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Development of tip-splitting and side-branching patterns in elastic fingering

João V. Fontana1, Hermes Gadêlha2, and José A. Miranda1∗
1 Departamento de F́ısica, Universidade Federal de Pernambuco,Recife, Pernambuco 50670-901 Brazil

2 Department of Mathematics, University of York, York YO10 SDD, United Kingdom

Elastic fingering supplements the already interesting features of the traditional viscous finger-
ing phenomena in Hele-Shaw cells with the consideration that the two-fluid separating boundary
behaves like an elastic membrane. Sophisticated numerical simulations have shown that under
maximum viscosity contrast the resulting patterned shapes can exhibit either finger tip-splitting or
side-branching events. In this work, we employ a perturbative mode-coupling scheme to get impor-
tant insights into the onset of these pattern formation processes. This is done at lowest nonlinear
order, and by considering the interplay of just three specific Fourier modes: a fundamental mode
n, and its harmonics 2n and 3n. Our approach further allows the construction of a morphology
diagram for the system in a wide range of the parameter space without requiring expensive numer-
ical simulations. The emerging interfacial patterns are conveniently described in terms of only two
dimensionless controlling quantities: the rigidity fraction C, and a parameter Γ that measures the
relative strength between elastic and viscous effects. Visualization of the rigidity field for the vari-
ous pattern-forming structures supports the idea of an elastic weakening mechanism that facilitates
finger growth in regions of reduced interfacial bending rigidity.

PACS numbers: 47.15.gp, 47.70.Fw, 47.54.-r, 47.20.Ma

I. INTRODUCTION

The viscous fingering or Saffman-Taylor instability oc-
curs when a fluid displaces another in the constrained
environment of a Hele-Shaw cell [1], a device constituted
by two parallel glass places separated by a narrow gap.
This popular fluid dynamic instability is driven by the
viscosity difference between the fluids that is quantified
by the dimensionless viscosity contrast parameter

A =
µ2 − µ1

µ2 + µ1

, (1)

where µ2 (µ1) is the viscosity of the displaced (displacing)
fluid, and −1 ≤ A ≤ 1. The instability takes place when-
ever the displaced fluid is more viscous (i.e., when A > 0).
Under such circumstances, the interplay between (desta-
bilizing) viscous effects and (stabilizing) surface tension
forces leads to the formation of interfacial patterns pre-
senting fingerlike shapes [2]. For radial fluid injection [3–
9] the most prominent morphological feature of such pat-
terns is the fact that the emerging fingers tend to bi-
furcate at their tips, generating the finger tip-splitting
phenomenon. As a consequence, the evolving fingers
tend to multiply and proliferate through repeated sub-
divisions, ultimately forming complex branched struc-
tures. It should be noted that the reverse flow case
(where the more viscous fluid pushes the less viscous one,
so that A < 0) as well as the viscosity-matched displace-
ment (fluids presenting equal viscosities, implying that
A = 0) do not produce any interfacial disturbances, so
that the two-fluid separating boundary propagates in the
form of a stable circular front.
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During the past few years there has been a consider-
able interest in the study of reactive Hele-Shaw flows. In
this type of fluid displacements the already interesting
features of traditional viscous fingering phenomena [1, 2]
are supplemented by the occurrence of chemical reactions
at the fluid-fluid interface [10–19]. One particularly inter-
esting experimental work on reactive Hele-Shaw flows has
been performed by Podgorski et al. [19]. Their study fo-
cused on the usually stable viscous fingering situation in-
volving the flow of two fluids of equal viscosities (A = 0),
but induced the occurrence of chemical reactions at the
interface. Surprisingly, instead of observing the evolu-
tion of stable concentric circular patterns, they detected
the development of completely different interfacial mor-
phologies presenting mushroom-shaped and tentaclelike
structures. Curiously, no finger tip-splitting-type pat-
tern has been found. The fact is that the chemical re-
action induces the formation of an elastic gel-like layer
between the fluids, so that the interfacial instabilities are
not viscosity-driven, but triggered by the own elastic na-
ture of the interface. This suggestive pattern-forming
process defines the so-called elastic fingering instability.
The experimental elastic fingering results reported

in [19] motivated additional work on this research topic,
now addressing theoretical aspects of the problem [20,
21]. He et al. proposed a curvature weakening model that
tried to reproduce the basic physics of the reactive flow
system examined in [19]: they considered that the inter-
face separating the fluids behaves as a thin elastic mem-
brane, presenting a curvature-dependent bending rigidity
whose value decreases as the local interfacial curvature κ
increases [20]

ν = ν(κ) = ν0[Ce−λ2κ2

+ 1− C]. (2)

