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Abstract

Background: Passive overconsumption is the increase in energy intake driven by the high-fat energy-dense food
environment. This can be explained in part because dietary fat has a weaker effect on satiation (i.e. process that
terminates feeding). Habitually active individuals show improved satiety (i.e. process involved in post-meal
suppression of hunger) but any improvement in satiation is unknown. Here we examined whether habitual physical
activity mitigates passive overconsumption through enhanced satiation in response to a high-fat meal.

Methods: Twenty-one non-obese individuals with high levels of physical activity (HiPA) and 19 individuals with low
levels of physical activity (LoPA) matched for body mass index (mean = 22.8 kg/m2) were recruited. Passive
overconsumption was assessed by comparing ad libitum energy intake from covertly manipulated high-fat (HFAT;
50% fat) or high-carbohydrate (HCHO; 70% carbohydrate) meals in a randomized crossover design. Habitual physical
activity was assessed using SenseWear accelerometers (SWA). Body composition, resting metabolic rate, eating
behaviour traits, fasting appetite-related peptides and hedonic food reward were also measured.

Results: In the whole sample, passive overconsumption was observed with greater energy intake at HFAT compared
to HCHO (p < 0.01), without any differences between activity groups (p > 0.05). SWA confirmed that HiPA were more
active than LoPA (p < 0.01). HiPA had lower body fat and greater fat-free mass than LoPA (p < 0.05 for both) but did
not differ in resting metabolic rate, eating behaviour traits, appetite-related peptides or food reward (p > 0.05 for all).

Conclusions: Non-obese individuals with high or low physical activity levels but matched for BMI showed similar
susceptibility to passive overconsumption when consuming an ad libitum high-fat compared to a high-carbohydrate
meal. This occurred despite increased total daily energy expenditure and improved body composition in HiPA. Greater
differences in body composition and/or physical activity levels may be required to impact on satiation.
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Background
There is abundant evidence to support the benefits of
habitual physical activity in weight management [1].
Myers et al. have recently shown significant negative
associations between objectively-measured moderate-to-
vigorous physical activity and markers of adiposity [2]. On
the other side of the energy balance equation, the contri-
bution of high-fat energy-dense foods towards obesity
cannot be ignored [3, 4]. Passive overconsumption is a
global phenomenon and originates from changes in the

food supply towards increasingly energy-dense foods, con-
tributing greatly to the obesity epidemic [5]. This is
reflected by an unintentional increase in energy intake,
arising from a failure to appropriately adjust intake in re-
sponse to energy density [6]. Control over food intake is
strongly influenced by ingestive and post-ingestive feed-
back from satiation and satiety, two separate aspects of ap-
petite that inhibit eating [7]. Satiation is the process that
terminates feeding, measured by the amount of food eaten
at a meal, and satiety is the process involved in post-meal
suppression of hunger, often measured with a preload-test
meal paradigm using preloads differing in energy content
[7]. The satiety quotient (SQ), calculated from changes in
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appetite scores relative to a meal’s energy content [8], can
also provide a measure of satiation (immediately after food
consumption) and satiety (over a specified amount of time
after food consumption) [9]. Dietary fat exerts a weaker
effect on satiation within a meal than carbohydrate or pro-
tein, and is a key driver of passive overconsumption [6].
For example, in the short-term, when eating ad libitum
and to a comfortable level of fullness, individuals consume
more calories from high-fat foods compared to high-
carbohydrate foods [10–12]. Passive overconsumption is
strongly influenced by the higher energy density of fat
relative to carbohydrate and protein (9 vs. 4 kcal/g, re-
spectively) [13]. Consequently, eating a high-fat energy-
dense diet is conducive to overconsumption and a positive
energy balance.
It has been proposed that habitual physical activity

