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Abstract 

Spinal muscular atrophy (SMA), a leading genetic cause of infant death, is a 

neurodegenerative disease characterised by the selective loss of particular groups of motor 

neurones in the anterior horn of the spinal cord with concomitant muscle weakness.  To date, 

no effective treatment is available, however, there are ongoing clinical trials are in place 

which promise much for the future. However, there remains an ongoing problem in trying to 

link a single gene loss to motor neurone degeneration. Fortunately, given successful disease 

models that have been established and intensive studies on SMN functions in the past ten 

years, we are fast approaching the stage of identifying the underlying mechanisms of SMA 

pathogenesis Here we discuss potential disease modifying factors on motor neurone 

vulnerability, in the belief that these factors give insight into the pathological mechanisms of 

SMA and therefore possible therapeutic targets. 
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Highlights: 

 Factors that influence vulnerability of motor neurons in SMA. 

 SMA disease modification. 

 Impact of surrounding cells on neuronal death. 

 Precise molecular defects in SMA; mRNA splicing and miRNA interactions. 

 Cytoskeletal stability and axonal transport effects. 

 

 

1. Introduction 

Spinal muscular atrophy (SMA) is an autosomal-recessive neurodegenerative disorder, 

caused by homozygous mutations in survival of motor neurone 1 (SMN1). It is characterised 

by the loss of a large number of lower motor neurones and muscle denervation. In general, 

there are four different types of SMA categorised according to the age of onset and level of 

motor function achieved [1]. Type 1 (Werdig Hoffman disease), the most severe type is also 

the most common genetic cause of infant mortality. Type 2 has a delayed onset around 0.5 

-1.5 years of age but still usually leads to death before adulthood. Patients with type 3 or type 

4 diseases typically can live a normal life with little assistance. The molecular basis for 

disease severity is associated with both the quality and quantity of SMN protein. In man, a 

unique gene called SMN2, which is a duplication of SMN1 and can be present in multiple 

copies. SMN2, has a near identical sequence but a crucial C to T substitution in exon 7 

frequently results in exclusion of this exon and an unstable transcript, thus causing a low 

yield of full-length protein product (Figure 1) [2, 3]. Also, some mutations in SMN1 do not 

cause complete loss of its function [4]. As a result, the disease severity is determined by both 

the preserved function of mutated SMN1 and the number of copies of SMN2 found in the 

patient genome.  
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Figure1. C to T conversion in SMN2 exon 7 results in a large part of protein products lacking 

exon7. This exon contains a domain important for self-association. Without oligomerisation, 

free-SMN undergoes degradation rapidly, further reducing the total SMN levels. 

 

The SMN1 mutation primarily affects lower motor neurones, the resulting motor neurone loss 

causing paralysis and early death due to respiratory failure. However, the reason why loss of 

a ubiquitously expressed protein causes motor neurones to be particularly more vulnerable 

than other cell types is an intriguing subject.  

Fortunately, given the studies on SMN function and a number of disease models established 

in the past ten years, we are beginning to understand what factors cause motor neurones to 

more prominently succumb to disease. These factors can be categorised into three major 

groups depending on external and internal effects on diseased motor neurones: First, it is 

known that as with other neurodegenerative diseases, other cell types contacting with the 

primary affected target cell also play a role in modulating disease severity: Motor neurones 

are surrounded by, and interact with, glia, such that faulty communication between these cells 

may exaggerate motor neurone pathology – so-called non-cell autonomous effects. Second, 

SMN is a multifunctional protein involved in a number of processes including RNA 

maturation and transportation in axons. The low quality or quantity of SMN protein may 

dysregulate genes which are crucial for motor neurone development and survival, but less 

crucial for other cell types. Thirdly, there may be motor neurone-specific disease modifiers of 
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SMN effects or gene production. Here, we review factors that have either been demonstrated 

to, or have the potential to, influence motor neurone vulnerability.   
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2. Non cell-autonomous effects on motor neurone vulnerability 

Since the identification of the SMN gene and its role in SMA [2], multiple efforts have been 

made to understand how SMN restoration or deprivation in the motor neurone affects the 

disease phenotype. It has been shown that specifically elevating SMN in the motor neurones 

of SMA mice profoundly improves many morphological and physiological defects associated 

with motor neurones such as neuromuscular junction, (NMJ), breakdown, abnormal synaptic 

transmission, motor function, and motor neurone viability. However, there is still room for 

further functional improvement [5-7]. In addition, specific SMN deprivation in mouse motor 

neurones or delaying the induction of smn expression in fish does not necessarily generate 

manifestations of disease [8], thereby implying some other factor(s) or cell type(s) play a part 

in motor neurone vulnerability.  