In Eq. (2) ν0 is the maximum rigidity that expresses the
largest resistance to disturbances, and 0 ≤ C < 1 is the
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bending rigidity fraction, which measures the fraction of
intramolecular bonds broken through surface deforma-
tion. In addition, λ > 0 denotes a characteristic radius.
One can think of the quantity 1/λ as being a character-
istic curvature beyond which ν(κ) has a substantial de-
crease. Note that the constant bending rigidity limit is
reached by setting C = 0. By deriving a modified Young-
Laplace pressure jump condition, He and collaborators
performed a linear stability analysis of the problem. Con-
sistently with the experimental findings of Ref. [19], their
linear results were able to account for the fact that the
interface could become unstable even if the fluids have
the same viscosity. However, their simple linear analy-
sis was not able to extract any specific feature about the
morphology of the emergent patterns.

Later, Carvalho and coworkers [21] utilized the
curvature-dependent bending rigidity model proposed
in [20] to carry out a weakly nonlinear analysis of the sys-
tem, and showed that when A = 0 nonlinear effects play
a crucial role to determine the general shape assumed
by the resulting patterned structures [21]. Subsequently,
the same group of researchers investigated the manifesta-
tion of elastic fingering in rotating Hele-Shaw cells, where
still unexploited pattern-forming dynamic behaviors [22],
and innovative stationary morphologies [23] have been re-
vealed as a result of the competition between elastic and
centrifugal forces.

Very recently, another theoretical work [24] revisited
the elastic fingering problem, but focused on a different
facet of it: contrary to what has been done in Refs. [19–
21] which addressed the viscosity-matched A = 0 case, it
analyzed the maximum viscosity contrast situation A = 1
in which a fluid of negligible viscosity displaces a fluid
of finite viscosity. Recall that this is in fact the most
common situation explored both theoretically and ex-
perimentally in the conventional viscous fingering prob-
lem [1–9]. Additionally, as opposed to Refs. [19–21] which
examined early linear or weakly nonlinear time regimes,
Ref. [24] concentrated on fully nonlinear time stages of
the pattern formation dynamics. By using the curvature-
dependent bending rigidity model, and employing state-
of-the-art, extensive boundary integral numerical simu-
lations, the authors of Ref. [24] have been able to unveil
quite relevant information about the emerging patterns.

The cutting edge numerical results presented in [24]
have shown that when viscous and elastic effects act si-
multaneously, one can get the rise of either finger tip-
splitting (when C = 0), or side-branching (when C = 0.5)
[see Fig. 5 in Ref. [24]]. During side-branching forma-
tion, interfacial lobes branch out sideways, forming den-
driticlike patterns that resemble the shape of snowflakes.
Even though the appearance of finger tip-splitting is not
that surprising, the occurrence of side-branching is some-
what unexpected. After all, in the elastic fingering prob-
lem both fluids are Newtonian, but side-branching pat-
tern formation in fluids normally arises in Hele-Shaw
flows when the displaced fluid is non-Newtonian (shear-
thinning) [25–32]. Therefore, it is worth pointing out

FIG. 1. (Color online) Representative sketch of a radial flow
in a circular Hele-Shaw cell with an elastic interface (dark
gray boundary) separating the inner fluid 1 and the outer
fluid 2 (light gray region).

that in Ref. [24] the production of side-branching pat-
terns is not related to the non-Newtonian nature of the
fluids, but a result of the interplay between elastic and
viscous effects.
In this work we examine the important maximum vis-

cosity contrast (A = 1) situation investigated in Ref. [24],
and try to assess their main numerical results regard-
ing the morphology of the patterns via simple analytical
means. This is done through the employment of a per-
turbative mode-coupling theory of the elastic fingering
problem. We show that already at lowest nonlinear or-
der, and by considering the coupling of just three specific
Fourier modes, one can reproduce the onset formation of
both finger tip-splitting and, most importantly the side-
branching phenomena. A morphological diagram is pro-
posed for the pattern formation problem, where the pos-
sible weakly nonlinear shapes are conveniently described
in terms of two controlling dimensionless parameters: the
rigidity fraction C and the quantity Γ which expresses the
relative strength between elastic and viscous effects. Fi-
nally, the occurrence of the possible shapes is discussed in
the light of an interfacial bending rigidity field, which is
consistent with the weakening curvature effect proposed
in Ref. [20] where interfacial elastic fingers arise more
easily in regions of lower bending rigidity.

