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Pseudomonas aeruginosa populations undergo a characteristic evolutionary
adaptation during chronic infection of the cystic fibrosis (CF) lung, including
reduced production of virulence factors, transition to a biofilm-associated life-
style, and evolution of high-level antibiotic resistance. Populations of
P. aeruginosa in chronic CF lung infections typically exhibit high phenotypic
diversity, including for clinically important traits such as antibiotic resistance
and toxin production, and this diversity is dynamic over time, making accurate
diagnosis and treatment challenging. Population genomics studies reveal exten-
sive genetic diversity within patients, including for transmissible strains the
coexistence of highly divergent lineages acquired by patient-to-patient transmis-
sion. The inherent spatial structure and spatial heterogeneity of selection in the CF
lung appears to play a key role in driving P. aeruginosa diversification.

Pseudomonas aeruginosa Infection in Cystic Fibrosis
Cystic fibrosis (CF; see Glossary) is a debilitating, genetically inherited disease characterised
by defects in a transport protein (the cystic fibrosis transmembrane regulator), resulting in sticky
mucus, most notably in the respiratory tract [1]. CF patients are susceptible to chronic lung
infections, the predominant cause of the morbidity and mortality associated with the disease.
The most common pathogen in this respect is Pseudomonas aeruginosa, a highly versatile
bacterium capable of causing a wide range of mostly opportunistic infections, as well as
occupying a variety of environmental niches [2]. The ecological flexibility of P. aeruginosa
can be attributed to its large genome (typically >6 Mb), which contains a particularly high
proportion of regulatory genes, as well as a large number of genes involved in the catabolism,
transport, and efflux of organic compounds [3,4]. In CF, there has been some progress with
development of aggressive early eradication therapies, whereby treatment is initiated as soon as
the pathogen is detected, which delays the onset of chronic infection [5]. However, once a
chronic infection is established by P. aeruginosa, it is apparently impossible to eradicate.

During the course of chronic infection, CF patients produce samples (most commonly sputum)
that are subjected to microbiological analysis for diagnostic purposes (identification of
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pathogens and antimicrobial susceptibility testing) and have proven to be a rich resource for
researchers interested in analyses of the evolution of bacteria during chronic infection. As a
discipline, microbiology has depended heavily on analysis of cultured organisms [6], and
microbiologists are ingrained with the importance of obtaining single pure colonies. Hence,
the study of bacterial pathogens during infection, including chronic CF infections, has relied
heavily upon an assumption that bacterial populations at any given time are genetically uniform,
at least at the level of ‘strains’, and that therefore it is justifiable to study and diagnose infections
on the basis of single isolates. As a result, for many years researchers have assumed that it
is possible to draw conclusions about the whole infecting bacterial population from the traits
of single bacterial colonies. It is, however, increasingly clear that this assumption may not
always be true.

In this review we discuss the phenotypic and genomic studies that have advanced our
understanding of the adaptation and evolution of P. aeruginosa populations during chronic
infections in the CF lung, highlighting the evidence demonstrating that infecting P. aeruginosa
populations are highly diverse both genetically and phenotypically. We further discuss the
causes and consequences of this diversity with respect to the underlying evolutionary processes
and the clinical implications.

P. aeruginosa Phenotypic Adaptations Commonly Associated with CF
Infections
The CF lung is a heterogeneous, hostile, and stressful environment for invading bacteria, and
P. aeruginosa populations must overcome these challenges to persist and survive. Postulated
stressors in the CF lung include osmotic stress [7] due to the viscous mucus, oxidative [8] and
nitrosative [9] stresses due to host responses, sublethal concentrations of antibiotics [10],
and the presence of other microorganisms [11,12]. It has been recognised for many years that
P. aeruginosa undergoes evolutionary changes in response to these selective forces during
the chronic infection process. Phenotypic analysis of isolates show the emergence of mucoid
colonies [13], caused by overproduction of the polysaccharide alginate, which is widely
considered to be a marker for the transition to chronic infection. Alginate is one of three
exopolysaccharides (along with Pel and Psl) that play important roles in the development and
structural maintenance of a biofilm matrix that can offer P. aeruginosa protection from
antibiotics and host responses [14]. Other adaptations include the accumulation of auxotro-
phic mutations in the amino acid-rich lung environment [15], loss of motility [16], and the
emergence of hypermutators [17], which display elevated mutation rates due to defects in
DNA repair mechanisms. Given that CF patients are subjected to prolonged and often
intensive therapy with antibiotics [18], the evolution of antibiotic resistances is also a common
adaptation [19].

