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Abstract 

Alterations in quantity or architecture of elastin and collagen fibres are associated with some 

blood vessel pathologies. Also some medical interventions such as endovascular 

catheterization have the potential to damage blood vessels. This study reports the use of porcine 

aorta as a model system for studying the physical impact of catheters on vasculature, in 

conjunction with non-invasive imaging techniques to analyse collagen and elastin fibre 

organization and assess load-induced changes. Porcine aorta was exposed to frictional trauma 

and elastin and collagen fibre orientation evaluated by destructive, histochemical methods and 

non-invasive imaging. The latter allowed the immediate impact of force on fibre orientation 

and fibre recovery to be evaluated longitudinally. 

In normal aorta, elastin fibres are aligned at the surface, but become less aligned with increasing 

depth, showing no alignment by ~30 µm. Collagen fibres meanwhile appear aligned down to a 

depth of 35 µm. Changes in collagen and elastin fibre orientation in healthy pig aorta were 

detected by conventional destructive histology within 5 minutes of application of a sliding 10N 

load, while lesser loads had less impact. Good recovery of fibre orientation was observed 

within 20 minutes. Non-invasive imaging of ex vivo aorta tissue provides a good indication of 

the extent of fibre re-organization following frictional stress, at loads similar to those 

encountered during medical interventions such as catheterization. These results indicate that 

tissue deformation can occur from these procedures, even in healthy tissue, and highlight the 

potential for the development of an in vivo probe capable of monitoring vascular changes in 

patients.  
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1. Introduction  

Vascular surgeons increasingly use sophisticated endovascular catheters to investigate and treat 

vascular complications (e.g., ablation catheters [1], and force controlled and haptic catheters 

[2-4]). In the hands of experienced surgeons, perforations of blood vessels with endovascular 

catheters are very rare, however many of the patients being treated potentially have diseased 

vessels; in these cases even experienced surgeons may find that the use of the endovascular 

catheters leads to some damage of blood vessels. The currently available catheter systems are 

sometimes difficult and slow to manipulate into position, thereby, reducing their ability to 

safely interact with the blood vessels insertion and decrease the likelihood of blood vessel 

damage. However, a reduction in friction also decreases the degree of haptic feedback, which 

provides the surgeon with valuable information about the progress of the procedure.  In 

addition, the insertion of a catheter can increase the risk of platelet aggregation in blood flow 

[5], but, in most cases, the patient is provided with an appropriate dosage of heparin. Damage 

to the extracellular matrix (ECM) will require a wound healing response and if it goes wrong 

this can lead to fibrosis [6]. Thus manoeuvrability represents a critical design feature for these 

catheters [7]. This feature is highly dependent on minimising the coefficient of friction between 

the catheter and the blood vessels. In response to a frictional insult, fibre production and 

orientation can change. This is why it is important to look at both when assessing damage 

inflicted by rubbing a catheter along aortic tissue. A problem in improving endovascular 

catheter design is obtaining information on the extent of the damage to blood vessels which 

may occur when catheters are used. The vascular endothelial surface layer (ESL) is notoriously 

fragile and may undergo damage during catheterization and repair post catheterization. ESL 

assessment has not proved a useful biological indicator of catheter–induced damage. This is 

because in almost all cases, patients undergoing catheterization as a result of cardiovascular 
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disease may already have pre-existing damage to their glycocalyx. In addition, the endothelium 

of such patients is potentially more vulnerable to damage by the catheter [8].  

Accordingly the approach taken in this study was to look beneath the ESL and examine the 

relationship between mechanical stress caused by friction (using materials used in endovascular 

catheter tips) and the deformation of collagen and elastin fibres in pig aorta tissue ex vivo.  

Our aims in this study were to use an experimental system to apply loads similar to those 

occurring during endovascular catheterization; to examine whether there was a predictable 

change in collagen and elastin fibre organization related to the level of frictional stress applied; 

to examine the extent to which fibre deformation was permanent or recoverable and; most 

importantly, to explore the possibility of using non-invasive imaging technology to evaluate 

collagen content and fibre reorientation after frictional insult. The strength of the aorta depends 

on the organization of fibres in the ECM. In the aorta the adventitial layer contains mainly 

collagen, while the medial layer consists of collagen and elastin [9]. The orientation of collagen 

fibres is important in providing tensile strength while the elastin provides elasticity to tissues, 

allowing them to return to their original state post deformation [10].  