II. PHYSICAL PROBLEM AND GOVERNING

EQUATIONS

Consider a circular Hele-Shaw cell of gap thickness
b containing two immiscible, incompressible, Newtonian
viscous fluids (see Fig. 1). Fluid 1 is injected into fluid
2 at a constant injection rate Q (equal to the area cov-
ered per unit time). Due to a chemical reaction there
exists a gel-like interface separating the two fluids. As
in Refs. [20–24] we treat the interface as an elastic mem-
brane, presenting a curvature-dependent bending rigidity
as given by Eq. (2). Notice that in this work we follow
Ref. [24] and focus on the maximum viscosity contrast
situation in which µ2 ≫ µ1 such that A → 1 in Eq. (1).
Within the scope of our mode-coupling weakly non-
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linear analysis, the perturbed fluid-fluid interface is de-
scribed as R(θ, t) = R(t) + ζ(θ, t), where θ represents
the azimuthal angle, and R(t) is the time dependent un-

perturbed radius R = R(t) =
√

R2
0 +Qt/π, with R0

being the unperturbed radius at t = 0. Here, ζ(θ, t) =
∑+∞

n=−∞ ζn(t) exp (inθ) denotes the net interface pertur-
bation with Fourier amplitudes ζn(t), and discrete wave
numbers n. Our perturbative approach keeps terms up
to the second-order in ζ. In the Fourier expansion of ζ we
include the n = 0 mode to maintain the area of the per-
turbed shape independent of the perturbation ζ. Mass
conservation imposes that the zeroth mode is written in
terms of the other modes as ζ0 = −(1/2R)

∑

n6=0

|ζn(t)|
2.

For the quasi-two-dimensional configuration of the
Hele-Shaw cell (very small gap thickness b), the flow is as-
sumed to be potential [19–24]. Creeping flow would only
result if the plates are farther apart (large b limit), which
is not the case here. So, for our current small b situation,
the gap-averaged flow velocity is vj = −∇φj , where φj

represents the velocity potential in fluids j = 1, 2. The
equation of motion of the interface is given by Darcy’s
law [1, 2, 20, 21]

A

(

φ1 + φ2

2

)

−

(

φ1 − φ2

2

)

= −
b2∆p

12(µ1 + µ2)
, (3)

where

∆p = (p1 − p2)|r=R − (p1 − p2)|r=R, (4)

(p1−p2)|r=R denotes the pressure jump on the perturbed
interface, and (p1−p2)|r=R represents the pressure jump
on the unperturbed interface. Similarly to what was
done in [20, 21] the contributions coming from the elas-
tic nature of the fluid-fluid interface are introduced via a
generalized Young-Laplace pressure boundary condition,
which expresses the pressure jump across the perturbed
fluid-fluid interface as

(p1 − p2)|r=R =−
1

2
ν′′′κ2κ2

s − ν′′
(

3κκ2
s +

1

2
κ2κss

)

− ν′
(

1

2
κ4 + 3κ2

s + 2κκss

)

− ν

(

1

2
κ3 + κss

)

, (5)

where the curvature-dependent bending rigidity ν = ν(κ)
is given by Eq. (2). In Eq. (5) the primes indicate deriva-
tives with respect to the curvature κ, while the subscripts
of κ indicate derivatives with respect to the arc length s.
To obtain a mode-coupling differential equation for the

evolution of the perturbation amplitudes, first we de-
fine Fourier expansions for the velocity potentials, which
obey Laplace’s equation ∇2φj = 0. Then, we express
φj in terms of the perturbation amplitudes ζn by con-
sidering the kinematic boundary condition n · ∇φ1 =
n ·∇φ2, which refers to the continuity of the normal ve-
locity across the interface. Substituting these relations,

and the modified pressure jump condition Eq. (5) into
Eq. (3), always keeping terms up to second-order in ζ,
and Fourier transforming, yields the dimensionless mode-
coupling equation (for n 6= 0) [8, 21]

ζ̇n = Λ(n)ζn

+
∑

m 6=0

[F (n,m)ζmζn−m +G(n,m)ζ̇mζn−m], (6)

where the overdot denotes total time derivative,

Λ(n) =
1

R2
(A|n| − 1)

+
Γ

2R5
|n|(n2 − 1)

[

A1(C, η)(n
2 + 1) +A2(C, η)

]

,

(7)

is the linear growth rate,

Γ =
b2ν0π

6(µ1 + µ2)Qλ3
(8)

measures the ratio of elastic to viscous forces,

A1(C, η) = Ce−η(−4η2 + 10η − 2)− 2(1− C), (9)

A2(C, η) = Ce−η(8η2 − 22η + 5) + 5(1− C), (10)

and η = (1/R)2. We point out that Γ = 1/Ĵ , where Ĵ is
a parameter originally defined in Ref. [24].
The second-order mode-coupling terms are given by