A recurring theme in the phenotypic analysis of CF isolates is the tendency for P. aeruginosa to
become defective in terms of some of its key virulence factors (Box 1), such as type III
secretion and the quorum sensing (QS) system (Figure 1). In CF, the accumulation of
mutations in the gene encoding the key QS regulator, LasR, causing loss of QS regulation,
is especially common [20]. Other mutations often found associated with CF isolates of
P. aeruginosa include mutations in gacS and retS, genes implicated in the switch between
acute and chronic virulence (Box 1, Figure 1). Other regulators, such as AmpR [21], have also
been implicated in this switch to chronicity, and it seems likely that a number of global
regulatory systems may actually be involved. The accumulation of virulence factor mutations
has been interpreted as P. aeruginosa adapting to lose its acute virulence during chronic
infections [22]. However, it is clear that many virulence factors (for example, QS-regulated
factors and QS signal molecules) can still be detected in patient sputum samples during
chronic infections [23].
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Glossary
Cystic fibrosis (CF): the most
common life-threatening genetically
inherited disorder among Caucasians.
GAC system: the global activator of
antibiotic and cyanide synthesis
system in P. aeruginosa that
incorporates a two-component
regulatory system (GacS/GacA) and
is thought to play a role in the switch
from acute infection to chronic
infection.
Liverpool epidemic strain (LES):
the most common clone of P.
aeruginosa among UK CF patients.
Quorum sensing (QS): a cell-
density-dependent regulatory system
controlling the expression of multiple
genes.

Genomic Analysis of Adaptation Using Sequential Isolates
The advent of affordable whole-genome sequencing technologies triggered considerable inter-
est in using genomics to define the genetic basis of adaptations that occur during infections in
the CF lung environment. In particular, there have been a number of studies reporting compar-
isons of clonally related longitudinal isolates, mostly contrasting the mutated genes in isolates
from early and late in the infection process [24–29]. These studies have revealed common

Box 1. Pseudomonas aeruginosa Virulence Factors

P. aeruginosa virulence has largely been defined in terms of acute infections, for which models are readily available and
loss of function mutations can be easily demonstrated [71–73]. The expression of virulence genes in P. aeruginosa is
controlled by extremely complex, interweaving regulatory circuits [35] and multiple signalling systems [74]. For an
opportunistic pathogen, P. aeruginosa produces an impressive array of particularly secreted virulence factors, utilising its
type III secretion system to secrete various exotoxins (ExoS, ExoU, ExoT, and ExoY) [75], and quorum sensing (QS)
systems (cell-density-dependent regulation) to control numerous important secreted virulence factors [23,76], including
secreted pyocyanin, elastase, cyanide, and rhamnolipid. The secretion of toxins, coupled with phenotypes such as
motility (swimming, swarming, and twitching), is considered to be important for acute infections. In contrast, apart from
biofilm formation, virulence factors that are important in chronic infections are less well understood. It has been proposed
that the GAC system network (incorporating the two-component regulatory system GacA/GacS, two other sensor
kinases RetS/LadS, the small regulatory protein RsmA and the small RNAs RsmZ/RsmY) controls the reversible transition
from acute to chronic infections [74]. This is based on a switch between acute virulence factors (swarming motility, lipase,
rhamnolipids and type III secretion) and chronic virulence factors, such as biofilm formation, but also type VI secretion,
and QS-regulated factors more traditionally thought of as involved in acute infections, namely pyocyanin and hydrogen
cyanide. Although a role in acute infections has been demonstrated in animal models [77], because of the limitations of
the available animal models of chronic infection, the role of the GAC system in chronic infection is less clear. However, an
improved natural inhalation model that does not require the implantation of agar beads, and during which the bacteria
adapt and exhibit features of chronic infections, has been developed [78]. This offers considerable potential to better
characterise key chronic infection virulence factors.
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Figure 1. Pathoadaptive Mutations in Pseudomonas aeruginosa. Genes encoding regulatory proteins are high-
lighted in red. Genes encoding sigma factors are highlighted in blue.
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mutations falling into various functional categories such as virulence (including QS and mucoidy),
motility, transport, antibiotic resistance, iron acquisition, DNA replication or repair, transcription/
translation, cell division or metabolism. In particular, mutations in genes encoding key global
regulators are common (for example, lasR, rpoN, mucA, mexT, retS, exsD, and ampR; see
Figure 1). Together, the suite of traits affected by these mutations have been termed ‘patho-
adaptive’ traits.