To produce a movement, spinal motor neurones propagate the signal generated from the 

sensory neurone and inter-neurone, and then coordinate the signal to muscle fibres. Their 

normal function is highly regulated by neuroglia cells. In other words, the communication 

between all of these cell types is essential not only for effective motor movement but also for 

cell survival. In SMA, cells communicating with motor neurones are also under the stress of 

SMN malfunction, and as a result, they may contribute to motor neurone vulnerability. How 

these contacting cells respond to SMN malfunction and whether they negatively regulate 

motor neurone health will be considered in turn.   
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2.1. The role of muscle 

The bi-directional nature of communication at the NMJ has long been shown to play an 

essential role in the function of both the axon terminal and innervated muscle [9-12]. Cultures 

of neonatal chicken spinal neurones treated with muscle extracts from SMA patients show 

inhibition of neurite outgrowth [13]. Because of the accessibility and apparent malfunction of 

SMA muscle, many experiments have been carried out to determine whether muscle could be 

an effective therapeutic target or if there might be a retrograde effect from the muscle to the 

motor neurone compartment. 

Thus, selective knockdown of SMN levels in mouse skeletal muscle recapitulates the atrophic 

muscle fibres seen in SMA whilst motor neurone number and NMJ are spared [14]. Similarly, 

increased expression of SMN specifically in mature muscle (driven by the promoter of 

human skeletal actin, HSA, which is active only in mature myofibres) shows no benefit in 

nerve or muscle preservation, and little extension in lifespan in the SMN2 mouse model 

(smn
-/-

; SMN2
+/+

) [15]. A further investigation used MyoD (myogenic differentiation), whose 

expression begins at embryonic stage, to drive the expression of SMN in muscle in SMNΔ7 

mice (smn
-/-

; SMN2
+/+

; SMNΔ7+/+
). While this resulted in slightly increased survival and fully 

rescued muscle size, it again did not restore the motor neurone number, NMJ pathology, or 

motor behaviours such as the righting reflex [7].   

A further study demonstrated that whilst muscle could grow and function normally even 

when SMN is reduced to the disease level, and again no rescue was seen using an alternative 

promoter, (Myf5), to drive the muscle SMN expression in SMAΔ7 mice [16]. This result 

combined with previous work suggests the muscle weakness seen in SMA is a secondary 

change to the motor neurone pathology and there is minimal retrograde impact of defective 

SMN protein levels in muscle to motor neurones. 

2.2. Is a sensory neurone defect involved in inducing motor neurone pathology? 

ACCEPTED MANUSCRIPT



A
C

C
E
P
T
E
D

 M
A
N

U
S
C

R
IP

T

 

 

The significance of communication between sensory and motor neurones has been widely 

demonstrated. For example, NMJ formation is greatly facilitated by the presence of dorsal 

root ganglion neurones (DRG) in a co-culture system [17, 18]. Evidence for an impaired 

sensory system, including myelination loss and ganglion cell degeneration [19, 20], and 

absence of the refractory reaction following muscle spindle stimulation (H-reflex) are 

reported in some severe SMA cases [21]. Correspondingly, in mouse models of SMA, 

deafferentation from sensory inputs onto motor neurone results in lower input from 

presynaptic activity, which can account for the impaired motor activity of SMA [22-25]. In 

addition, SMN deprivation causes overlapping defects in both motor and sensory neurones, 

including reduced axonal hnRNP-R mRNA and growth cone size [26].  

 

These studies raise the question whether any abnormal communication onto the motor 

neurone might aggravate motor neurone pathology. This hypothesis received some initial 

support from an SMA Drosophila model, which has an obligate requirement for SMN in 

cholinergic neurones, proprioceptive neurones and partial interneurones but not in motor 

neurones, for recovering motor behaviours [27], suggesting that normal sensory or other 

inputs play an important role in regulating motor neurone impairment. 

However, there is concern that Drosophila has a nervous system that is not representative of 

higher organisms. For example, the neurotransmitters acetyl choline and glutamate are 

proprioceptive and motor in function in Drosophila respectively, but have converse functions 

in vertebrates. Thus, whether the role of SMN in Drosophila proprioceptive neurones is 

equivalent to that in vertebrate animals needs further investigation. 

 

Other SMN models have failed to support a role for sensory neurones in motor neurone 

degeneration.  VGlut1 puncta on motor neurones are the contact point where motor 

neurones receive input from sensory afferents, and are reduced in number in SMA mouse 
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models [6, 7, 25]. Boosting SMN protein in motor neurones is sufficient to fully rescue 

VGlut1 puncta number in SMA mouse models, suggesting motor-sensory deassociation may 

be secondary to motor neurone pathology [6, 7, 28]. Furthermore, motor neurone viability is 

independent of the motor-sensory communication when motor neurones are co-cultured with 

SMA sensory neurones derived from induced pluripotent stem cells (iPSCs) [29].  