improves the sensitivity of the appetite control system
[14, 15]. Compared to their inactive counterparts, active
individuals decrease their energy intake at an ad libitum
test meal following a high-energy preload compared to a
low-energy preload [16–19]. However, preload studies
preclude us from differentiating between satiation and sa-
tiety as separate components of appetite. Additionally, lit-
tle is known regarding the differences in hedonic
mechanisms of appetite control (i.e. food reward and pref-
erence for high-fat foods) across different physical activity
levels, although research on this topic is emerging [20].
Therefore, this study assessed the satiation response to
meals varying in fat and carbohydrate in individuals with
high levels of physical activity (HiPA) compared to those
with low levels of physical activity (LoPA). It was hypothe-
sized that compared to LoPA, HiPA would: consume less
energy in the HFAT condition relative to HCHO condi-
tion, show a greater satiation response (SQ), have a re-
duced hedonic response to high-fat foods in response to
HFAT and show lower susceptibility to overconsumption
on psychological trait measures.
The study was conducted within a multi-level experi-

mental platform assessing several dimensions of appetite
control (e.g. environmental, behavioural, psychological,
physiological, and metabolic) [21]. Thus, in addition to
measuring the response to passive overconsumption, we
sought to examine the effects of physical activity level in
several putative determinants of appetite control such as
body composition, resting metabolic rate, daily energy
expenditure, appetite-related peptides, and eating behav-
iour traits as secondary outcome measures.

Methods
Participants
Forty non-obese adults (21 HiPA and 19 LoPA) aged
18–55 years were recruited via poster and email lists at
the University of Leeds, UK (see Table 1 for participant
characteristics). Groups were matched for age, sex and

body mass index (BMI). Participants were screened for
inclusion based on the following criteria: BMI between
20.0 and 29.9 kg/m2 (to allow for a range of body com-
position), non-smoker, weight stable (±2 kg for previous
3 months), no change in physical activity over the previ-
ous 6 months, not currently dieting, no history of eating
disorders, not taking any medication known to affect
metabolism or appetite, and acceptance of the study
foods. In addition, the short-form of the validated Inter-
national Physical Activity Questionnaire [22] was used
to screen for physical activity levels, with participants
only eligible if they engaged in at least 40 min of
moderate-to-vigorous physical activity during 4 days or
more per week (HiPA), or less than 40 min of moderate-
to-vigorous physical activity during 1 day or less per
week (LoPA). These criteria were based on a previous
study that demonstrated differences in satiety between
exercisers and non-exercisers [16], and have been used
in subsequent studies [20, 23]. Habitual physical activity
was subsequently measured objectively using tri-axial
accelerometry (SenseWear Armband (SWA); BodyMe-
dia, Inc; Pittsburgh, USA). The study was approved
by the School of Psychology Ethical Committee at the
University of Leeds (15–0181). Participants provided
written informed consent prior to taking part and
were remunerated on completing the study.

Table 1 Group characteristics of HiPA and LoPA participants

HiPA LoPA p-value

n 20 (10 F) 19 (11 F)