An analysis of an extensive retrospective collection of isolates, many of which represented a
transmissible lineage (DK2), demonstrated that after initial transmission, sublineages evolved
independently in patients, accumulating pathoadaptive mutations [25]. It was further demon-
strated that hypermutator lineages can coexist with nonhypermutators, developing distinct
evolutionary pathways [30]. Expanding this work to a study of 474 longitudinal isolates from
34 CF children and young adults, representing 36 different lineages of P. aeruginosa, the same
group were able to show parallel evolution at 52 genes [31], suggesting common adaptations
and constraints during the process of adaptation.

Each of these studies suggests evidence for adaptive evolution, with selection for mutations that
are beneficial in the CF lung environment. For example, there is evidence for adaptation towards
iron acquisition from haemoglobin repeatably and independently across multiple patients [32].
Notably, mutations of the complex P. aeruginosa regulatory and metabolic networks in the lung
environment are likely to extensively modify gene expression levels and alter metabolic fluxes.
Mutations occuring early in the infection, and therefore presumably the most beneficial, are
located in global regulatory network control hubs [33], with other mutations occurring later and
leading to fine-tuning [33]. However, it is also notable that the pathoadaptive mutations are not
consistent between studies, suggesting the existence of multiple evolutionary trajectories to
pathoadaptation [34]. Observations in CF suggest that this may be a result of the inherent
complexity of P. aeruginosa regulatory networks [35]: similarly beneficial effects can result from
different mutations, or combinations of mutations in regulators, leading to changes in multiple
processes. As a result, different mutations may converge upon similar phenotypes and levels of
increased fitness. Likewise, there may be epistatic interactions among mutations such that
particular combinations of mutations are required, making the evolutionary trajectory within a
given patient highly contingent upon which early mutations arise and reach fixation [34].

The tendency for P. aeruginosa to acquire loss-of-function mutations during adaptation to the
CF lung could suggest that it is travelling towards an evolutionary ‘dead-end’. However, the
existence of transmissible strains, such as the DK2 lineage and the Liverpool epidemic strain
(LES) [36,37], argues that this is not always the case. Anecdotally, the LES is most likely to infect
patients already infected with another P. aeruginosa strain. It is conceivable, therefore, that
transmissible strains have acquired mutations that not only favour transmission but also enhance
competitive ability in the lung.