In this study we first examined the effect of physical insult on collagen and elastin fibres in pig 

aorta by fixing the tissue post insult and characterizing the fibre orientation by haematoxylin 

and eosin staining. We then developed a holder which kept the aorta at a pre-stretched load and 

allowed the application of a single pass at a predetermined load, of a 4mm diameter sphere of 

PEBA (polyether block amide), commonly used in the manufacture of endovascular catheter 

tips. We used second harmonic generation (SHG) imaging and two photon excitation 

fluorescence (TPEF) to detect changes in the organization of the collagen and elastin fibres, 

respectively.  
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2. Materials and Methods 

All chemicals were obtained from Sigma-Aldrich (Dorset, UK) unless otherwise stated. 

2.1 Pig aorta preparation 

Porcine hearts with aortas attached were purchased from a local butcher 24 h after slaughter 

and stored in phosphate buffered saline (PBS, Oxoid, Hampshire, UK) at 4°C for 

transportation, which generally took less than 1 h. On arrival at the laboratory, the aortas were 

immediately detached from the hearts with a scalpel and washed three times in sterile PBS. 

Pieces of aorta ~4 cm long were cut along the main axis to obtain rectangular, flat strips of 

aortic tissue, which could be stretched longitudinally.  

On examination we found the retention of endothelial cells was very patchy and uneven –

almost certainly due to trauma during handling (confirmed by silver nitrate staining for the 

endothelium - results not shown). Since we were unable to obtain fresh samples with intact 

endothelia and ESL assessment has not proved useful in the determination of catheter–induced 

damage [8], we focused on studying the impact of force on the collagen and elastin fibres of 

the aorta. 

2.2 Friction test  

Friction tests were carried out using a CETR-UMT 2 (Bruker, Massachusetts, USA) tribometer 

with the load stabilized for 20 s before testing. The friction test samples were immersed in a 

blood substitute solution (0.9 mM dextran 70, 155 mM NaCl) to replicate blood viscosity and 

rheological behaviour [11]. To mimic the in vivo state of the unpressurised aorta, a tissue 

sample holder was developed by Philips Research, Eindhoven, Netherlands and the West 

Pomeranian University of Technology, Szczecin, Poland to hold the aorta sample during the 

friction test and maintain uniaxial tension. This device has been described elsewhere [12]. The 

fresh pig aorta was flattened in the longitudinal direction, the sample length increased by 15 
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%, reflecting the degree of stretching observed during normal blood flow, and the sample held 

in place. 

In the preliminary tests a catheter tip, made of a polymer matrix including PEBA (Boston 

Scientific 6F Guide Catheter (Massachusetts, USA) with 2.1 mm external diameter, 1.7 mm 

internal diameter) with a ‘hollow tube’ tip geometry, was held at 45° with respect to the friction 

surface during sliding. Normal loads in the range of 100 mN - 3 N were applied as a single pass 

along the longitudinal axis of the aorta, the samples were fixed within 10 minutes of the 

frictional insult, sectioned and haematoxylin and eosin (H&E) stained. Tests were also carried 

out with a 4mm diameter steel ball at 5 N. 

Subsequent tests used an injection-moulded 4 mm diameter PEBA ball (Pebax® 3533, 

hardness ShD 33, courtesy of Philips Research, Eindhoven, Netherlands), held perpendicular 

to the plane of the tissue and driven once across the sample along the longitudinal axis, at 1 

mm/s, with 1, 5 or 10 N applied normal load. Initially, the fibre response was analysed as before 

by fixing the tissue immediately after frictional insult. In addition some samples were allowed 

to rest for 90 minutes prior to fixing to evaluate fibre recovery. In all cases these samples were 

H&E stained. 

In the final experiments, the fixing and staining procedure was replaced by non-invasive 

imaging of the samples with a confocal microscope since this facilitated repeated imaging of 

the same area during the recovery process. 