The interaction of sensory and other neuronal cells with the motor neurone requires further 

investigation as a number of issues remain unresolved. For example, whether specific 

expression of SMN in other neuronal cells in a mammalian model affects motor neurone 

phenotype is yet to be investigated. 
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2.3. Glial cells 

There is a growing body of evidence implicating non-neuronal cells (glia) in various 

neurodegenerative diseases. There are various types of glia (principally astrocytes, 

oligodendrocytes and microglia) which have varied roles including the regulation of 

homeostasis, myelination and immune response [30]. 

Various astrocytic defects, including shorter process length and increased GFAP protein 

expression have been reported in pre-symptomatic SMAΔ7 mice [31]. Furthermore, both 

SMA iPSC-derived and primary astrocytes reveal abnormal Ca
2+

 homeostasis, an important 

molecule affecting cytosis [32, 33]. A study using mixed and matched co-cultures of motor 

neurones and astrocyte from wild type and SMA strains shows the importance of astrocyte in 

synapse formation and electrophysiological properties of motor neurones [33]. This is further 

verified in an in vivo study which demonstrated  a remarkable improvement in motor 

functions, NMJ occupancy ratio and life span when SMN is specifically restored in SMN 

astrocytes [33]. However, the functions of SMN in astrocytes did not include the mitigation 

of motor neurone death in both studies [33, 34]. 

In a study of Schwann cells (the myelinating glial cell of lower motor neurones in the 

perhiphery) in SMN2 and Taiwanese SMA mouse models, there was defective secretion of 

myelination and laminin proteins [35]. The former is required for effective motor axon 

transmission. Interestingly, this defect was not demonstrated in the corticospinal tract, 

indicating the peripheral nervous system is more sensitive to a myelination defect. Laminin is 

a known factor exerting a strong influence on neurite growth and motor neurone viability in 

vitro [36]. Moreover, laminin deficiency is a possible cause of motor axon shortening due to 

inhibition of local axonal translation [37]. 

. 

Although there has been no systematic study made on SMA microglia, there is in vivo 

evidence showing that microglia cells are also increased in number and activity in the spinal 
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cord of SMAΔ7 mice, suggesting the involvement of microglia in regulating motor neurone 

function by stripping synaptic input [25]. 

Although there is no direct link between motor neurone death and SMN malfunction in any 

kind of glial cells, a conclusion that can be drawn is that the interplays between motor 

neurone and glial cells may largely contribute to the clinical manifestations, suggesting SMA 

is a multi-system disorder. However, more evidence will be required to fully understand their 

roles. For example, It is known that ALS can be recapitulated by overexpressing mutant Sod1 

in astrocytes [38]. As such, it would be interesting to see how selective SMN reduction in 

glial cells could affect motor neurones.  

 

3. Autonomous motor neurone vulnerability 

SMA has long been considered as an autonomous motor neurone disease as there is 

considerable motor neurone loss whereas other cell types are relatively spared. The exact 

function of SMN, specifically in motor neurones as opposed to other cell types is unresolved. 

Such functional characterisation of the pathways that are affected by SMN would contribute 

considerably to our understanding of SMN pathogenesis (Table 1).  
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Modifying 

factor 

 

Modulating 

mechanism 

Model Ref. 

Stasimon Unknown Drosophila 

Zebrafish 

[39] 

Chondrolectin Neural 

development 

Zebrafish [40] 

SMN2 Exon 7 

inclusion 

Mouse [41] 

hnRNP-R mRNA 

transportation 

Zebrafish unpublished 

HuD Neural 

development 

mRNA 

transportation 

Cultured cell 

 

[42] 

IMP1 (ZBP1) mRNA 

transportation 

Cultured cell [43] 

CPG15 

(NEURITIN) 

NMJ 

maturation 

Zebrafish [44] 

PLS3 Actin dynamic Mouse 

Human 

 

[45, 46] 

Htra2-β1 Exon 7 

inclusion 

Human [47] 

ROCK Actin dynamic Cultured cell 

Mouse 

[48, 49] 

PTEN Excitotoxcity Cultured cell 

Mouse 

[50, 51] 

 

NMDA Exon 7 

inclusion 

Mouse [52] 

β-catenin Protein 

metabolism 

Zebrafish 

Mouse 

[53] 

UBA1 Protein 

metabolism 

Zebrafish 

Mouse 

[53, 54] 

UPR genes ER stress Cultured cell 

Mouse 

[55] 

IGF-1 SMN 

expression 

Mouse [56] 
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Table1. Known factors that modulate SMA severity 

 

CNTF NMJ formation Mouse [57] 

CT-1 NMJ formation Mouse [58] 

Bcl-XL Anti-apoptosis Mouse [59] 

miR-183 mToR pathway Cultured cell 

Mouse 

[60] 

miR-431 Chold 

regulation 

Cultured cell [61] 
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In addition to the direct effects of SMN, other modifying factors have functions that are 

independent of SMN functions but may be relevant to motor neurone diseases.  

Finally, it is apparent that motor neurones are not uniformly susceptible to SMA.  