Age (years) 29.9 ± 9.6 30.4 ± 9.3 0.851

BMI (kg/m2) 22.6 ± 1.9 23.1 ± 2.7 0.490

Total mass (kg) 68.2 ± 11.1 64.0 ± 11.9 0.264

Fat mass (kg) 13.1 ± 5.4 16.8 ± 6.0 0.056

Fat-free mass (kg) 55.0 ± 11.9 47.3 ± 8.6 0.025

Body fat (%) 19.7 ± 8.2 25.6 ± 7.1 0.018

RMR (kcal/day) 1669.8 ± 226.7 1570.9 ± 296.8 0.248

RER 0.79 ± 0.07 0.75 ± 0.06 0.061

WC (cm) 79.8 ± 5.5 81.2 ± 9.4 0.593

VO2max (mL/kg/min) 50.5 ± 7.5 34.7 ± 5.6 <0.001

Fasting glucose (mmol/L) 4.8 ± 0.4 5.0 ± 0.4a 0.221

Fasting insulin (mU/L) 7.1 ± 3.3 8.7 ± 4.5a 0.225

HOMA-IR 1.52 ± 0.74 2.00 ± 1.25a 0.166

Fasting leptin (pg/mL) 8033.4 ± 7712.2 8561.2 ± 5743.6a 0.821

Fasting ghrelin (pg/mL) 47.2 ± 26.4b 71.8 ± 58.9c 0.246
an = 16
bn = 12
cn = 10
BMI body mass index, HOMA-IR homeostasis model of risk assessment-insulin
resistance, HiPA high level of physical activity, LoPA low level of physical activity,
RER respiratory exchange ratio, RMR resting metabolic rate, VO2max maximal
aerobic capacity, WC waist circumference
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Study design
As seen in Fig. 1, following a preliminary assessment,
HiPA and LoPA participants underwent 2 laboratory
probe days in a quasi-experimental study that included a
self-determined fixed breakfast followed by an ad libitum
high-fat (HFAT) or high-carbohydrate (HCHO) lunch
meal in a randomized crossover design. For the 48 h
prior to the three testing sessions, the participants
refrained from exercise, and for the 24 h prior, did not
consume caffeine or alcohol. On each test day, the par-
ticipants arrived at the research unit between 07:00 and
09:00 following a 10-h fast (no food or drink except
water). Prior to the first meal day, the participants con-
sumed their habitual diet but were required to record
their food intake for 24 h in a diary that was provided to
them during the preliminary assessment, and replicated
their food intake prior to the subsequent meal day.
Compliance with these guidelines were verified upon ar-
rival at the laboratory for each testing session.
During the 2 meal days, measurements included sub-

jective appetite ratings, hedonic preference (explicit lik-
ing and implicit wanting) for high-fat foods, and energy
intake at breakfast and at an ad libitum HFAT or HCHO
lunch 4 h later. Breakfast was ad libitum on the first meal
day and then fixed at the same level of intake on the sec-
ond meal day. At the end of the first meal day, the partici-
pants were fitted with the SWA, which was worn for
7 days. Each meal day was separated by at least 9 days.

Preliminary assessment
Approximately 1 week before the meal days, anthropo-
metrics, body composition (fat mass and fat-free mass),
resting metabolic rate, maximal aerobic capacity, eating
behaviour traits and fasting appetite-related peptides (lep-
tin, acylated ghrelin, insulin, and glucose) were measured.

Anthropometrics and body composition
Standing height without shoes was measured using a
stadiometer (Leicester height measure, SECA; UK). Fat
mass, fat-free mass and percentage body fat were esti-
mated via air displacement plethysmography (BodPod,

Life Measurement, Inc.; USA) following the manufac-
turer’s instructions and using the Siri equation [24].
Body mass was obtained from the BodPod. Waist cir-
cumference was measured using a measuring tape at the
level of the umbilicus.

Resting metabolic rate
Resting metabolic rate (RMR) was measured with an in-
direct calorimeter fitted with a ventilated hood (GEM,
Nutren Technology Ltd; UK) following the guidelines of
The American Dietetic Association [25]. Participants
were required to remain awake but motionless in a su-
pine position for 40 min. The average of the last 30 min
of collection was used to determine RMR. Substrate oxi-
dation (respiratory exchange ratio; RER) was calculated
using standard stoichiometric equations [26].

Maximal aerobic capacity
Maximal aerobic capacity (VO2max) was determined
using a maximal incremental treadmill test based on the
modified Balke protocol [27], with the incline increasing
2% in the first minute and 1% for each additional minute
until volitional exhaustion. Expired gases (Vyntus CPX,
CareFusion; UK) and heart rate (Polar RS400, Polar;
Finland) were measured continuously during the test.
Prior to each test, the gas analyser was calibrated using
gases of known concentrations while the volume sensor
was calibrated automatically by the system at flow values
of 2 L/s and 0.2 L/s. The average of the last 20 s of the
test was considered VO2max.

Eating behaviour traits
Participants completed four validated psychometric
questionnaires to assess eating behaviour traits. The
Three-Factor Eating Questionnaire (TFEQ) measures
three dimensions of eating behaviour: cognitive control
of restraint, disinhibition of eating, and susceptibility to
hunger [28]. The Binge Eating Scale (BES) assesses the
severity of binge eating [29]. The Yale Food Addiction
Scale (YFAS) assesses addictive eating behaviour and sig-
nificant clinical impairment of distress as a result of

Fig. 1 Experimental protocol. HCHO, high-carbohydrate; HFAT, high-fat; LFPQ, Leeds Food Preference Questionnaire; RMR, resting metabolic rate;
VAS, visual analogue scales; VO2max, maximal aerobic capacity
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overeating [30]. The Control of Eating Questionnaire
(CoEQ) is designed to assess the severity and type of
food cravings experienced over the previous 7 days [31].