2.3 Preparation of histological sections  

The samples were fixed in 10% formaldehyde solution, processed and embedded in paraffin 

blocks. Three 5µm thick sections were cut from each block and stained with haematoxylin and 

eosin.  
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2.4 Confocal imaging 

Collagen was visualized within the samples by SHG imaging in the epi-direction at different 

depths using a Zeiss LSM 510 Meta upright laser-scanning confocal microscope (Oberkochen, 

Germany) attached to a tunable (700–1060 nm) Chameleon Ti:sapphire multiphoton laser 

(Coherent, CA, USA). For TPEF imaging of elastin, the illumination wavelength was 800 nm 

and intrinsic fluorescence was detected between 447 and 597nm. Collagen SHG signals were 

obtained using 950 nm illumination and collected using a 10 nm band pass filter centred on 

475 nm [13,14]. All imaging was performed using a 40x 1.3 NA oil immersion objective. The 

elastin TPEF was collected using λex 800nm and λem 447 - 597 nm, avoiding any potential 

collagen SHG signal at 400 nm, while collagen SHG was detected by λex 950nm, λem 470-

480 nm. Images of the two components were collected sequentially from the same area. It is 

important to note that although collagen and elastin overlap in their TPEF excitation and 

emission spectra, they can be readily distinguished since only collagen produces SHG. 

To ensure that the same area was imaged before and after load application, the sample holder 

described above was placed at the same position using the microscope XY stage. For each 

sample, about 35 µm thickness of the vessel wall was imaged and a z stack of images at 1 µm 

intervals was generated. 

Non-invasive imaging was also employed in conjunction with enzymatic treatments to confirm 

the nature of the signals detected and ascertain the effective of fibre removal on the orientation 

of the remaining fibres within the tissue. 

2.5 Enzymatic treatment of collagen and elastin 

Tissues were treated enzymatically to disrupt the collagen or elastin architecture to verify the 

source of the SHG and TPEF signals. Samples were immersed in PBS solution with antibiotics 

(Penicillin and Streptomycin) and fungicide, to prevent growth of micro- organisms and were 
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treated with either collagenase A (0.120 U/ml) or elastase (0.011 U/ml). Samples were then 

incubated for 20 hours at 37°C to ensure digestion of the relevant proteins.  

 

2.6 Characterizing the collagen and elastin fibres orientation  

Mean fibre direction was extracted from SHG and TPEF images based on 2D Fourier transform 

analysis using ImageJ [15] and the Directionality plug-in created by Jean-Yves Tinevez 

(http://pacific.mpi-cbg.de/wiki/index.php/Directionality) following the online instructions. 

Images were converted into greyscale and the angle of each fibre was analysed by Fast Fourier 

Transform, producing a directionality histogram in which all fibres were mapped for 

directionality against a scale of 0 to 180°. The orientation of the fibres was analysed from z-

stack images, producing a histogram with the peak indicative of the dominant orientation.  

 

3. Results 

3.1 Friction test 

The friction behaviour of a PEBA ball was investigated. Lubricants or gel-like materials with 

a hydrophilic polymer surface have been developed and used in order to provide lubricity to 

the endovascular catheter tips. Usually, they are designed to give a low COF when in contact 

with the vessel wall in order to minimize trauma and tissue irritation [12; 16]. Estimations of 

the contact pressure and the area of contact were made using the Hertzian contact model. This 

involved assigning parametric values of 0.4 and 0.5 for the Poisson ratio of the probe and for 

pig aorta, respectively, 14.6 MPa and 0.043 MPa for the elastic modulus [17]. The estimated 

contact pressure was 0.05, 0.09 and 0.1 MPa for 1, 5 and respectively 10N and the contact area 

diameter was 5.93, 10.13 and 12.76 mm respectively for 1, 5 and 10N. 

The COF results indicated that this decreased with increasing force (Figure 1). COF is a 

measure of the surface interactions between the two contacting bodies. As materials slide 
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against each other, the materials interact with each other. The actual frictional force can result 

from a variety of mechanisms such as: adhesion, deformation, and hysteresis. As the load 

increases contact area and ploughing increase and the resulting energy dissipation due to 

adhesion and deformation mechanism increases in concert with frictional force to increase [18]. 

A threshold load typically exists above which the material cannot be compressed further, 

leading to a non-linear rise in friction force with applied normal force and therefore COF 

decreases. 