Elucidation of the factors which render different populations of motor neurone vulnerable and 

resistant to SMA usefully contributes to our understanding of disease pathogenesis.  

In this section, we will focus on SMN-dependent functions. SMN is known to be an RNP 

assembly protein involved in the formation of snRNP and mRNP indicating potential roles in 

both RNA splicing and transportation. One can expect SMN loss would impair RNA splicing 

and transportation [62-65]. 

 

3.1. RNA splicing defect 

SMN has a key role in the assembly of small nuclear ribonucleoproteins (snRNPs), key 

components of the spliceosome machinery [66]. It is thus likely that disruption of RNA 

splicing is involved in SMA pathobiology [67]. Accordingly, studies have shown a direct 

correlation between the ability to assemble snRNP and SMA disease severity [68, 69]. 

Furthermore, restoring normal splicing function by delivering mature snRNP that do not 

contain SMN is sufficient to rescue SMA phenotypes in smn-depleted fish embryos [70].  

This raises the question:  Why does SMN loss of function cause selective motor neurone 

vulnerability if it affects such a fundamental process that occurs in all cell types? In answer to 

this, early studies found tissue- and spliceosome-specific splicing defects [71] that stress the 

differential influence of two complementary spliceosome complexes: The major spliceosome 

is involved in excising the majority of introns,  whilst the minor spliceosome is responsible 

for splicing only a few hundred genes in the genome [72]. There is growing speculation that 

the minor spliceosome may have a more pronounced role in neuronal homeostasis [73]. 

Minor spliceosome components are significantly reduced in the spinal cord of late-stage SMA 

mice whilst the major pathway remains normal [68, 71]. This raises the possibility that cell 
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populations expressing a greater proportion of genes that preferentially use this minor 

splicing pathway are more selectively affected, thereby contributing to selective motor 

neurone vulnerability. In support of the importance of the minor spliceosome to motor 

neurones, we, and others have found significant reductions of minor spliceosome components 

in amyotrophic lateral sclerosis [74, 75].  

Further support of this observation is the demonstration of mis-splicing of a number of minor 

spliceosome introns from a number of genes. For example, aberrant splicing of a minor 

spliceosome intron has been described in Stasimon (Stas) both in a Drosophila model of 

SMA and a dorsal root ganglion neurones of SMAΔ7 mice [39]. Stasimon is a 

transmembrane protein that appears to be essential for normal motor function. Co-injection of 

a Stas mRNA and smn morpholino is capable of rescuing the axonal growth defect seen in 

SMN-deficient Zebrafish, suggestive of its modifying role in the disease [39]. 

 

Whilst there is significant evidence that the minor spliceosomal pathway is affected in SMA, 

it is still expected that the major pathway will also be disrupted owing to the crucial role of 

SMN in snRNP biogenesis [67]. An exon array analysis of late stage SMNΔ7 mice spinal 

cord showed widespread splicing errors affecting both the major and minor spliceosome 

pathways but only in late stage disease[76]. For example, the gene Chodl, which encodes 

Chondrolectin, was identified as mis-spliced in this study. Chodl is normally spliced via the 

major pathway, is expressed at a high level in motor neurones and appears to be necessary for 

axonogenesis in zebrafish [77, 78]. A further study showed that its overexpression was able to 

partially rescue the neurite number and length in an smn-depleted NSC-34 cell line, and 

axonal growth in SMA fish [40]. However, the alternative splicing event seen in the mouse 

homologous gene does not occur in humans, so the precise relevance of this to human disease 

is yet to be determined [79]. 
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Cell-type specific RNA-seq analysis has identified several genes whose splicing is selectively 

disrupted in motor neurones, but not other neuronal populations, in spinal cord at a very early 

disease stage in SMAΔ7 mice (before post-natal day 1). Of these incorrectly spliced genes, 

agrn (agrin) is of particular interest [80]. Agrn is a stimulator of acetyl choline receptor 

(AChR) clustering, and as such is responsible for NMJ maturation [81]. Gene splicing of 

Gria4, which encodes the AMPA-type glutamate receptor 4, generates two splice isoforms, 

known as ‘flip’ and ‘flop’. Receptors of the latter form desensitise more slowly. The ratio of 

flip to flop receptors is increased in motor neurone of SMAΔ7 mice [80], potentially 

explaining altered electrophysiological properties in SMA motor neurones [8, 22].  

Similarly, by transcriptome microarray analysis, a more recent study using smn knockdown 

zebrafish first identified dysregulation of neurexin2a (nrxn2a) in both its overall expression 

quantity and isoform ratio, and then validated these findings in motor neurone of SMN2 mice 

[82]. This gene acts at the pre-synaptic terminal regulating exocytosis and pre- and 

postsynaptic adhesion [83]. Experimental knockout of nrxn2a in mice has revealed various 

NMJ defects similar to those seen in motor neurone diseases [84, 85]. In keeping with its 

influence on motor axon terminal, knockdown of nrxn2a in wild type fish and raising the 

nrxn2a mRNA levels in a smn-deficient fish showed detrimental and beneficial effects on 

motor axon growth respectively [82]. However, nrxn2a was dysregulated both quantitatively 

and qualitatively, as such it remains to be shown which results in the motor neurone defect or 

a combination of both [82].  