F (n,m) =
|n|

R

{

A

R2

[

1

2
− sgn(nm)

]

−
ΓCe−η

R5

[

B1(n,m) + ηB2(n,m)

+ η2B3(n,m) + 2η3B4(n,m)
]

,

−
Γ(1− C)

R5
B1(n,m)

}

, (11)

and

G(n,m) =
1

R
{A|n|[1 − sgn(nm)]− 1} , (12)

where the sgn function equals ±1 according to the sign of
its argument. The expressions for the functions B1(n,m),
B2(n,m), B3(n,m), and B4(n,m) are given in the ap-
pendix. Note that in Eqs. (6)-(12) lengths are rescaled
by λ, and time by λ/U , where U = Q/(2πλ) is a char-
acteristic velocity. From this point onward we use the
dimensionless version of all the equations. We stress that
in this work, we focus on the important elastic fingering
situation A = 1 in which the phenomena of finger tip-
splitting and side-branching have been predicted numer-
ically [24]. The set of equations (6)-(12) will be used to
investigate analytically how these morphological features
can be reproduced already at weakly nonlinear stages of
the dynamics.
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FIG. 2. (Color online) Elastic fingering morphology diagram in the parameter space (Γ, C). The dashed lines delimitate the
boundaries separating six different morphological regions (I-VI). Regions I, II, and III are characterized by finger tip-broadening,
finger tip-flattening, and finger tip-splitting, respectively. Conversely, regions IV, V, and VI present various manifestations of
side-branching events.

III. ACCESS TO FINGER TIP-SPLITTING AND

SIDE-BRANCHING VIA A WEAKLY

NONLINEAR FORMULATION

A. Nonlinear fingering dynamics

By following Refs. [8, 30, 32], in order to address
the onset of tip-splitting and side-branching events in
the elastic fingering problem, we rewrite the net inter-
face perturbation ζ(θ, t) in terms of three specific cosine
modes, namely the fundamental mode n, and its first and
second harmonic modes 2n and 3n

ζ(θ, t) = ζ0 + an(t) cos(nθ)

+ a2n(t) cos(2nθ) + a3n(t) cos(3nθ), (13)

where for a given mode an(t) = ζn(t) + ζ−n(t) denotes
the real-valued cosine amplitude, and

ζ0 = −
1

4R(t)
{[an(t)]

2 + [a2n(t)]
2 + [a3n(t)]

2}. (14)

Without loss of generality, as in Refs. [8, 30, 32] we choose
the phase of the fundamental mode so that an > 0.
Within the scope of our second-order mode-coupling

theory, finger tip-splitting, finger tip-broadening, and fin-
ger tip-narrowing are related to the influence of a funda-
mental mode n on the growth of its harmonic 2n. It
has been shown in Ref. [8] that an enhanced tendency of
the fingers to get wider (narrower) occurs when a2n < 0
(a2n > 0). So, a negative growth for the cosine am-
plitude of the first harmonic mode 2n would mean ten-
dency toward finger tip-splitting formation. A similar
second-order mechanism refers to the side-branching phe-
nomenon, and has been proposed in Refs. [30, 32]. In the
realm of a mode-coupling model, it has been verified that

side-branching formation requires the presence of mode
3n. If the harmonic mode amplitude a3n is positive and
sufficiently large, it can produce interfacial lobes branch-
ing out sidewards which we interpret as side-branching.
It is evident from Eqs. (13) and (14) that to describe

the time evolution of the perturbed interface R(θ, t) =
R(t) + ζ(θ, t), one needs to know how the cosine ampli-
tudes an(t), a2n(t), and a3n(t) evolve in time. To do that,
we rewrite the mode-coupling equation (6) in terms of co-
sine modes, considering the interplay of modes n, 2n, and
3n to obtain

ȧn = λ(n) an +
1

2
{[T (n,−n) + T (n, 2n)] ana2n

+ [T (n, 3n) + T (n,−2n)]a2na3n}, (15)

ȧ2n = λ(2n) a2n +
1

2
{T (2n, n) a2n

+ [T (2n,−n) + T (2n, 3n)] ana3n}, (16)

and

ȧ3n = λ(3n) a3n +
1

2
[T (3n, n) + T (3n, 2n)] ana2n,

(17)

where

T (n,m) = F (n,m) + λ(m)G(n,m). (18)

For consistent second-order expressions, on the right
hand side of Eqs. (15)-(17) we replaced time derivative
terms like ȧn by λ(n) an. The analytical solution for this
type of differential equation has been given in Ref. [8]
[see their Eq. (28), plus Eqs. (30)-(32)]. Of course, the
time evolution of the amplitudes an(t), a2n(t), and a3n(t)
can also be readily obtained by numerically solving the
coupled nonlinear differential equations (15)-(17).
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B. Nonlinear pattern morphologies