Appetite-related peptides
A fasting blood sample was taken by venepuncture for
the assessment of leptin, acylated ghrelin, insulin, and
glucose. Blood was drawn in EDTA, serum and fluoride
collection tubes. Aprotinin (50 μL/mL blood) was imme-
diately added to the EDTA tube for preservation of
ghrelin. Plasma and serum obtained were aliquoted and
stored at −70 °C until analysis by the Department of
Pathology Research & Development at the Leeds Teach-
ing Hospitals NHS Trust (Leeds, UK). All samples ana-
lyses were conducted in one batch. Plasma glucose was
analysed with the ADVIA Chemistry Glucose Oxidase
Concentrated assay (Siemens Healthcare Diagnostics Inc.;
UK), serum insulin with the ADVIA Centaur Insulin assay
(Siemens Healthcare Diagnostics Inc.; UK), plasma leptin
with the Quantikine Human Leptin Immunoassay ELISA
kit (R&D Systems Europe Ltd.; UK) and acylated ghrelin
with the Spi Bio Acylated Ghrelin Express Enzyme Im-
munoassay kit (Bertin Pharma; France). The range for the
coefficients of variation for intra-assay precision for glu-
cose, insulin, leptin, and acylated ghrelin are 0.2–0.3%,
3.2–4.6%, 3.0–3.3%, and 5.5–10.3%, respectively. Insulin
resistance was calculated via the homeostasis model of
risk assessment (HOMA-IR) [32].

Meal days
Test meals
Breakfast during the first meal day was ad libitum with
wholegrain cereal, semi-skimmed milk and water served
in excess of expected consumption. Coffee or tea was
also offered (175 g). Food items were weighed before
and after consumption to the nearest 0.1 g and the quan-
tities consumed by each participant were subsequently
replicated for the next meal day to make the energy con-
tent of the meal individually fixed. Energy intake was cal-
culated using energy equivalents for protein, fat and
carbohydrate of 4, 9 and 3.75 kcal/g, respectively, from the
manufacturers’ food labels. The participants were allowed
to leave the laboratory in between breakfast and lunch but
were not allowed to eat or drink any foods except water
from the bottle provided.
Lunch was presented in excess of expected consump-

tion and included HFAT or HCHO rice and yoghurt.
Water (350 g) was also offered. The ingredients of the
meals were covertly manipulated to make them HFAT
(1.99 kcal/g, 41.3% carbohydrate, 50.7% fat, 8.0% protein)
or HCHO (1.41 kcal/g, 70.8% carbohydrate, 19.5% fat,
9.7% protein) but of similar palatability achieved through
pilot testing and confirmed by the participants after
each meal (sweetness, savouriness, tastiness, pleasantness;

p > 0.05 for all). The HFAT rice dish contained tomato &
basil rice, vegetable oil, double cream, and grated cheese,
and the yoghurt contained low-fat plain yoghurt, double
cream, sugar, and maltodextrin. The HCHO rice dish con-
tained tomato & basil rice, vegetable stock, and semi-
skimmed milk, and the yoghurt contained whole-milk
plain yoghurt, sugar, and maltodextrin. Participants were
instructed to eat as little or as much as they wanted until
comfortably full. Food items were weighed before and
after consumption, and energy intake was calculated as
described above. To examine passive overconsumption
while accounting for physical activity level, the difference
in energy intake between HFAT and HCHO was calcu-
lated as a percentage of total daily energy expenditure
(TDEE) obtained from the SWA (see methods below), and
labelled passive overconsumption index.