In addition to SMN-deficiency mediated mRNA splicing disruption, it has also been 

suggested that the level of SMN2 exon 7 inclusion efficiency by the splicing machinery plays 

a fundamental role in motor neurone vulnerability: It is possible that SMN2 exon 7 inclusion 

is particularly low in some spinal motor neurones [41, 86] compared to other cell types.  

Whilst aberrant splicing may occur in SMA, it may be contributory but not be centrally 

causative to the pathology. For example, SMA-like phenotypes cannot be induced by 
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disturbing snRNP assembly or function [87-89]. Further, Baumer et al. found that splicing 

errors are only present on a large scale late in the disease [76]. This would suggest that other 

SMN functions are relevant to selective vulnerability at earlier stages of disease. 
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3.2. Axonal RNA transport defect 

Within the cell, SMN protein is not restricted to the nucleus where the snRNP assembly 

mainly takes place, as a small proportion of SMN is found in the axon in granular form 

[90-94]. These axonal SMN granules are free of Sm ribonucleoproteins  which are core 

components of the snRNP assembly of the spliceosome [91]. Furthermore, truncated SMN 

that lacks the functional domain necessary for snRNP assembly is able to partially rescue the 

disruption of axon pathfinding in SMA fish [92]. These data, combined with the evidence of 

prominent axon degeneration and/or an outgrowth defect seen in various SMA models, is 

suggestive of a direct role of SMN in SMA pathology occurring at the distal part of motor 

neurone [95-99].  

What does SMN do in the motor axon? It is possible that the RNA-binding feature of SMN 

and its associated molecules (many of them are RNA-binding proteins) allow them to 

transport RNA in cells beyond the snRNP biogenesis machinery [100, 101].  SMN 

co-localises with hnRNP-R in mouse motor neurones [102] and is associated with both 

hnRNP-R and β-actin mRNA in the motor axon and growth cone, and hence may affect local 

protein synthesis of β-actin [103, 104]. hnRNP-R is a member of hnRNP family and is 

involved in the various RNA regulatory functions including transport, splicing and 

metabolism. Knockdown of hnRNP-R has been shown to induce pronounced SMA-like 

phenotypes in zebrafish whereas other neuronal cells are less affected, similar to the 

phenotypes observed in smn morphant [104, 105]. Actin also plays an important role in axon 

structure and function [106-108].  However, whether and how actin-deficiency in a distal 

part contributes to axonopathy in SMA remains unclear [109].  

In a further study of the axon, SMN was found to co-localise with Hu-antigen D (HuD) 

protein and cpg15 (candidate plasticity-related gene 15, also known as neuritin) mRNA. [44]. 

HuD is a further RNA-binding protein with a pivotal role in neuronal cells that has been 

implicated in a wide range of activities including development, maintenance, and plasticity 
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[110]. This protein can act on the expression of a wide variety of mRNA species by binding 

to their 3’UTR [111].  This mechanism is regulated by methylation via CARM1 [112]. It 

appears that the SMN protein can increase CARM1 translation causing an increase in HuD 

methylation. As such, SMN loss reduces the affinity of HuD for its target RNA which is 

likely to contribute to the SMA axonopathy. This defect can be partially rescued by HuD 

overexpression [42, 43, 113].  

 

cpg15 mRNA, which colocalises with SMN protein in the growth cone, appears to be 

involved in synaptic maturation in both sensory and motor neurones [114, 115]. cpg15 

overexpression in smn-deficient zebrafish partially rescued motor axon pathology [44]. 

However, although cpg15 mRNA is shown to be translated in the growth cone, its levels are 

not only decreased in neurites but also in the cell body upon SMN reduction. Therefore, 

whether cpg15 has a specific or more general impact on the motor axon remains unclear. 

Similarly, another protein, insulin-like growth factor mRNA-binding protein 1 (IMP1) ( also 

known as zipcode-binding protein 1 or ZBP1), has also been found to colocalise with SMN in 

axons [116]. This protein has some mRNA targets in common with HuD including β-actin 

and Gap43 (microtubule-associated protein tau and the growth-associated protein 43), of 

which Gap43 is of particular interest because of its versatile role in regulating axonal 

functions. More recently, an in vitro study showed decreased levels of Gap43 in SMA axons, 

which were restored by overexpressing either HuD or IMP1, which also rescued the short 

axon phenotype [43]. 

Another SMN molecular partner involved in axonal transportation is coatomer subunit alpha 

(α-cop). α-cop belongs to the coat protein complex I (COPI) that is responsible for 

Golgi-mediated transportation and also has the ability to bind a number of mRNAs [117]. 