We begin our discussion by presenting a morphology
diagram for the onset of pattern formation in our elastic
fingering system. Figure 2 depicts typical representative
patterns by considering the parameter space (Γ, C). This
diagram reveals that by varying the values of Γ and C
one can identity six basic morphological regions: the first
three regions (I, II, III) are related to the occurrence of
finger tip-broadening (I), finger tip-flattening (II), and
then finger tip-splitting (III). On the other hand, the re-
maining regions (IV, V, VI) are associated to the appear-
ance of stubby side-branching shapes with pronounced
finger broadening (IV), regular side-branching structures
(V), and elongated side-branching patterns with stronger
finger narrowing behavior. The dashed lines separating
the various regions in Fig. 2 are obtained by inspecting
the aspect of the resulting patterns while the governing
parameters Γ and C are meticulously varied.
Our weakly nonlinear morphology diagram contem-

plates the possibility of existence of tip-splitting and
closely related events (regions I, II, and III), plus the
prevalence of side-branching phenomena (regions IV, V,
and VI)), being consistent with the sophisticated nu-
merical results reported in Ref. [24]. This can be ver-
ified by inspecting the early time stages of the numerical
simulations shown in Fig. 5 of Ref. [24], and compar-
ing them with the weakly nonlinear patterns shown in
Fig. 2. Note that in contrast to what has been done
in [24], instead of focusing only on two values of the
rigidity fraction C (namely, C = 0 and C = 0.5), we
exploited the values of C for which the elastic fingering
instability develops, keeping the linear growth rate pos-
itive and bound [20]. In addition, we also have sweeped
out the characteristic values of the parameter Γ, within
the range 0 < Γ ≤ 20 × 10−4 (Fig. 5 in [24] only con-
siders Γ = 1/230 ≈ 43, 4 × 10−4). It should be stressed
that we have carefully searched for other families of pat-
terns within and beyond the range of parameters C and
Γ considered in Fig. 2, within an empirically relevant
parameter regime, but have not found any other dramat-
ically distinct type of patterned morphologies than the
ones presented here.
At this point, it should be noted that as in Refs. [33,

34], while plotting the evolving interfaces shown in Fig. 2
and in the remaining figures of this work, we stop the
time evolution of the patterns as soon as the base of the
fingers starts to move inwards, which would make succes-
sive interfaces cross one another. Since this crossing is
not observed in experiments [3–7] and simulations [9, 24],
we adopt the largest time before crossing as the upper
bound time (t = τ) for the validity of our theoretical de-
scription. This validity condition can be mathematically
expressed as

[

dR

dt

]

t=τ

= [Ṙ(t) + ζ̇(θ, t)]t=τ = 0. (19)

Notice that, differently from what has been done in

Ref. [34] we evaluate Eq. (19) by taking into account
second-order contributions for interface perturbation
ζ(θ, t), as prescribed by our mode-coupling equation (6).

To better appreciate the weakly nonlinear behav-
iors expressed by the typical pattern-forming structures
shown in regions I, II, and III in Fig. 2, we examine them
more closely in Fig. 3. On the top of each panel, we depict
the fluid-fluid interface evolution considering the interac-
tion of three representative cosine modes (n = 4, 2n = 8,
and 3n = 12). On the bottom part of the panels, we plot
the corresponding time evolution of the rescaled cosine
amplitudes an(t)/R(t) for each of these cosine modes.
This is done for regions: (a) I, (b) II, and (c) III. Similar
kind of plots are presented in Fig. 4 for the side-branching
regions IV, V, and VI. We stress that all patterns il-
lustrated in Figs. 2-5 have the same the initial ampli-
tudes at t = 0 s an(0) = R0/80, where R0 = 1.5, and
a2n(0) = a3n(0) = 0 so that modes 2n and 3n are both
initially absent. This is done to avoid artificial growth of
modes a2n and a3n imposed solely by the initial condi-
tions. This way, the phenomenon of finger tip-splitting
and side-branching we study are spontaneously induced
by the weakly nonlinear dynamics, and not by artificially
imposing large initial amplitudes for a2n and a3n. More-
over, 0 ≤ t ≤ τ , where for each case the final time τ
is obtained from Eq. (19). Even though all the patterns
depicted in Figs. 2-5 have the same initial conditions, the
innermost interface taken at t = 0 may appear to differ in
size from plot to plot. This happens because the sizes of
some of the shapes have been slightly modified to allow
better visualization of their morphological features.