Appetite sensations and hedonic preference for high-fat
foods
Subjective appetite sensations were assessed via visual
analogue scales for hunger and fullness before and after
each meal and at hourly intervals throughout the meal
day [33]. The satiety quotient (SQ) [8] was calculated for
each condition using energy intake at the respective
meals with the following formula:

SQ mm=kcalð Þ
¼ ðrating before eating episode‐rating after eating episodeÞ

energy of the food consumed
� 100

The Leeds Food Preference Questionnaire was admin-
istered before and after lunch to determine scores of im-
plicit wanting and explicit liking for high-fat (>50%
energy) and low-fat (<20% energy) foods matched for fa-
miliarity, sweetness, protein, and acceptability [34]. Low-
fat scores were subtracted from high-fat scores to obtain
the fat appeal bias score; thus a positive score indicates
greater liking or wanting towards high-fat compared to
low-fat foods.

Free-living physical activity and energy expenditure
Free-living physical activity and energy expenditure were
measured using the SWA in between the 2 meal days, as
previously described [2]. Briefly, the participants were
instructed to wear the armband on their non-dominant
arm over 7 days for at least 23 h per day (awake and
asleep, except for the time around showering, bathing or
swimming). Compliance was defined as 5 days of wear
(including 1 weekend day) with at least 22 h of verifiable
time per day. Proprietary algorithms available in the ac-
companying software (version 8.0 professional) were
used to calculate TDEE, PAL (physical activity level;
TDEE/basal metabolic rate), minutes spent sleeping, sed-
entary (<1.5 METs) or in light (1.5–2.9 METs), moderate
(3.0–5.9 METs) and vigorous (≥6.0 METs) physical
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activity. The SWA has shown good accuracy in estimat-
ing free-living TDEE and various intensities of physical
activity [35–37].

Statistical analysis
Data are reported as mean ± standard deviation. IBM
SPSS for Windows (version 21; USA) was used for statis-
tical analyses. We based our sample size after the study
by Long et al. [16] who demonstrated in non-obese indi-
viduals a difference in food intake between frequent ex-
ercisers and non-exercisers. In this preload-test meal
design the difference in food intake between groups was
~400 kcal with an effect size of d = 0.94. We allowed for
a similar effect size in the present study and calculated
that n = 21 per group would be sufficient to detect a dif-
ference in intake under the high-fat condition with 1-β
= 0.9 and α = 0.05, one-tailed. A total of 39 participants
were included in the final sample (HiPA: 10 males, 10 fe-
males; LoPA: 8 males, 11 females), as one male partici-
pant in HiPA was excluded due to feeling very unwell
during the second meal day. Blood samples for 36 par-
ticipants (20 HiPA and 16 LoPA) were successfully ob-
tained for glucose, insulin and leptin, and because of
technical difficulties with the assay, for 22 participants
(12 HiPA and 10 LoPA) for ghrelin. SWA data were
compliant in 36 participants (19 HiPA and 17 LoPA;
92% compliance). Independent sample t-tests were used
to determine differences in participant characteristics
between LoPA and HiPA groups. Differences in passive
overconsumption index between LoPA and HiPA groups
were examined with an independent sample t-test. Dif-
ferences in energy intake and SQ were identified with
two-way mixed-model ANOVAs, with the between-
subject factor of physical activity level (HiPA vs. LoPA)
and the within-subject factor of meal condition (HFAT vs.
HCHO). Differences in appetite sensations and fat appeal
bias were identified with three-way mixed-model ANO-
VAs, with the between-subject factor of physical activity
level (HiPA vs. LoPA) and the within-subject factors of
meal condition (HFAT vs. HCHO) and food consumption
(pre- vs. post-lunch). Statistical significance was estab-
lished at p < 0.05 and trends were considered at p ≤ 0.07.

Results
Participant characteristics
Despite there being no group differences in BMI, HiPA
had significantly lower body fat and greater fat-free mass
and VO2max than LoPA (Table 1). HiPA also had a ten-
dency for lower fat mass and greater RER than LoPA
(Table 1). There were no significant differences in eating
behaviour traits from the CoEQ, BES, TFEQ or YFAS be-
tween HiPA and LoPA (p > 0.05 for all; data not shown),
but there was a trend towards greater restraint in HiPA
(8.8 ± 5.6) compared to LoPA (6.0 ± 3.6; p = 0.07).

