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A B S T R A C T

The absorption coefficient of AlGaInP lattice-matched to GaAs, across the composition range from AlInP to GaInP
has been obtained from photocurrent versus wavelength measurements on seven homo-junction AlGaInP PIN
diode structures. Due to the sensitivity of the photocurrent measurement technique, values of absorption down
to 100 cm−1 have been determined close to the band-gap. From these, the bandgaps in this material system were
extracted across the composition range and these corroborate data in the literature that shows the band-gap be-
coming indirect when the aluminium content, x>0.48.

1. Introduction

The quaternary alloy (AlxGa1-x)0.52In0.48P (hereafter referred to as Al-
GaInP) is an attractive material for solar cell applications. Due to the
bandgap tunability of the quaternary alloy while being lattice-matched
to GaAs, it has been used extensively as the absorber material or as an
optical window in solar cells [1–4] where efficiencies of >40% have
been obtained. Designs of such devices require an accurate knowledge
of the absorption coefficient, α, as a function of wavelength, λ, across
the alloy composition. This is important to optimise the energy conver-
sion efficiency due to the ability to absorb shorter wavelength photons,
and to accurately determine any losses in the window region.

There are several experimental methods for measuring α(λ) in a
semiconductor. Kato et al. [5] have reported α(λ) of AlGaInP over a
wide wavelength range using ellipsometric techniques, by extracting
both the refractive index, n, and extinction coefficient, k. However the
reliability of the measurement primarily depends on the surface qual-
ity of the semiconductors and it was shown that the optical constants at
the absorption band edge can vary considerably due to surface rough-
ness and the presence of native oxides [5]. This prevents the precise
measurement of α<104 cm−1, in addition to limits imposed by the el-
lipsometer's inherent accuracy [6]. Although these values of α are rel-
atively low, it can be critical in estimating the efficiency of solar cells
with light trapping abilities [7], as well as in accurately determining the
loss of any window layers [2,3]. One way to obtain lower values of α
is via a transmission measurement technique, which gives a good esti-
mation of α down to 100 cm−1 within an uncertainty of ~20% [8]. A

wide dynamic range of α from 106 to 100 cm−1 is usually achieved
by merging the data obtained from both transmission and ellipsometry
measurements [9–11]. However, such a technique is difficult to perform
on AlGaInP alloys as the lattice matched GaAs substrate is opaque at the
wavelengths of interest and therefore has to be removed prior to any
transmission measurement.

An alternative method of determining the absorption coefficients is
by obtaining the spectral quantum efficiencies from photocurrent mea-
surements in PIN diodes [12]. Provided the structure used is appropri-
ately designed, this technique can give accurate values of α(λ) over a
wide dynamic range. The changes in doping within parts of the PIN
diode should not pose a problem as α is relatively insensitive to even
moderately high doping densities of <2×1018 cm−3 [13,14]. In this pa-
per, we use this method to obtain α(λ) for AlGaInP alloys, over its entire
composition range from AlInP to GaInP.

2. Device growth, fabrication and characterization

A series of seven AlGaInP homo-junction PIN diodes (across the en-
tire composition range of GaInP to AlInP) with nominal intrinsic region
thickness, w of 1.0 µm, was used for this work. All wafers were grown
on 10° off-axis n+ GaAs substrates by metal-organic-chemical-vapor de-
position (MOCVD) to minimise the effects of Cu-Pt ordering [15] and
the consequent reduction in band-gap. A summary of the wafers used
in this study is given in Table 1. The AlInP PIN (x=1.0) was grown
previously and was reported as P2-1 in an earlier publication [12]. The
p+ and n+ cladding layers nominal thicknesses were 1.0 and 0.3 µm re
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Table 1
Nominal structure details of AlGaInP diodes grown on 10° off-axis n+ GaAs substrate, de-
scribed from top to bottom.

Purpose Thickness (µm) Material

Cap 0.05 GaAs
p+ cladding 1.0 AlGaInP
Intrinsic 1.0 AlGaInP
n+ cladding 0.3 AlGaInP
n+ cladding 0.3 GaAs

spectively and the top AlGaInP p+ was finally capped with a 50 nm thin
p+ GaAs to ensure a good ohmic contact as shown in Table 1.

Double crystal X-ray rocking curves (XRD) (not shown here) re-
vealed that the lattice mismatch between AlGaInP and GaAs is minimal
for all these structures at <±2×10−3. The measured aluminium compo-
sitions in these samples are shown in Table 2. Circular mesa diodes (35 –
210 µm radii) with annular top contacts were fabricated using standard
photolithography and wet chemical etching as detailed in [12]. To min-
imise undesirable light absorption within the 50 nm GaAs cap, it was
removed by wet chemical etching in the window region. The mesa side-
walls were passivated using SU-8 and covered with gold to ensure that
any photocurrent measured was only due to light falling on the optical
window region. Due to the large bandgap in these samples, the dark cur-
rents were <5 pA at −5 V even in the largest radii devices and were
found to be <3 µA cm−2 at 95% of their respective breakdown voltages.