By inspecting Fig. 3(a) for region I (small C and large
Γ), we see a nearly circular initial interface evolving to
a four-fingered structure. Note that it is the growth of
the fundamental mode n = 4 that sets the initial n-fold
symmetry for the pattern. Finger tip-widening can be ob-
served as time progresses, but the finger tips still present
a rounded shape. The broadening of the finger tips is jus-
tified by the growth of the negative first harmonic mode
2n (a2n < 0). On the other hand, the pattern shown
in Fig. 3(b) for region II (intermediate values of C and
Γ) present fingers that are wider than those shown in
Fig. 3(a), and now the finger tips become increasingly
flat. This finger tip-flattening behavior is chiefly due to
the increased growth of the negative first harmonic mode.
Then, by observing Fig. 3(c) for region III (large C and
small Γ) we finally see the occurrence of the finger tip-
splitting phenomenon (resulting in typical flowerlike pat-
terns) mainly induced by the enhanced growth of mode
2n. It is worth noting that the amplitude of the mode
3n is very small in regions I, II, and III so that side-
branching formation is not favored there. However, the
small (but non-negligible) growth of the harmonic am-
plitude a3n > 0 in regions I and II acts to delay the
formation of tip-splitting in these regions. One can say
that regions I, II, and III involve patterned structures
that eventually tend to evolve into a finger tip-splitting
configuration.It is well known from experiments [3–7] and
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FIG. 3. (Color online) Representative elastic fingering patterns of regions I, II, and III (top panel), and the corresponding time
evolution of the rescaled cosine amplitudes an(t)/R(t) for modes n = 4, 2n = 8, and 3n = 12 (bottom panel). The values of the
controlling dimensionless parameters utilized in each of the regions are: (a) C = 0.25, Γ = 20× 10−4, τ = 15.33; (b) C = 0.35,
Γ = 8× 10−4, τ = 10.97; (c) C = 0.55, Γ = 4× 10−4, τ = 9.01.

fully nonlinear numerical simulations [2, 9, 24, 28] that
the phenomenon of finger tip-splitting is always preceded
by the occurrence of finger tip-broadening and flatten-
ing. It is also worthwhile to note that if we use the val-
ues of the relevant parameters that have been utilized
in the numerical simulations of Fig. 5(a) of Ref. [24]
(i.e, Γ = 1/230 ≈ 43, 4 × 10−4, C = 0, R0 = 1, and
an(0) = R0/100) we obtain a weakly nonlinear pattern
belonging to region I, consistently with the early time
interfacial morphology detected in [24].

Now we turn our attention to Fig. 4 and focus on the
basic morphologies and dynamical responses associated
to regions IV, V, and VI. The most evident observation
is that the patterned structures depicted in Fig. 4 are
quite different from the shapes shown in Fig. 3. For
instance, in regions IV, V, and VI there is no sign of
finger tip-splitting events. On the contrary, it is clear
from Fig. 4 that the most prevalent mechanism is now
side-branching. In Fig. 4(a) for region IV (small C and
small Γ) we see the development of an initially fourfold
structure which evolves towards a twelve-folded fingered
morphology, clearly showing the presence and growth of
a sizable mode amplitude a3n > 0. Recall that a positive
sign for a3n favors side-branching formation. However,
it can also be noticed that the mode amplitude a2n < 0,
a sign that would favor finger widening. As a result of
the competition between modes 2n and 3n a stubby side-

branched pattern arises in region IV, where the fingers
are relatively wide but branch-out sideways. The stubby
nature of this particular pattern is partially due to the
somewhat restrained growth of the fundamental mode n.
A different situation is illustrated in Fig. 4(b) for region
V (large C and intermediate Γ): now we have the siz-
able growth of positive mode amplitude a3n > 0 acting
in conjunction with a more moderate growth of a posi-
tive mode amplitude a2n > 0 (a sign that would favor
finger narrowing). As a consequence, a more character-
istic finger side-branching structure arises in region V.
Finally, in Fig. 4(c) for region VI (large C and large Γ)
we still observe a sizable a3n > 0, but now accompanied
by a even larger a2n > 0, producing the formation of
side-branching shapes presenting long and narrow finger
tips. Once again, if we set the parameters as in Ref. [24]
(Γ = 1/230 ≈ 43, 4 × 10−4, C = 0.5, R0 = 1, and
an(0) = R0/100) we obtain a weakly nonlinear pattern
belonging to region VI, in line with what is observed at
initial times in Fig. 5(b) of [24].