 

Figure 1: Average friction behaviour of PEBA ball 
The average friction behaviour of the PEBA ball when applied to pig aorta at normal 
loads between 1 and 10 N. The ball was moved across the sample at 1 mm/s; the error 
bars indicate the SEM derived from at least four individual experiments. 
 
 
 
3.2 Histological observation of pig aorta ECM fibres following frictional insult 

Preliminary tests using a catheter tip and loads between 100 mN and 3N demonstrated 

that it was possible to detect a reorganization of the H&E stained fibres after a single pass with 

this tip and this was most noticeable when a load of 400mN was applied (Figure 2).  
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Figure 2: The effect of friction from a catheter tip on fibres in the aorta 

Pig aortas were freshly excised and subjected to minimal stretching to flatten them out. 
Loads of 100 mN, 400 mN, 1 N and 3 N were applied from a single pass of a catheter held 
at 45° at a constant speed of 1 mm/s (A). Tissue was then fixed, sectioned and stained with 
H&E (B). Images shown are at 20x magnification.  
 

This preliminary data also suggested that reorganization of fibre orientation could be detected 

in response to a single friction pass of a steel ball (at 5 N) (Figure 3).  
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Figure 3: The effect of friction from a steel ball on fibres in the aorta 

Pig aortas were freshly excised and subjected to minimal stretching of 15% to flatten 
them out. 5 N load was applied using a 4 mm diameter steel ball at a constant speed of 
1mm/s (A). In these experiments, tissues were subjected to 5 N in a single pass of a steel 
ball and then either fixed within 10 minutes or allowed to stand for 90 minutes before 
fixing. With H&E staining (Figure 3B) a flattening of all fibres immediately after the 
frictional insult and recovery after 90 minutes prior to fixation was observed.  
 

3.3 Non-invasive imaging of collagen and elastin fibres 

To reduce the impact of sample processing and to investigate the changes throughout the 

sample in more detail, the collagen and elastin fibre arrangement was examined by non-

invasive imaging methods.  
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SHG and TPEF images of the collagen and elastin fibres respectively were obtained non-

invasively at 1 µm depth intervals for a 30 µm z stack (Figure 4).  

 

Figure 4: Orientation of collagen and elastin fibres in relaxed pig aorta before friction 
test. Images show collagen (SHG - green) and elastin (TPEF - red) fibres separately and 
as a combined image. The relaxed sample (A) shows relatively little alignment of collagen 
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and elastin at the surface. At depths up to 25 µm (B) there is considerable co-alignment 
of collagen and elastin, while beyond 25 µm (C) alignment of collagen and elastin differs. 
The tissue was then treated with collagenase (D) or elastase (E) and imaged as before to 
confirm the identity of the components detected. 
 
3.4 Collagenase and elastase treatment of porcine aorta prior to friction insult 

To confirm the nature of the components detected by SHG and TPEF, the impact of enzymatic 

digestion of the two components on non-invasive imaging was determined. Samples were 

treated with collagenase A or elastase and compared to the untreated control. All images were 

obtained using the same imaging parameters, as previously described. The fibre orientation 

was then determined (Figure 6). 

The collagen fibre angle appears mostly unchanged (Figure 5B) compared to the control 

(Figure 5A); this could be speculated to indicate the homogeneous break down of the collagen 

fibres. The arrangement of the collagen fibres also appears to change following elastase 

treatment: the previously tight bundles appear rippled, more diffuse and with a clear single 

directionality (Figure 5C), not present in control samples, indicating the interconnectivity 

between the elastin and collagen networks. 

Elastin structure in the collagenase treated samples was greatly altered compared to the control, 

possibly resulting from detachment of the elastin from the collagen network. Following elastase 

treatment, the images show a clear loss of elastin, compared to the controls, and there appears 

to be little remaining structure. Furthermore, the elastin fibre angle is greatly altered, with less 

clear directionality (Figure 5F). However this may be due to the loss of remaining structure 

such that no clear fibre angle could be detected. Noble et al. previously reported that 

collagenase and elastase treatment of porcine aorta alters the uniaxial tension response [19]. 

Therefore this may provide insight into the change observed in that study. 
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Figure 5: Images of collagen and elastin fibres after enzymatic digestion. 