What Are the Drivers of Pathoadaptation?
Parallel evolution of particular traits or genes independently in multiple patients is strongly
suggestive of positive selection at these loci, leading to the identification of the suite of
pathoadaptive traits. Thus, we now have detailed phenotypic and genetic descriptions of
how natural selection targets P. aeruginosa populations in the CF lung, but we still lack a full
understanding of why these particular traits and genes are experiencing selection. This is in part
due to the fact that the CF host environment is highly complex, and in part a reflection of our
incomplete understanding of the physiology of the bacteria. Perhaps the clearest case where the
selective force can be linked to the evolutionary response is for antibiotic resistance evolution: for
example, in a recent genomics study of P. aeruginosa adapting to the CF lung, the fitness of
particular alleles at the penicillin-binding protein 3 could be linked to the use of particular
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antibiotics [38]. Similarly, in in vitro evolution experiments, stereotypical resistance mutations
become enriched under antibiotic selection, clearly establishing causality [39]. Other traits are
less easily associated to particular selective causes. For example, it has been suggested that the
loss of virulence-associated and motility traits is a response to immune selection [16]; however,
there have been few direct tests of this hypothesis. Indeed, a recent study using nematode hosts
showed no effect of host immunity on the trajectory of P. aeruginosa adaptation: virulence traits
were lost with and without immune selection [40]. Similarly, adaptation to the CF-like conditions
of artificial sputum medium selects for mutations that cause a switch to an immotile biofilm
lifestyle [39], suggesting that the sputum environment itself is sufficient to select against motility.
Moreover, growth of P. aeruginosa in flow cells selects for mutations causing mucoidy and loss
of pilus-dependent motility, suggesting that simply dwelling in a biofilm is sufficient to cause the
evolution of these characteristic CF-associated phenotypes [41]. Other common adaptations
include changes in metabolism, DNA repair, and iron acquisition (Figure 1). However, there is a
clear need for careful experiments testing evolutionary hypotheses about the drivers of selection
within the host which disentangle this complex multifaceted environment. Box 2 outlines our
current knowledge with respect to adaptations driven by social interactions, demonstrating how
experimental evolution can help us to both generate and test hypotheses.

Complexity of P. aeruginosa Populations in the CF Lung
It has been known anecdotally for many years that P. aeruginosa populations in CF can be
diverse in terms of phenotypes such as colony morphology (e.g., coexistence of mucoid and
nonmucoid colonies). Recent detailed analyses have revealed that there is extensive phenotypic
heterogeneity within populations of P. aeruginosa in the CF lung beyond their colony morphology
[42–49] (Figure 2, Key Figure). Importantly, P. aeruginosa populations exhibit within-population
diversity in many of the phenotypes observed to be altered during evolutionary adaptation,
including motility, virulence factor production, siderophore production, antibiotic resistance,
auxotrophy, and hypermutability. Hence, although some members of the population have
acquired mutations affecting these phenotypes, these mutants coexist in patients alongside
other genotypes that have not (Figure 3). The most practical clinically relevant consequence of
this phenotypic diversity is in relation to antimicrobial susceptibility testing in diagnostic labora-
tories, which is typically carried out on either single isolates, or two colonies acting as repre-
sentatives of mucoid and nonmucoid colony morphotypes. However, there is almost always
considerable diversity in the antimicrobial susceptibilities within the population isolated from an
individual sputum sample (and within colony morphotypes) [43,45] (Figure 3). Hence, it is

Box 2. Adaptation in the Context of Social Evolution

The transition from acute to chronic infection can radically alter costs and benefits associated with the secretion of
extracellular metabolites. Some metabolites are costly to produce when not needed, which may explain the redundancy
of virulence-associated genes observed during cystic fibrosis (CF) infections. However, secreted metabolites are often
costly to produce, so even when they are crucial for growth their loss might be selectively advantageous – providing there
remain enough producing individuals to compensate for this small reduction in metabolite concentration. Hence,
nonproducers (‘cheats’) can still reap the benefits of metabolites produced by others (‘cooperators’), while paying little
or no cost [79]. For instance, individuals that produce the costly iron-scavenging siderophore pyoverdine can be
exploited by pyoverdine-negative mutants, who benefit from increased iron-acquisition without paying a cost. Experi-
mental evolution has revealed that in spite of cheats exhibiting reduced relative fitness in an iron-limited medium, they can
spread through a population of cooperators, over a matter of days [80,81]. A recent significant paper shows that social
selection may be similarly resulting in pyoverdine mutants in the CF lung [82]. Loss-of-function mutations occur in
pyoverdine synthesis genes, but not in the receptor gene (at least as long as producers and nonproducers coexist
together), indicating that the loss of pyoverdine in vivo is not driven by disuse, but by loss-due-to-cheating. Cheats can
only exploit producers as long as they maintain a functional receptor. If loss were a result of disuse, mutations would be
predicted to accumulate in both receptor and synthesis genes. However, with the notable exception of pyoverdine, we
know very little in practice about the role of social evolution in shaping trait loss in the context of the CF lung. It could be
tentatively suggested that virulence factors and secreted toxins may benefit bacteria other than the producer, and hence
may also be vulnerable to nonproducing cheats. If this is the case, the dominance of the ‘loss-due-to-disuse’ framework
for explaining loss of secreted traits in CF lung infections may be open to uncertainty.
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perhaps not surprising that therapy based on antimicrobial testing is a poor predictor of clinical
outcome [50,51].