The weakly nonlinear morphology diagram presented
in Fig. 2 also raises an important question on how tran-
sitions from side-branching (region IV) to tip-splitting-
type behavior (regions I-III), and then again back to side-
branching (regions V and VI) happen as the two control-
ling parameters C and Γ are increased. The mechanism
by which these transitions take place is related to com-
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FIG. 4. (Color online) Representative elastic fingering patterns of regions IV, V, and VI (top panel), and the corresponding
time evolution of the rescaled cosine amplitudes an(t)/R(t) for modes n = 4, 2n = 8, and 3n = 12 (bottom panel). The values
of the controlling dimensionless parameters utilized in each of the regions are: (a) C = 0.15, Γ = 1.5 × 10−4, τ = 7.15; (b)
C = 0.55, Γ = 11× 10−4, τ = 15.78; (c) C = 0.50, Γ = 15× 10−4, τ = 21.02.

plex mode-coupling interactions via a dynamical system
expressed by Eqs. (15)-(17), which stability, transitions
and bifurcation depend on complicated mode-coupling
functions [Eqs. (7)-(12)] on a three-dimensional parame-
ter space (C,Γ, A), and thus fairly challenging to ratio-
nalize. At this point, we do not have a simple physical ex-
planation for this. We hope future analytical, numerical,
or experimental studies of elastic fingering in Hele-Shaw
cells will further address such an open question.

In order to better understand the role of the bending
weakening effect of the elastic interface while developing
tip-splitting and side-branching morphologies, we depict
in Fig. 5 the associated time evolution of the bending
rigidity field for the observed patterns in Figs. 3 and 4.
The shape-dependence of the bending rigidity entails dy-
namical changes expressed by Eq. (2) as the interface
evolves in time (0 ≤ t ≤ τ). For a given time, we plot
how the function ν(t)/ν0 varies along the fluid-fluid in-
terface: since the curvature varies along the boundary,
the quantity ν(t)/ν0 also changes along the interface.
Such changes are expressed by the color coding utilized
in Fig. 5: lower values of ν(t)/ν0 are represented by dark
colors, while larger values of ν(t)/ν0 are associated to
lighter colors. The resulting bending rigidity field pat-
terns depicted in Fig. 5 are obtained by overlaying the
time series of ν(t)/ν0 along the associated expanding in-
terface at each computed time. Figure 5 shows that

this spatial-temporal dynamics of the bending rigidity for
the tip-splitting Fig. 5(a)-Fig. 5(c) and side-branching
Fig. 5(d)-Fig. 5(f) phenomena are remarkably distinct.
In Figs. 5(a)-5(c) the weakening of the interfacial bend-
ing rigidity can be traced back to early stages of the dy-
namics, with finger tip-splitting instigated by a sudden
increase of the bending rigidity at the tip of the finger.
Note however that this increase in bending rigidity does
not need be large, and indeed a small increase in the
bending stiffness is sufficient to suppress local curvature
growth, thus instigating the finger with already reduced
rigidity to split.

In contrast, the elastically induced side-branching phe-
nomena in Figs. 5(d)-5(f) are weakly correlated to early
stages of the dynamics. Although in this case, the side-
branching morphology is equally influenced by the dy-
namical decrease of the bending rigidity field, which can
be reduced by more than half of its maximum value, large
bending rigidity magnitudes are held for longer periods.
As a result, finger side-branching is delayed until the
bending rigidity field is sufficiently weakened to allow the
instability to grow. The latter can be clearly observed by
comparing the relatively large region of increased bend-
ing rigidity in Fig. 5(f) as opposed to Fig. 5(c). Fur-
thermore, the mechanism behind the elastic finger side-
branching formation presented in Fig. 5 has similarities
with the side-branching phenomena observed, instead, in
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(a) (b) (c)

(d) (e) (f)

0.5      0.6      0.7      0.8      0.9        1
/ 0

FIG. 5. (Color online) Time evolution of the dimensionless rigidity field ν/ν0 for the evolving interfaces illustrated in the top
panels of Figs. 3 and 4: (a)-(c) tip-splitting related regions; (d)-(f) side-branching regions.

shear-thinning fluids [25–32]. While for the latter, the
viscous resistance decreases with the flow rate, here the
interfacial elastic bending resistance is reduced with the
local curvature. Incidentally, in Hele-Shaw pattern form-
ing structures the regions of large fluid displacement also
instigate growth of interfacial curvatures, thus there is
phenomenological overlap between these two very dis-
tinct systems.
Our current analytical study complements the numer-

ical work of Ref. [24] in the sense that the used pertur-
bative scheme allows one to explore the whole phase di-
agram for morphological changes, whereas the boundary
integral method utilized in [24] is quite expensive, and
not exactly easy to explore the whole phase diagram.
However, it should also be noted that the current work
only addresses the initial stages of the instability (at the
onset of nonlinearities), while Ref. [24] brings to light
the entire dynamic evolution of the system (both initial,
intermediate, and fully nonlinear stages of the flow).

