fourth-order co-array sensors becomes

CL = CMCN + 2(pM − p1) for the EAS-NA scheme.The

physical array aperture of the proposed construction scheme

is (qNCM − p1)d for the general case of q1CM = pm.

B. The EAS-NA Scheme

In this part, we consider the EAS-NA scheme, as it will

increase the fourth-order consecutive lags further.

For a nested array, we have the interesting property of

qN − q1 = CN−1

2
, where CN−1

2
is the maximum number

of positive consecutive second-order lags. For such an EAS-

NA construction, the range of the positive consecutive fourth-

order lags is from 1 to (qN − q1)CM + CM−1

2
, and the

last segment of CM consecutive fourth-order lags is from

(qN − q1)CM − CM−1

2
to (qN − q1)CM + CM−1

2
, centered

at (qN − q1)CM . With q1CM = pM as suggested in the last

subsection, this center becomes qNCM − pM
Note that the last sensor of Q̃ is qNCM . When calculating

the fourth-order difference lag (pi−pj)+(pu−pv), pi and pj
can be chosen from the first array P , while pu = qNCM and

pv = p1. For such a choice, (pi − pj) will general a segment

of consecutive lags from −CM−1

2
to CM−1

2
, so that (pi−pj)+

(pu − pv) in total will generate a segment of consecutive lags

from qNCM − p1 −
CM−1

2
to qNCM − p1 +

CM−1

2
, centered

at qNCM − p1.
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Now we have two segments of consecutive lags of length

CM , one centered at qNCM − pM and one at qNCM − p1,

where the second one is pM − p1 away from the first one. If

pM − p1 ≤ (CM − 1), then the consecutive fourth-order lags

will be increased from CMCN to CMCN+2(pM−p1), where

the multiplication by 2 is due to considering both the negative

and the positive consecutive lags. Since the condition pM −
p1 ≤ (CM −1) is satisfied for most sparse arrays designed for

maximizing the continuous second-order difference co-array

lags, such as the co-prime arrays and nested arrays, we can

shift the second sparse array so that its first sensor will be

co-located with the last sensor of the first array.

C. Examples of the EAS-NA Scheme

Here, we give two examples for the EAS-NA scheme. One

takes two nested arrays as its two sparse sub-arrays, referred

to as the EAS-NA-NA array; the other one use the co-prime

array as its first sparse sub-array and the nested array as the

second sparse sub-array, referred to as the EAS-NA-CPA array.

First we consider the EAS-NA-NA case. The first nested

array contains M1 and M2 sensors in its two sub-arrays,

separately, and the second nested array contains N1 and N2

sensors. The total number of sensors is L = M1+M2+N1+
N2−1. The consecutive second-order co-array sensor number

of these two nested arrays is CM = 2M1M2 + 2M2 − 1 and

CN = 2N1N2 +2N2 − 1, respectively. The first sensor of the

first nested array is 1 and the last sensor is pM = M1M2+M2.

Then, the total number of consecutive fourth-order difference

co-array lags is CL = (2M1M2 +2M2 − 1)(2N1N2 +2N2 −
1) + 2(M1M2 +M2 − 1).

As an example, for M1 = N1 = 2 and N1 = N2 = 2, we

have CM = CN = 11 and CL = 131. The resultant sensor

locations are P = {1, 2, 3, 6} · d and Q̂ = {17, 28, 61} · d.

Now for the EAS-NA-CPA case, assume the co-prime array

contains M1 and M2 sensors as its two sub-arrays, separately,

and the nested array contains N1 and N2 sensors as before.

Then, we have L = 2M1 + M2 + N1 + N2 − 2, CM =
2M1M2 + 2M1 − 1 and CN = 2N1N2 + 2N2 − 1. The first

sensor of the co-prime array is 0 and the last sensor is pM =
2M1M2 −M2. As a result, we can obtain CL = (2M1M2 +
2M1 − 1)(2N1N2 + 2N2 − 1) + 2(2M1M2 −M2).

With M1 = 2,M2 = 3,N1 = 2 and N2 = 2. The results

are CM = 15, CN = 11 and CL = 183. The set of sensor

locations are P = {0, 2, 3, 4, 6, 9} ·d and Q̂ = {24, 39, 84} ·d.

IV. COMPARISON BETWEEN DIFFERENT CO-ARRAY

STRUCTURES

In this section, we give a comparison between our proposed

schemes (EAS-NA-CPA and EAS-NA-NA as two specific

cases) with two recently proposed ones: one is called SAFO-

CPA [22], and the other one is called SAFO-NA [23].

Since given the same number of physical sensors, we can

have different sub-array parameters, which then results into

different number of consecutive fourth-order lags for the same

construction scheme. To have a fair comparison, we choose the

parameters giving the maximum number for each scheme. Fig.

1 shows the number of consecutive fourth-order lags CL for
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Fig. 1. DOFs of different co-array structures in terms of the number of
consecutive FODCA lags.