Capacitance-voltage (C-V) measurements were performed on the de-
vices to extract the depletion widths, w and the doping densities of
the cladding layers using dielectric constants which are interpolated
from GaP, InP and AlP, given as 11.2 [16], 12.6 [17] and 9.8 [18]
respectively. The n+ cladding layers were silicon doped to a level of
~2×1018 cm−3 for all alloy compositions [19]. The doping densities in
the p+ and i regions were obtained by modelling the C-V results (see
Fig. 1) assuming an n+ layer doping of 2×1018 cm−3. The p+ cladding
doping densities in all the samples were found to be approximately be-
tween 2×1017 cm−3 and 2×1018 cm−3 as shown in Table 1. This dop-
ing level generally decreases as the aluminium fraction in the sample
increases due to the decreasing solubility of the zinc dopants [20]. The
thickness of the intrinsic region, w in these devices are determined as
0.93–1.00 µm, except for the previously grown AlInP PIN, which was
1.14 µm.

3. Results and discussion

A 100 W tungsten bulb and a grating monochromator were used to
measure the spectral responses in the largest diameter devices. The ef-
fect of any Franz-Keldysh electro-absorption [21,22] on the photocur-
rent was assumed minimal as all measurements were undertaken at

Table 2
device parameters of AlGaInP Diodes.

Al
fraction

w
(µm)
±0.01
µm

Np
(×1017 cm−3)
±1×1017 cm−3

Ni
(×1015 cm−3)
±1×1015 cm−3

Le
(µm)
±5%

0.00 0.97 18 2 0.27
0.31 0.99 10 2 0.25
0.47 0.93 9 3 0.22
0.61 1.00 8 2 0.20
0.64 0.96 8 2 0.20
0.78 0.94 10 2 0.15
1.00 1.14 3 7 0.15

Fig. 1. Measured (symbols) and modelled (lines) capacitance of AlGaInP (x=0, 0.31,
0.61, 0.78, 1.00) shown as ○, ▽, □ , ♢ and Δ respectively. Results for x=0.47 and 0.64
are omitted for clarity.

0 V. Using a calibrated silicon photodiode as reference, the experimental
spectral responses yielded quantum efficiencies (η) of the devices over
three orders of magnitude due to the very low dark currents of these de-
vices, as shown in Fig. 2. The quantum efficiency data were also corrob-
orated using either a 442 nm He-Cd or 543 nm He-Ne laser (whichever
gave the larger photocurrent in these devices), where the laser beam
was focused to a 20 µm diameter spot on the device optical window.

A one-dimensional quantum efficiency model derived using the cur-
rent continuity equation [23] was used to extract α(λ) from the exper-
imental η(λ) in these samples. The parameter η is the sum of the effi-
ciency contributed by carriers generated in the p+, i and n+ AlGaInP
layers, i.e. ηp, ηi and ηn respectively, which can be expressed as

(1)

where R is the reflectivity of the semiconductor surface. Any carriers
created in the underlying n+ GaAs will not contribute to the photocur-
rent as GaAs-AlGaInP has a Type I band offset [24]. The usual expres-
sions for ηp, ηi and ηn from [23] are given in Eqs. (2)–(4). This requires
knowledge of Le (Lh), De (Dh) and Se (Sh) which are the diffusion lengths,
diffusion coefficients and surface recombinations respectively. X1 and X2
are the distances from the top surface to the depletion edge in the p+

and n+ region respectively and X3 is the total thickness of the three Al-
GaInP layers. These thicknesses can be estimated accurately from the
epitaxial growth rates and C-V measurements.

In order to obtain Le, we measure the photocurrent at a fixed wave-
length as a function of the reverse bias voltage. Due to the unpassivated
semiconductor surface in the window region, Se can be assumed to be
large at ~1×107 cm s−1 [25] in all samples and

Fig. 2. Quantum efficiency determined from measured spectral responses in the AlGaInP
PINs (x=0, 0.31, 0.47, 0.61, 0.64, 0.78 and 1.00). Data shown for AlInP was obtained
from [12].
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(2)

(3)

(4)

therefore Eq. (2) approaches to

(5)

By choosing a short enough wavelength (that varied between 442
and 532 nm for the different compositions), we can ensure that the light
is almost entirely absorbed in the p+ cladding layer while providing
a measurable photocurrent, and therefore, Eq. (1) becomes η=(1-R)ηp.
The short wavelength also ensures the product of αX1 is large and Eq.
(5) can then be further simplified to