This closer scrutiny of P. aeruginosa within-population diversity has been extended to genomic
analysis, with reports that contemporary within-patient genomic diversity between isolates can
be comparable to the variation reported between sequential isolates [52]. Further studies have
built upon this by analysing larger numbers of isolates per sample, to characterise the diversity
present within populations [44,53]. By sequencing P. aeruginosa populations from a group of
patients infected with the same strain (the LES), it was possible to demonstrate the coexistence
of divergent sublineages within individual patients, strongly suggesting the likelihood of ongoing
transmission between patients [53]. Data from this study also demonstrated that, although
mutations in some genes are common, they are neither always present in all patients, nor carried

Key Figure

Phenotypic Heterogeneity within Pseudomonas aeruginosa Populations
in Cystic Fibrosis (CF)

Between
pa�ents
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Key:

Figure 2. The figure shows a population structure based on 15 variable traits using the eBURST algorithm [83]. From ten
patients infected with the Liverpool epidemic strain (LES) of P. aeruginosa, 1720 isolates from 43 different sputum samples
were analysed, giving rise to 398 unique ‘subtypes’ of the LES. Each sphere represents a different subtype. The size reflects
the relative abundance of each subtype. Two subtypes connected by a single line differ in only one characteristic. The pie
chart inset indicates the percentage contribution to diversity of variation between patients, between samples or within
samples, demonstrating the major contribution of the latter. Adapted from [43].
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by all members of the P. aeruginosa population within individual patients (Figure 4). Further
evidence for the merits of studying fine-scale evolutionary dynamics was provided in another
recent paper, which reported deep analysis of 12 sputum samples isolated from one patient over
the course of a year [38], with the evolutionary emergence of two clonal sublineages within the
patient.

This observed diversification is consistent with the idea that genetically diverged isolates coexist
and interact within an ecologically cohesive population in the lung. However, there is likely to be a
role for spatial structure and environmental heterogeneity within the lung environment in the
origin and maintenance of the observed genetic diversity. Different regions of lung tissue are likely
to vary along a range of environmental axes, including variations in mixtures of nutrients,
concentrations of penetrating antibiotics, other microorganisms, or factors such as oxygen
availability, potentially leading to spatially variable selection for different ecotypes. At a macro-
scale this is supported by the coexistence of distinct sublineages associated with different parts
of the airway in patients (paranasal sinus vs lung) [54]. Moreover, in a recent landmark paper,
different regions of explanted lungs from chronically infected CF patients were analysed to study
the variations in clonally related isolates in great detail [55]. The P. aeruginosa isolates occupying
different regions of the lung had evolved independently, and they differed in phenotypic
characteristics such as nutritional requirements, antibiotic resistance, and virulence. The study,
however, reported that there was limited intermixing between these separate communities,
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Figure 3. Variations in the Antimicrobial Susceptibilities of Pseudomonas aeruginosa within Individual
Patients. The figure summarises, for four antibiotics, the spread of zone of inhibition data (ZOI) in mm for multiple isolates
taken from 13 patients infected with the Liverpool epidemic strain (LES). For each patient, a minimum of 80 isolates was
analysed, taken at multiple sampling points (40 isolates per sample point). The red line indicates the recognised cut-off
points as defined by the British Society for Antimicrobial Susceptibility [84]. Note the tendency for isolates from the same
patient to occur both above (susceptible) and below (resistant) the red line. Data adapted from two studies [43,46].