SMN/α-cop granules are found in neurites and this association is likely to have begun in the 

Golgi apparatus [118, 119]. Knockdown of α-cop causes SMN accumulation in the Golgi 
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whereas over-expressing α-cop increases neurite length in smn-depleted NSC34 cells [118, 

120]. These pieces of evidence further demonstrate there is a direct link between motor 

neurone vulnerability and axonal SMN.       

In line with the potential role of SMN in RNA transport, two studies used microarray analysis 

combined with microfluidic techniques to specifically isolate axonal RNA species. The 

studies identified about 400 RNA species potentially binding with axonal SMN. A further 

study found more than 1000 genes dysregulated in neurites of NSC-34 cells and smn-depleted 

primary mouse motor neurones [121-123]. Among these genes are a number involved in 

axonal outgrowth, synaptogenesis, neurogenesis and neurotransmitter release [121, 122].  
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4. Other modifiers 

In addition to SMN itself and its interacting partners, a number of genes have been identified 

that are able to ameliorate the SMA phenotype, as shown in table 1. These genes are 

putatively independent of SMN functions or appear to modify motor neurone vulnerability 

via less well defined pathways. In general, these modifiers are known to be essential for 

reducing neurodegenerative disease, with actions ranging from stabilising cytoskeleton, 

reducing excitotoxicity to regulating gene expression. 

 

4.1. Cytoskeleton stability 

Analysis of clinically discordant family members that carry homozygous deletions of SMN1 

and identical SMN2 copy number enable investigation of these modifiers. Following this 

approach, the expression of the F-actin bundling protein gene, Plastin 3 (PLS3), is 

significantly higher in unaffected females from six discordant families suffering with mild 

type of SMA (type II or III) [45]. However, further investigations demonstrated that 

overexpression of Pls3 in relatively severe SMA mouse models (Taiwanese and SMAΔ7) 

only shows marginal or no improvement [46, 124].Conversely, a more recent study 

demonstrates its strong beneficial effects on Taiwanese SMA mice when SMN protein 

quantity is slightly boosted [125]. These suggest PLS3 may serve as a protector when SMN 

protein is above a certain threshold level, or further factors are involved [126]. Along with the 

same PLS3 study, CORONIN 1C or CORO1C, another F-actin binding protein was also 

identified as a disease modulator through in vitro protein-protein interaction assays [125]. 

CORO1C displays a comparable beneficial result to that of overexpressing PLS3 in 

SMN-deficient zebrafish [125]. The mechanism underlying the rescue effect of both PLS3 

and CORO1C might involve an increase in the stability of the cytoskeleton and(or) restoring 

the endocytosis defect seen in SMN-deficient cells [125].  .  
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In addition to the role of SMN as an RNA carrier in the axon, another putative SMN function 

is the direct regulation of other protein activity in the axon. For example, SMN is able to bind 

non-phosphorylated profilin 2a protein, which is one of the substrates of rho-associated 

protein kinase (ROCK), an important regulator of actin dynamics [48, 127]. As a result of low 

SMN, it may upset the substrate balance for ROCK and in turn impairing actin dynamics. 

Inhibition of ROCK ameliorates the SMA-like phenotype both in cell culture and animal 

models [49], but knockout of one or both profilin 2a alleles does not cause any amelioration 

in a SMA mouse model [128]. As such, the exact mechanism of this effect remains to be 

explained.  

In addition to the impairment of actin dynamics, microtubule destruction has also been 

proposed to be a pathophysiological feature of both SMA and amyotrophic lateral sclerosis 

(ALS) [129, 130]. A regulator of microtubule dynamics, Stathmin, causes depolymerisation 

of microtubules, inhibiting axon outgrowth and organelle movement in the neuronal 

processes [131]. In a proteomic analysis of an SMA mouse model, stathmin was specifically 

upregulated in spinal cord but remained unchanged in the brain [130]. More importantly, the 

down regulation of stathmin in SMA-like motor neurones significantly recovered defects in 

the axonal transport of organelles such as mitochondria [130], supporting the idea that 

cytoskeletal changes exacerbate disease progression.  

 

4.2. Micro-RNA dysregulation 

A growing body of evidence has pointed to a role of micro-RNA (miRNA) in axonal 

outgrowth probably by regulating local translation [132-134]. Disruption of miRNA 

biogenesis causes SMA-like phenotypes [135]. Upon SMN loss, miR-183, which is known to 

target inhibition of mTor translation [136], is up-regulated in rat, human and mouse cells 

[137].  Knockdown of miR-183 results in a significant improvement in axonal length in 

smn-deficient rat motor neurones.  This improvement is present but small when the effect is 
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studied in vitro with the inhibition of miR-183 expression in CNS neurones of SMAΔ7 mice 

[60]. 