There were no group differences in minutes of SWA
wear time or sleep time (Table 2). HiPA and LoPA dif-
fered on objectively measured habitual physical activity
(Table 2); HiPA had significantly greater number of daily
steps, TDEE, light physical activity, moderate-to-
vigorous physical activity, PAL, and lower sedentary be-
haviour than LoPA.

Energy intake and passive overconsumption
There were no significant differences in breakfast energy
intake between groups (HiPA: 465 ± 208 kcal vs.
LoPA: 395 ± 147 kcal; p = 0.231) or between meal days
(p = 0.791). For energy intake at the HFAT and HCHO ad
libitum lunch meals (Fig. 2), there was a significant main
effect of condition (p < 0.001), such that energy intake was
higher in HFAT than HCHO, but no main effect of group
or condition by group interaction (p > 0.05 for both). Full
sample results can be found in Additional file 1. There
were no significant group differences in the passive
overconsumption index (HiPA: 12.8 ± 9.9% vs. LoPA:
16.3 ± 10.8%; p = 0.301).

Appetite ratings and hedonic preference for high-fat foods
For hunger and fullness throughout the meal day, there
was a significant effect of food consumption for both
hunger and fullness (p < 0.001), but no effect of condi-
tion, group or interactions (p > 0.05 for all; data not
shown). For SQ at lunch, there was a significant effect of
condition (p < 0.001), with SQ at HCHO being greater
than HFAT (Fig. 3), but no effect of group or condition
and group interaction (p > 0.05 for both). Full sample re-
sults can be found in Additional file 1.
Liking and wanting fat appeal bias in the hungry and

fed state did not differ between conditions, nor were
there any condition and group interactions (p > 0.05 for
all; Table 3). From pre- to post-lunch, ANOVA revealed a
significant main effect of food consumption for liking and

Table 2 Habitual physical activity from the SenseWear Armband

HiPAa LoPAb p-value

SWA wear time (min/day) 1411.9 ± 17.6 1419.2 ± 8.6 0.121

Sleep (min/day) 415.1 ± 26.6 432.1 ± 56.7 0.268

Daily steps 11146.9 ± 4258.9 8236.0 ± 2670.1 0.019

TDEE (kcal/day) 2967.8 ± 549.0 2368.3 ± 449.8 0.001

Sedentary behaviour
(min/day)

515.0 ± 126.4 642.5 ± 100.6 0.002

Light PA (min/day) 300.5 ± 83.7 243.0 ± 91.0 0.056

MVPA (min/day) 182.2 ± 67.1 102.8 ± 37.4 <0.001

PAL 1.88 ± 0.24 1.55 ± 0.13 <0.001
an = 19
bn = 17
HiPA high level of physical activity, LoPA low level of physical activity, MVPA
moderate-to-vigorous physical activity, PA physical activity, PAL physical activity
level, SWA SenseWear Armband, TDEE total daily energy expenditure
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Fig. 2 Energy intake at ad libitum high-fat (HFAT) and high-carbohydrate (HCHO) lunch meals. Mean ± standard deviation; black lines represent
individual responses; *p < 0.001 (main effect of condition HFAT vs. HCHO). HiPA, high level of physical activity; LoPA, low level of physical activity

Fig. 3 Satiety quotient (SQ) at the ad libitum high-fat (HFAT) and high-carbohydrate (HCHO) lunch meals. Mean ± standard deviation; black lines
represent individual responses; *p < 0.001 (main effect of condition HFAT vs. HCHO). HiPA, high level of physical activity; LoPA, low level of
physical activity
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wanting (p < 0.001), such that the preference for high-fat
foods relative to low-fat foods decreased from the hungry
to the fed state, but no main effect of group, condition or
interaction effects (p > 0.05 for all; Table 3). Full sample
results can be found in Additional file 1.

Discussion
This is the first study to investigate satiation and passive
overconsumption in individuals with high and low phys-
ical activity levels within a multi-level appetite control
framework. Our data revealed distinct differences in
free-living physical activity and body composition be-
tween HiPA and LoPA despite similar BMI. However,
for both HiPA and LoPA, the nutritional manipulation
of increasing dietary fat (and energy density) led to a
similar level of passive overconsumption, with greater
energy intake in HFAT compared to HCHO, without any
concurrent changes in appetite sensations or preference
for high-fat foods in the hungry and fed state.