Trends in Microbiology, May 2016, Vol. 24, No. 5 333



suggesting that regional isolation mediated by spatial structure promotes both the origin and the
maintenance of this diversity [55]. It is important to note that spatial divergence of this kind could
arise simply due to random drift rather than any adaptive divergence.

Therefore, upon current evidence, it appears that the observed diversity in CF lungs is the result
of both adaptive (spatially heterogeneous selection driving the evolution of different ecotypes in
different regions of the lung) and nonadaptive (genetic drift due to spatial structure combined
with limited mixing) processes that promote the origin and coexistence of genotypes. Although
recombination can also play a role in the diversification process [44,52,53,56], there is dis-
agreement about the extent of its contribution. One study suggested that recombination is a key
driver of genomic and phenotypic diversity [44]. However, refined analysis of these data [57], and
the levels reported in other studies, suggest that recombination rates are low. Although
experimental tests are limited, it has been shown in several studies that genetic diversity readily
evolves in spatially structured biofilm populations [41,58–60]. Moreover, several studies have
demonstrated a role for stressors likely to occur in the CF lung in selecting for the evolution of
diversity in P. aeruginosa biofilms (oxidative stress [59]) and in populations growing in a CF-like
artificial sputum medium environment (subinhibitory concentrations of antibiotics [61]). The
complexity of the system is emphasised by the fact that diversity can occur both within a
biofilm population in a ‘microcompartment’ and in the wider CF airway environment, where
physically separate biofilm populations can be exposed to different environmental conditions,
including variable antibiotic concentrations [62]. Furthermore, as the lung tissue deteriorates
over time during CF disease progression, it is likely that the selective forces operating on the
pathogen population vary, such that mutations beneficial earlier in the infection may be less
favoured later.

The effects of the many selective forces likely to operate in the lung remain to be experimentally
tested. These include the other members of the complex multispecies microbial communities
(the microbiome) [63], the host immune system, and phage (which can occur at high densities in
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CF patient samples [64]). Experimental evolution approaches are likely to be a powerful tool for
shedding light on these issues.

Concluding Remarks
Driven by the advent of affordable high-throughput genome sequencing, there has been rapid
progress in our understanding of how P. aeruginosa adapts and evolves in the context of chronic
CF lung infections. More recently, this has extended to fine-scale analysis of evolutionary
dynamics within infecting populations, revealing high levels of coexisting genetic and phenotypic
diversity, including at clinically important traits. The clinical consequences are not fully under-
stood, though, given the extensive phenotypic diversity, there are clear implications for false
diagnoses based upon antimicrobial susceptibility testing using single/pairs of isolates. Given
the limited efficacy of current antibiotics in these chronically infected patients, it is important that
we improve our understanding of the evolution of bacterial populations during chronic infections
in order to design better strategies for clinical intervention (see Outstanding Questions). For
example, the issue of whether the loss of social traits in P. aeruginosa populations is a result of
disuse or cheating has relevance that extends beyond the field of evolutionary biology per se. If
cheating can indeed accelerate the loss of virulence-associated metabolites [65,66], meddling in
the social lives of microbes could present a novel strategy for the development of virulence-
attenuating therapeutics, as well as controlling the spread of infectious diseases [67,68]. In
particular, there has been particular emphasis on developing novel antivirulence therapeutics,
especially strategies aimed at inhibition of the P. aeruginosa QS system [69,70].

Given the tools at our disposal, we are now well placed to undertake a detailed characterisation
of the structure and dynamics of bacterial populations during infections, and it is likely that a huge
amount of data will be published over the coming years. However, it is also important that we
accelerate our understanding of the fundamental biology underlying the complexity of pathogen
physiology and evolution. One key approach to bridging the gap between in vivo observational
data and an understanding of the biological mechanisms is to use data from clinical samples to
generate hypotheses that can be tested subsequently using experimental evolution. By using an
iterative cycle of these kinds of approaches we have the potential to unpick the, often daunting,
complexity of real microbial populations during the infection process.
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