The upregulation of miR-431 has been observed in smn-knockdown  primary mouse motor 

neurones and occurs in a motor neurone-specific manner [61]. One of miR-431 targets is the 

aforementioned Chodl. Manipulation of miR-431 expression is able to increase and decrease 

neurite length under smn-depleted and normal conditions respectively [61].    

 

4.3. PTEN pathway 

Downregulation of phosphatase and tensin homolog (PTEN) is well known to have 

cytoprotective properties via its action on mTOR signalling, a pathway known to be involved 

in many neurodegenerative diseases. PTEN inhibition has been demonstrated to benefit ALS 

as well as SMA both in vivo and in vitro [50, 51, 138-140], by decreasing GluR1 and GluR2 

expression and apparently thereby reducing AMPA-mediated excitotoxicity [139]. 

 

4.4. Endoplasmic reticulum (ER) stress 

Although the activation of the unfolded protein response (UPR) under conditions of ER stress 

has been linked to many neurodegenerative disorders owing to its relationship with 

pathological protein aggregation [141]. iPSC-derived motor neurones from SMA patients 

have recently been shown to have higher ER stress activity compared to other induced spinal 

cord neurones and glia cells [55]. In SMAΔ7 mice, either knocking down UPR-related genes 

in vitro or treatment with an ER-stress inhibitor generates improvements in many aspects of 

the disease process including innervation, survival, and lifespan. However, the increase in ER 

stress activity seems to be a post-symptomatic event and therefore probably be a general 

response to the pathogenic mechanism [55].   

 

4.5. Increase of functional SMN 
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Because patients with SMA harbour an imperfect SMN1 gene, raising functional SMN 

protein levels has long been a tempting therapeutic strategy [142]. In general, this can be 

achieved by delivering synthetic DNA-like molecules to correct the splicing pattern 

[143-156], or small chemical compounds to alter the gene structure by inhibiting histone 

deacetylase [157-167]. To this end, several drugs, such as Nusinersen (Ionis/Biogen) , 

AVXS-101 (AveXis) and RG7916 (Rosche), have been developed and have been achieving 

some success in clinical trials . 

To compensate the weak association of SMN2 exon7 with splicing factors, upregulation of 

relevant splicing factors seems to be effective. An early attempt to identify a disease 

modifying gene in nine discordant families with variable SMA phenotypes found that there 

was an inverse correlation between the protein levels of an exon splicing enhancer, Htra2-β1, 

and disease severity [47, 168]. This observation raises the possibility that all the elements 

subsequently identified to be involved in exon 7 inclusion are capable of modulating SMA 

[169-175].  

A further strategy to find potential modulators of SMN protein and/or expression levels is to 

identify a common pathway among several drugs that are frequently used to treat SMA. Thus, 

Stat5 (signal transducers and activators of transcription 5) was identified as a trans-element 

that regulated SMN expression: The amelioration of axon growth in SMA-like motor 

neurones was observed when transfecting with a continuously activated mutant of Stat5 

[176].  

In addition, SMN2 expression is raised upon the activation of the NMDA receptor achieved 

by exercise [177]. The increased level of SMN2 expression is most probably due to elevating 

the NMDA receptor-mediated PI3K/AKT/CREB cascade downstream activity [52, 177-179]. 

Taken together, it is possible that these factors are differentially regulated in motor neurones 

and other cell types as a weaker inclusion of SMN2 exon7 in motor neurone was reported [41, 

86]. Therefore, these factors might play an important role and may underlie selective motor 
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neurone vulnerability. Insulin/IGF-1 (Insulin-like growth factor 1) signalling has long been 

implicated in modulating neurodegenerative diseases [180]. In this regard, studies show 

increasing IGF-1 levels in SMA mice can have many phenotypic benefits including increased 

muscle size, motor function, lifespan, NMJ innervation and motor neurone number [56, 181]. 

Interestingly, although the mechanistic basis is unclear, both full-length SMN transcript and 

its protein product are considerably increased by this intervention [56]. However, the 

improvement in function becomes insignificant when delivering IGF-1 into a mild SMA 

mouse model, suggesting IGF-1 may only have a basic improvement that is only detectable 

when SMN protein is severely reduced. [182]. 

 

4.6. Neurotrophin, growth factor and anti-apoptosis 

Like IGF-1, other factors known to have positive effect on cell health and survivability have 

been shown to modify disease severity to different degrees. Ciliary neurotrophic factor 

(CNTF) and cardiotrophin-1 (CT-1), two neurotrophins commonly used to prolong motor 

neurone survival in vitro, are shown to be able to mitigate denervation in SMA mice [57, 58]. 

Over-expressing anti-apoptotic factor, Bcl-XL, can significantly ameliorate some SMA 

phenotypes, such as lifespan, motor functions and motor neurone number, in a mild SMA 

mouse model, but fail to recapitulate this effect in a severe one [59]. Notably, these studies of 

survival-promoting and anti-apoptotic factors were performed on less severe or mild SMA 

models. Whether they are still able to exert a protective effect in the more severe disease 

condition and whether the effect is motor neurone specific are questionable. Alternatively, 

they could act as an enhancer combined with other treatments. 