Physical activity, body fat and appetite control
It is important to emphasise the contribution of low
levels of physical activity to the accumulation of body
fat. We have shown in a non-obese sample that HiPA
have greater fat-free mass and lower fat mass compared
to LoPA at the same BMI. This supports recent data
from our group that found that sedentary behaviour was
positively associated with fat mass, while there was a
negative association between moderate-to-vigorous
physical activity and fat mass [2]. Over time, there exists
a dose–response relationship between physical activity
level and body weight, such that low levels of physical
activity result in greater gains in body weight (i.e. body
fat) [38]. An accumulation of body fat leads to insulin
resistance and is proposed to be detrimental to satiety
signalling [39, 40]. In inactive overweight and obese indi-
viduals, exercise training reduces fat mass [9, 41] and also

alters the release of appetite-related peptides [19, 42], im-
proves insulin and leptin sensitivity [43–45], and enhances
satiety (measured by the SQ) over several hours after a
meal [9]. Thus, regular physical activity could sensitize the
appetite control system by driving energy intake (via
an increase in resting metabolic rate and energy ex-
penditure) but concomitantly increase postprandial
sensations of satiety [46].
This study suggests that, in non-obese individuals,

higher levels of habitual physical activity do not mitigate
the passive overconsumption response when exposed to
a high-fat meal. Interestingly, previous studies conducted
in non-obese participants have shown enhanced satiety
at higher levels of habitual physical activity without large
differences in group characteristics in terms of BMI,
eating behaviour traits and insulin sensitivity [16, 17].
Larger disturbances in the putative determinants of appe-
tite control, including body composition, leptin, ghrelin,
insulin sensitivity, control over eating, disinhibition, and
food reward may be required to affect satiation and result
in overconsumption. These differences in findings empha-
sise the importance of distinguishing between separate
appetite-related processes when examining the impact of
physical activity on food intake. Based on these observa-
tions, we can speculate that habitual physical activity may
differentially affect the processes of satiation and satiety.
While higher levels of habitual physical activity ap-
pear to enhance post-prandial satiety responsiveness,
it is possible that factors other than physical activity
(e.g. meal characteristics and cognitive factors) have a
stronger influence on satiation. That said, it is plausible
that a greater accumulation of body fat and/or lower
levels of physical activity than seen in the present
study may be necessary to dysregulate satiation and
impact on meal size.

Physical activity and passive overconsumption
The passive overconsumption paradigm used in this
study achieved several outcomes. Firstly, increasing the
fat content (and energy density) of a food led to an in-
crease in energy intake. Secondly, non-obese individuals
with similar BMI but differing in levels of physical activ-
ity have similar satiation response to meals varying in
fat. Thirdly, SQ differed across the HFAT and HCHO
conditions. This demonstrates that per calorie con-
sumed, fat produced a smaller suppression of hunger at
the test meal than carbohydrate. These data corroborate
previous studies on passive overconsumption via weak
satiation and further illustrate the importance of redu-
cing dietary fat (and energy density) to avoid positive en-
ergy balance and ultimately weight gain [6, 13]. Not to
undermine the contribution of regular physical activity
to energy balance, as it is significant as discussed above,
but it exemplifies that diet and activity go hand in hand.

Table 3 Liking and wanting fat appeal bias scores pre- and
post-lunch, and change from pre- to post-lunch

HFAT HCHO

HiPA LoPA HiPA LoPA

Pre-lunch

Liking 3.5 ± 17.1 7.6 ± 16.1 1.6 ± 19.2 5.8 ± 14.5

Wanting 10.2 ± 42.7 21.7 ± 30.5 12.8 ± 40.3 22.2 ± 28.9

Post-lunch

Liking −5.3 ± 13.1 −2.8 ± 16.5 −3.7 ± 14.0 −0.6 ± 13.3

Wanting −13.2 ± 31.2 −7.1 ± 30.5 −17.5 ± 33.0 −2.4 ± 31.6

Change*

Liking −8.8 ± 14.5 −10.4 ± 12.5 −5.2 ± 18.0 −6.4 ± 13.2

Wanting −23.4 ± 39.3 −28.8 ± 28.1 −30.3 ± 34.9 −24.7 ± 29.3

*p < 0.001 (main effect of food consumption pre- vs. post-lunch)
HiPA high level of physical activity, LoPA low level of physical activity