Images were obtained by increasing amplifier gain, from a depth of 16.5 µm from the 

surface of the intima, for control (A, D), collagenase (B, E) and elastase (C, F) treated 

samples. Scale bar = 50 µm. 
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Figure 6: Collagen and elastin fibre directionality histograms for samples in figure 5 (D 
and E). Collagen (A-C) and elastin (D-F) fibre angle versus relative frequency illustrates 
the predominant fibre direction. 0 is the axial direction and ±90˚ is the circumferential 
direction. Samples are control (A, D), collagenase (B, E) and elastase (C, F) treated.  
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The collagen fibre angle (with collagenase) appears mostly unchanged (Figure 6B) compared 

to the control (Figure 6A); this could be speculated to indicate the homogeneous break down 

of the collagen fibres. The arrangement of the collagen fibres also appears to change following 

elastase treatment: the previously tight bundles appear rippled, more diffuse and with a clear 

single directionality (Figure 6C), not present in control samples, indicating the 

interconnectivity between the elastin and collagen networks.  

Elastin structure in the collagenase treated samples was greatly altered compared to the control, 

possibly resulting from detachment of the elastin from the collagen network. The predominant 

-40˚ orientation, seen in the control samples (Figure 6D), is lost and  ±90˚ orientation dominates 

(Figure 5E). Following elastase treatment, the images show a clear loss of elastin, compared to 

the controls, and there appears to be little remaining structure. Furthermore, the elastin fibre 

angle is greatly altered, with less clear directionality (Figure 6F). However this may be due to 

the loss of remaining structure such that no clear fibre angle could be detected. Noble et al. 

previously reported that collagenase and elastase treatment of porcine aorta alters the uniaxial 

tension response [19]. Therefore this may provide insight into the change observed in that 

study. 

 

3.5 Imaging of collagen and elastin fibre orientation following frictional insult 

Fibre orientation versus depth of aorta was determined for both elastin and collagen. The 

directionality was recorded before samples were stretched and then 5, 10, 20 and 30 minutes 

after stretching. No difference was observed in relation to stretching time prior to imaging (data 

not shown).  

The relationship between load and fibre orientation was examined in pig aortas subjected to 

loads of 1, 5 and 10 N (Figure 7).  
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Figure 7: Fibre orientation in aorta before and after longitudinal loading 

Pig aortas were held in the restraining device and subject to 15% stretching prior to the 
application of 1 N (A and B), 5 N (C and D) or 10 N (E and F) loads in a single pass. The 
dotted line shows the orientation of the fibres before load and the red, dark blue, light 
blue and green lines show the orientation of the fibres 5, 10, 20 and 30 minutes post 
loading, respectively. A, C and E show the results for elastin fibres and B, D and F show 
the collagen fibres. 
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With 1N there was no detectable change in the orientation of the fibres 5 minutes after applying 

the single pass load (Figure 7A, B). For a 5 N load there was no detectable change in the elastin 

and a very slight change in the collagen orientation that recovered within 10 minutes (Figure 

7B, C). However, with 10 N there was a dramatic change in the orientation of both the elastin 

and the collagen fibres within 5 minutes of applying the load (Figure 7E, F). After 10 minutes 

there was no recovery in fibre alignment for either elastin or collagen but by 30 minutes the 

fibre orientation had recovered completely. 

 

4. Discussion  

The aim of this study was to investigate the possibility of using non-invasive SHG and TPEF 

imaging to detect the effect of a sliding load on pig aorta to simulate the forces generated by 

the insertion of endovascular catheters. To achieve this we used an experimental system, 

developed previously by the authors [19] to determine methodologies for applying loads 

reproducibly and analysing the response of the tissue to normal and frictional loading through 

non-invasive imaging. 

The techniques of SHG and TPEF have been previously used to investigate collagen and elastin 

networks, respectively, in arteries [10, 20] heart valves [12, 21] porcine cartilage [22] and skin 

[23]. 

Animal blood vessels in the form of a pig aorta, were chosen for this study since obtaining 

diseased human tissue in sufficient quantities is very difficult (both practically and ethically). 

Moreover, it has been found that pig blood vessels have similar behaviour to human blood 

vessels [24]. 