 

4.7. Causative genes for other motor neurone diseases 

The broadest sense of the term “motor neurone diseases” can refer to any disease that is 

characterised by progressive motor neurone loss and muscle weakness. Although they may 
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not be necessarily caused by the same mechanisms [183-185], these diseases may partially 

share common pathways with SMA and thus provide a possible opportunity to understand it. 

Mutations of ubiquitin-like modifier enzyme 1 (UBA1) cause X-linked infantile spinal 

muscular atrophy (XL-SMA), another form of motor neurone disease [186]. The protein 

product of this gene has also been found to be decreased in SMA mice. Pharmacological 

inhibition of its activity and raising its levels can reproduce and mitigate SMA phenotypes in 

fish respectively [53, 54]. In addition, comprehensive amelioration is observed upon 

increasing UBA1 levels in SMN-deficient mouse [54]. With respect to selective vulnerability, 

reduction of UBA1 affects ubiquitin homeostasis and causes accumulation of β-catenin in the 

spinal cord but not in other organs such as liver and heart [53]. Inhibition of β-catenin was 

shown to rescue NMJ pathology in SMA mouse whereas liver and heart showed no 

improvement in gross pathology, suggesting that β-catenin accumulation may be a key to 

selective motor neurone vulnerability [53]. 

Several other genes have been identified as causes of hereditary motor neuropathies (HMNs) 

[184]. Although the roles of these genes are not yet fully investigated, they may be highly 

relevant to our current understanding of the underlying mechanism by which not only SMA 

but also other neurodegenerative diseases develop. For example, bicaudal D homolog 2 

(BICD2) [187-189], dynactin 1 (DCTN1) [190], vesicle-trafficking protein (VAPB) [191], and 

cytoplasmic dynein 1 heavy chain 1 (DYNC1H1) [192, 193] are identified as causative genes 

of some HMNs. Some are involved in cargo packaging and retrograde axonal transport [194], 

while mutations in some of heat shock protein family which may cause the dysregulation of 

protein metabolism also induce HMNs [195-197]. Hence, it would be interesting to 

investigate their roles with SMN, and whether these genes are differentially regulated, 

thereby leading to selective motor neurone vulnerability. 

 

4.8. The nature of motor neurone vulnerability 
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Finally, clinical examination suggests that motor neurones are not affected equally during the 

disease course. Motor neurones are not entirely identical to each other, they develop, mature, 

locate, and innervate differentially. More specifically, the size [198, 199], NMJ maturation 

pathway [23, 200], motor column [22, 199], and motor pool [201-203] of motor neurones 

have been proposed to influence specific motor neurone vulnerability in SMA. As such, some 

modifying factors may be embedded and combined with the many other factors discussed 

above eventually leading to motor neurone vulnerability.   

More recently, two studies using SMA mouse models have shown that even motor neurones 

with very similar characteristics can display very distinct vulnerability [204, 205]. These 

studies suggest there are intrinsic molecular differences between vulnerable and less 

vulnerable motor neurones, some of which may make some motor neuron subgroups primed 

to the SMN loss. Whilst systematic investigation of relatively preserved versus vulnerable 

motor neurone groups has been performed in ALS [206, 207], an equivalent study has only 

recently been performed in a
 
SMA mouse model [208]. This has revealed numerous 

encouraging candidate mechanisms, many of which have been previously identified as 

putative disease regulators in other research, such as programmed cell death, oxidative 

phosphorylation and ubiquitination. Novel pathways of potential interest that were identified 

include DNA repair, ribosome and rRNA binding [208]. However, it is still difficult to 

distinguish whether the changes are primary or secondary to the SMN loss.  
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5. Conclusion  

This review summarises the current knowledge of why some cells are more or less 

susceptible to SMA and describes some of the known factors that play a part in ameliorating 

disease severity. We believe that such investigations will not only shed light on SMA but also 

other motor neurone diseases such as ALS. For example, the protein products of disease 

causative genes for familial ALS such as TARDBP  and FUS  have been demonstrated to 

interact with SMN [209, 210]. In addition, SMN and SOD1 proteins interact within neurones 

and can potentially counteract functional deficits in each other [211, 212]. These suggest a 

shared pathway between these two most common motor neurone diseases.  

What makes spinal motor neurones particularly prone to the disease? The answer to this 

question relies on a more detailed functional analysis of SMN not only in the motor neurone 

but also the other interacting cell types, and to identify the specific features that are present in 

motor neurones. Novel insights into motor neurone vulnerability together with greater 

understanding of SMN function will move us closer to designing effective treatments for 

SMA patients and this process might become a study paradigm of selective vulnerability for 

other neurodegenerative diseases. 

 

This research did not receive any specific grant from funding agencies in the public, 

commercial, or not for profit sectors.  
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