TABLE I
PARAMETER SETTING OF THE CORRESPONDING SPARSE ARRAYS.

number SAFO-NA EAS-NA-NA SAFO-CPA EAS-NA-CPA
of (M1,M2, (M1,M2, (M1,M2, (M1,M2,

sensors N) N1, N2) N) N1, N2)
4 (1, 2, 1) (1, 1, 1, 2) −− −−
5 (1, 2, 2) (1, 2, 1, 2) −− −−
6 (2, 2, 2) (2, 2, 1, 2) −− −−
7 (2, 3, 2) (2, 3, 1, 2) −− −−
8 (2, 3, 3) (2, 3, 2, 2) (2, 3, 2) (2, 3, 1, 2)
9 (3, 3, 3) (2, 3, 2, 3) (2, 3, 3) (2, 3, 2, 2)
10 (3, 4, 3) (3, 3, 2, 3) (2, 3, 4) (2, 3, 2, 3)
11 (3, 4, 4) (3, 4, 2, 3) (2, 3, 5) (2, 3, 3, 3)
12 (4, 4, 4) (3, 4, 3, 3) (3, 4, 3) (2, 3, 3, 4)
13 (4, 5, 4) (3, 4, 3, 4) (3, 4, 4) (2, 3, 4, 4)
14 (4, 5, 5) (4, 4, 3, 4) (3, 4, 5) (2, 3, 4, 5)
15 (5, 5, 5) (4, 5, 3, 4) (3, 4, 6) (3, 4, 3, 4)
16 (5, 6, 5) (4, 5, 4, 4) (4, 5, 4) (3, 4, 4, 4)
17 (5, 6, 6) (4, 5, 4, 5) (4, 5, 5) (3, 4, 4, 5)
18 (6, 6, 6) (5, 5, 4, 5) (4, 5, 6) (3, 4, 5, 5)
19 (6, 7, 6) (5, 6, 4, 5) (4, 5, 7) (3, 4, 5, 6)
20 (6, 7, 7) (5, 6, 5, 5) (4, 5, 8) (3, 4, 6, 6)
21 (7, 7, 7) (5, 6, 5, 6) (5, 6, 6) (3, 4, 6, 7)

the four cases with different number of physical sensors and

the corresponding parameter settings are provided in Tab. IV.

We can see from the figure that, for the total number of

physical sensors L > 4, the number of DOFs of EAS-NA-NA

is always larger than the SAFO-NA structure, while EAS-

NA-CPA outperforms the SAFO-CPA for L > 8. On the

other hand, EAS-NA-CPA and SAFO-NA have a similar result

and the CL number for the EAS-NA-CPA will exceeds that

of SAFO-NA for L > 16. The performance of EAS-NA-

NA is the best of all, which greatly exceeds the other three

structures for L > 10. For example, for L = 18, the number of

consecutive fourth-order lags are 2949, 1751, 1653 and 1101
for EAS-NA-NA, EAS-NA-CPA, SAFO-NA, and SAFO-CPA,

respectively.

V. SIMULATION RESULTS

In this section, simulations are performed to demonstrate

the performance of the proposed EAS-NA scheme. The CS-
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Fig. 2. DOA estimation result for the EAS-NA-NA array.

based DOA estimation algorithm is employed as in [22], [23],

where the constrained L1 norm minimization problem can be

solved using cvx, a package for specifying and solving convex

problems [24], [25]. In the formulation, the full angle range

from −90◦ to 90◦ is discretized with a step size of 0.05◦. The

sources are generated by fixing the magnitude and frequency

of a complex baseband signal and then changing its phase

randomly following a uniform distribution on [0, 2π].

In the first simulation, we consider an EAS-NA-NA array

with L = 6 sensors and the parameters are set to be M1 =
1 and M2 = N1 = N2 = 2, with P = {1, 2, 4} · d and

Q̂ = {11, 18, 39} · d. K = 41 narrowband source signals

are uniformly distributed between −60◦ and 60◦. The input

SNR is 0dB, and the number of snapshots for calculating the

fourth-order cumulant matrix is 20000. The DOA estimation

result is shown in Fig. 2. Clearly, all the sources have been

distinguished successfully.

Now we compare the performance of two nested array based

structures, EAS-NA-NA and SAFO-NA, and the two co-prime

array based structures, EAS-NA-CPA and SAFO-CPA, all with

L = 12 physical sensors. The parameters for the EAS-NA-NA

array are M2 = 4, M1 = N1 = N2 = 3, for the SAFO-

NA array are M1 = M2 = N = 4, for the EAS-NA-CPA

array are M1 = 2, M2 = N1 = 3 and N2 = 4, and finally

for the SAFO-CPA array are M1 = N = 3,M2 = 4. By

calculation, the physical aperture for EAS-NA-NA is 371 · d,

270 ·d for SAFO-NA, 241 ·d for EAS-NA-CPA, and 181 ·d for

SAFO-CPA. The number of source signals is K = 35 and the

number of snapshots for calculating the fourth-order cumulant

matrix is 10000. The root-mean-squared error (RMSE) results

obtained through 500 Monte Carlo trials are shown in Fig. 3

with a varied input SNR.

Evidently, the higher the input SNR, the higher its esti-

mation accuracy. The performance of the nested array based

structures are better than the co-prime array based ones, while

the EAS-NA-NA has achieved the best performance for the

whole input SNR range, which is due to not only a higher

number of DOFs provided by the EAS-NA structure, but also

a larger aperture.

Next we fix the input SNR to 0dB, and change the number

of snapshots. The RMSE results are shown in Fig.4, where we
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can see a similar trend and again the EAS-NA-NA structure

has provided the best result for the considered full range of

snapshot numbers.

VI. CONCLUSION

A general sparse array construction scheme called expand-

ing and shift (EAS) has been proposed for maximizing the

continuous FODCA lags. It consists of two existing sparse

sub-arrays, one with M physical sensors and CM consecutive

SODCA lags, while the other one with N physical sensors and

CN consecutive SODCA lags. Then, the second sub-array is

first expanded by increasing its unit spacing CM times and

then shifted to a position so that the two sub-arrays share one

common physical sensor. As a result, with only M + N − 1
physical sensors, CMCN consecutive FODCA lags can be

achieved. It is also shown that when the second sub-array is

a two-level nested array, the number of consecutive FODCA

lags can be further increased. As demonstrated by simulation

results, the proposed EAS scheme has achieved a much better

performance than two existing structures due to its higher

number of DOFs and larger physical aperture.
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