IV. CONCLUDING REMARKS

An interesting experimental study on reactive Hele-
Shaw flow performed by Podgorski et al. [19] has demon-

strated that visually striking fingering structures arise
at the fluid-fluid boundary (e.g., mushroom-shaped and
tentaclelike patterns), even if the fluids involved have the
same viscosity. This fact motivated He and coworkers [20]
to introduce the notion of elastic fingering, in which inter-
facial disturbances are not induced by the viscosity dif-
ference between the fluids, but are produced by the own
elastic nature of a gel-like separating layer. Their weak-
ening curvature model treated the two-fluid interface as
an elastic membrane presenting a curvature-dependent
bending rigidity, and was able to predict the development
of interfacial instabilities even in the viscosity-matched
case (A = 0). Very recently, Zhao and collaborators [24]
revisited the elastic fingering problem, and used sophis-
ticated numerical simulations to analyze the pattern for-
mation scenario when both elastic and viscous effects act
simultaneously. Their elegant numerical results indicated
that, under maximum viscosity contrast circumstances
(A = 1), one can obtain the emergence of either tip-
splitting or side-branching morphologies.

Inspired by the appealing fully nonlinear numerical
findings presented in Ref. [24], in this work we com-
plement their study by examining the weakly nonlinear
stages of the pattern-forming dynamics through analytic
means. Our main purpose was to gain useful insights into
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the possible physical mechanisms leading to the uprising
of finger tip-splitting and side-branching phenomena dur-
ing elastic fingering. We have shown that by implement-
ing a second-order mode-coupling theory, and considering
the interplay of just a few Fourier modes (a fundamental
mode n, and its harmonics 2n and 3n) one is able to cap-
ture the most prominent morphological features leading
to both tip-splitting (enhanced growth of harmonic am-
plitudes a2n < 0) and side-branching (favored growth of
harmonic amplitudes a3n > 0) formation. A weakly non-
linear morphology diagram is provided for the system,
being conveniently described by just two controlling di-
mensionless quantities: the rigidity fraction C, and a pa-
rameter Γ that measures the competition between elastic
and viscous effects. Such a morphology diagram is es-
pecially useful to provide an understanding of the para-
metric conditions required to suppress finger tip-splitting
events, and replace them by fingers that side-branch from
their tips. Construction of a dimensionless rigidity field
for the various possible emerging patterns reinforces the
importance weakening curvature effect [20], in the sense
that the occurrence of fingering is favored in regions of
lower interfacial rigidity.

We are not aware of any existing experimental studies
for the elastic fingering problem with A = 1. To the best
of our knowledge, the only existing experiments of the
problem focused on the viscosity matched case A = 0,
and has been presented in Ref. [19]. However, after the
publication of the fully nonlinear numerical simulations
recently presented in Ref. [24], and of our current ana-
lytical weakly nonlinear study, we do hope that exper-
imentalists will feel motivated to verify our theoretical,
pattern-forming predictions.

In their recent numerical work, Zhao et. al [24] have
shown that depending on the parameters and the ini-
tial conditions, the patterns can reach a self-similar state
or evolve to a limiting shape for which the elasticity of
the interface is not important. These effects are illus-
trated in Figs. 6 and 7 of Ref. [24]. However, our current
second-order weakly nonlinear results do not predict such

stabilization processes.
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Appendix: Functions appearing in the

mode-coupling term F (n,m)

This appendix presents the expressions for the func-
tions B1(n,m), B2(n,m), B3(n,m), and B4(n,m) which
appear in Eq. (11) of the text

B1(n,m) = −3 +
15

4
m(n−m) + 10(n−m)2

−
9

2
m2(n−m)2 − 6m(n−m)3

− 4(n−m)4, (A.1)

B2(n,m) =
39

2
− 30m(n−m)− 71(n−m)2

+
81

2
m2(n−m)2 + 54m(n−m)3

+ 32(n−m)4 − 12m2(n−m)4

− 12m3(n−m)3, (A.2)

B3(n,m) = −14 + 25m(n−m) + 54(n−m)2

− 36m2(n−m)2 − 48m(n−m)3

− 26(n−m)4 + 18m2(n−m)4

+ 18m3(n−m)3, (A.3)

and

B4(n,m) = 1− 2m(n−m)− 4(n−m)2

+ 3m2(n−m)2 + 4m(n−m)3

+ 2(n−m)4 − 2m2(n−m)4

− 2m3(n−m)3. (A.4)
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