(6)

With increasing reverse bias, X1 decreases and ηp increases almost
linearly as described by Woods et al. [26]. Using Eq. (6), Le was ex-
tracted from the experiment data of short wavelength photocurrent ver-
sus reverse bias voltage as shown in Fig. 3 and the values obtained

Fig. 3. Measured (symbols, with an accuracy of ±2.5%) and modelled (lines) photocur-
rent as a function of bias voltage in x=0, 0.47 and 1.00 shown as ○, ▽, □ respectively.

are shown in Table 1. For clarity, only data from samples with alu-
minium fraction of 0, 0.47 and 1.00 are shown here.

In Table 1, Le is fairly short and decreases with increasing aluminium
fraction, similar to the trend found in AlGaAs by Hooft et al. [27]. This
may be due to increasing trap and defect densities with aluminium con-
tent. The GaInP sample has the longest Le, and consequently the highest
peak η of 28.2% which is consistent with results in [2,28].

Due to the thickness of the p+ and i regions, the carriers created in
the bottom n+ AlGaInP makes only a minor contribution to the pho-
tocurrent measured especially when the absorption coefficient is large.
At longer wavelengths and low values of absorption coefficient, some
carriers are generated in the n+ layer and this is taken into account by
assuming that Sh=Se (due to the bottom n+ AlGaInP/ n+ GaAs hetero-
junction) and by Lh =Le.

Using the determined Le's shown in Table 1 along with other para-
meters as discussed in the above paragraph, the absorption coefficients
were determined from the measured η as shown in Fig. 4 after calculat-
ing the surface reflectivity in these samples using

(7)

where k is related to α via .
The refractive indices in these materials were obtained by linearly

interpolating the experimental results from Kato et al. [5]. The α ex-
tracted from GaInP gives excellent agreement with that of Schubert et
al. [29] (calculated from k) over a wide range of wavelength down to
<450 nm. It is clear from Fig. 4 that the AlGaInP absorption curves
blue-shift with increasing aluminium fraction. The increase in α with in-
creasing photon energy, E above the bandgap in the quaternary alloys
and AlInP is distinctly different from that of GaInP, however appears to
be similar to that reported in Si [30] and AlGaAs [31]. A detailed expla-
nation for the behaviour of α above the band-gap in this alloy system is
beyond the scope of this experimental study.

The α’s were used to determine the Г energy gap, EГ of these alloys
by obtaining the x-intercept from α2 versus energy plot [32] as illus-
trated in Fig. 5. The indirect band-gap, Ex was obtained by plotting α0.5

versus energy [32] in a similar manner in Fig. 5. The absorption tails
which occurs below the band-gap as shown in Fig. 5 are primarily asso-
ciated with the Urbach tail which arises due to structural and thermal
disorder [22]. The energy gaps determined in these samples are sum-
marized in Fig. 6 and are in excellent agreement with those of Mow-
bray et al. [33] (where the reported 4 K data was converted to 300 K
data by subtracting 80 meV). EГ and Ex can be expressed as a function
of aluminium fraction, x as EГ (x)=1.899+0.704 x and Ex≈2.24 eV re

Fig. 4. Absorption coefficients in AlGaInP PINs (x=0, 0.31, 0.47, 0.61, 0.64, 0.78 and
1.00) as deduced from the QE measurements of Fig. 3. GaInP absorption data from Schu-
bert et. al. [29] (○) is also included.
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Fig. 5. Extracting the direct (top) and indirect energy gaps (bottom) of AlGaInP by fitting
(lines) to experimental values (x=0, 0.31, 0.47, 0.61, 0.64, 0.78 and 1.00) shown as ○.
▽, □, ♢, △,⬡ and ☆ respectively of absorption coefficient.

Fig. 6. Measured direct and indirect gaps of AlGaInP as a function of aluminium fraction
shown as ○ and □ respectively. The solid black and red lines are direct and indirect gaps
obtained from [33].

spectively with the direct-indirect crossover occurring at 0.48. Using
the extracted α’s, it is now feasible to model the efficiency of AlGaInP
multi-junction solar cells which utilise different alloy compositions in
absorber and window layers with improved accuracy over a wide spec-
tral range.

4. Conclusion

The spectral responses of a series of seven AlGaInP PINs lattice
matched to GaAs across the entire alloy range were measured and
from their quantum efficiency, the absorption coefficients over five or-
ders of magnitude were extracted accurately down to values as low as
100 cm−1. The values of the direct and indirect gaps obtained from the
absorption coefficients are in good agreement with those published in
the literature with the material system becoming indirect for aluminium
compositions >0.48.
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