Results indicated that fresh pig aorta responded predictably to increasing loads (single pass) 

with a temporary change in the orientation of the collagen and elastin fibres. At low loads of 1 

and 5N there was very little change, while at the higher load load of 10 N there was 
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considerable realignment. Both collagen and elastin fibres within 5 minutes of loading. It is 

interesting to note that these changes in collagen and elastin fibre orientation were partially 

restored within 20 minutes, with a complete return to the original alignment within 30 minutes. 

We hypothesize that both changes in alignment of fibres and the rate of recovery relate to the 

extent of the load applied, although additional studies are needed to investigate this further.  

A major contribution of this study is demonstrating that dynamic and reversible changes in 

collagen and elastin fibre orientation can be detected non-invasively, by SHG and TPEF 

respectively. The images obtained facilitated analysis of the orientation of the fibres at different 

depths in the aortic tissue and allowed the detection of changes in their orientation and response 

to load and the measurement of recovery over a period of 30 minutes.  

SHG imaging is a minimally invasive, non-linear, two-photon based technique requiring no 

sample preparation, generated when non-centrosymmetric structures are illuminated with 

focused laser light in an ultrashort pulse. Collagen is a strong SHG source [25, 26] and by using 

near infrared wavelengths for the incident light, SHG imaging has the ability to penetrate 

deeper into thick tissue, producing single plane images that can be re-constructed into three 

dimensional images [27]. Consequently it is an ideal technique for non-destructively 

monitoring tissues. However, despite these advantages, it is only over the last few years that 

SHG imaging of collagen structures in tissue has begun to be adopted more widely. A recent 

review was published on the development and burgeoning use of SHG imaging in the clinic to 

investigate collagen remodelling in cancer in ex vivo and in vivo human tissue [28]; changes in 

collagen structure during fibrosis are also being monitored; ex vivo in humans, in vivo in 

animals, by SHG imaging [29-31]. In addition SHG imaging is now playing an important role 

in non-invasive imaging of collagen structure, formation and remodelling in tissue engineering 

and regenerative medicine, as reviewed recently by Vielreciher et al. [32]. 



20 

 

Changes to elastin and collagen fibres in the enzyme-treated samples may alter the frictional 

response of the tissue. Noble et al. performed uniaxial tensile testing of collagenase and 

elastase treated samples to create a model of diseased aorta [19]. They report weakening of 

collagenase treated samples in the axial direction. This behaviour may be explained by the 

results of this study since collagenase treatment resulted in the breakdown of collagen fibres, 

known to provide resistance at high strain, together with changes to elastin structure and 

orientation, which may have affected the attachment and subsequent recruitment of the 

remaining collagen fibres. Noble et al. also found elastase-treated samples had increased 

compliance in both directions. Our study suggests that this may be due to both loss of elastin 

and changes to collagen fibre structure. This work therefore supports the assertions of that 

study that these treatments provide a basis for the creation of models of disease aorta.  

The effect of such treatments on the loading response of the tissue was not investigated here. 

However application of the loading applied in this study to enzyme treated artery would 

provide further assessment of the model proposed for emulating diseased tissue frictional 

properties. 

Recent studies have demonstrated the development of an endoscopic probe capable of 

obtaining in vivo SHG images of murine cervical tissue [33], with the potential to be used in 

the clinical assessment of abnormal collagen remodeling within the cervix associated with 

preterm birth. As our study demonstrates, changes in collagen and elastin fibre orientation in 

response to frictional load can also be imaged non-destructively through the collection of SHG 

and endogenous fluorescence signals, and without the need for additional staining or contrast 

agents. Consequently a similar in vivo probe could be developed to measure the impact of 

physical trauma during medical interventions such as catheterization. This technology could 

also be useful in the assessment of pathological conditions of the aorta and other blood vessels 
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characterized by changes in the quantity and/or architecture of the elastin and collagen fibres 

such as aneurysms, atherosclerosis or genetic disorders [34, 35].  

 

5. Conclusions 

Endovascular catheterisation has the potential to damage blood vessels. Non-invasive imaging 

provides reliable indication of fibre re-organisation following mechanical insult. Recovery of 

the collagen and elastin fibre orientation was observed within 20 minutes. The techniques used 

are minimally invasive, requiring no sample preparation, and often the potential to develop an 

in vivo probe for monitoring vascular changes. 
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