Beaulieu et al. International Journal of Behavioral Nutrition and Physical Activity  (2017) 14:14 Page 7 of 10



Indeed, evidence suggests that higher levels of energy
expenditure (i.e. habitual physical activity) are beneficial
for the regulation of energy balance [14]. A higher en-
ergy flux is also helpful in mitigating episodes of over-
consumption and fluctuations in energy intake [47, 48].
For example, Murgatroyd et al. showed that imposing
sedentary behaviour and an ad libitum diet containing
60% energy from fat resulted in a daily positive energy
balance of approximately 1200 kcal more than a day
with imposed exercise [49]. In our sample, free-living
TDEE as measured by SWA was significantly greater in
HiPA than LoPA (600 kcal more per day). Even when ac-
counting for these differences in TDEE with the PO index,
the response to passive overconsumption did not differ
(13 vs. 16% of TDEE, respectively). This may have been
because energy intake was only measured at one meal.
Previously, Caudwell et al. found that after a 12-week

exercise-training intervention (5 days per week, 500 kcal
per session), overweight and obese individuals signifi-
cantly lowered energy intake at a high-energy-density
dinner test meal (~4 kcal/g, >50% energy from fat) but
not at a low-energy-density dinner test meal (~2.4 kcal/
g, <25% energy from fat) [50]. Body fat status may be an
important contributor to passive overconsumption as
differences in energy intake between lean and obese
males have been observed at a test meal following a
high-fat high-energy preload compared to a low-fat low-
energy preload, where the lean group subsequently com-
pensated for the additional energy from fat whereas the
obese group did not [40]. Furthermore, studies comparing
appetite control between active and inactive individuals
have measured satiety using preload-test meal paradigms,
which led to the proposition in a recent systematic review
that physically active individuals have an increased sensi-
tivity to the energy density of foods [15]. In light of the re-
sults of the current study, in non-obese individuals, it is
possible that this effect is attributable to mechanisms me-
diating satiety but not satiation [15].
In terms of food reward, HiPA and LoPA did not differ

in their hedonic preference for high-fat foods (liking and
wanting fat appeal bias score) when hungry or after eat-
ing the HFAT and HCHO meals. However, a recent
study showed differences in other markers of liking and
wanting using the Leeds Food Preference Questionnaire
between active and inactive males; but the 2 groups were
not matched for BMI and differed much more in body
composition than the current study [20]. Our data
showed that HiPA had a tendency for greater restraint
score than LoPA, which suggests more cognitive restric-
tion of food intake. Regardless, both groups behaved
similarly at the HFAT and HCHO test meals, highlight-
ing the strong environmental influence of dietary fat on
energy intake. Independent effects of fat and energy
density in passive overconsumption have been observed.

It appears that energy density is a stronger driver of pas-
sive overconsumption than fat itself because when the
energy density of high-fat and high-carbohydrate
meals are matched, energy intake is similar [13, 51]. In
fact, Hopkins et al. have recently shown independent
and positive associations between energy expenditure
(via resting metabolic rate) and energy density with
daily energy intake [52].

Limitations
There are a number of limitations to take into account
in the present study. Firstly, passive overconsumption
was measured using a single meal and limits the ex-
trapolation of findings beyond that meal. Any compensa-
tion in the post-ingestive period remains unknown. As
previous studies reported differences in satiety between
active and inactive individuals [16–19], an effect might
have been observed in the hours after consuming the
HFAT meal, but this was outside the scope of the
present study and needs to be addressed in future stud-
ies. Secondly, while objective measurement of physical
activity was taken after the participants were included in
the study and confirmed distinct physical activity levels
between HiPA and LoPA, classification of the groups
was based on the IPAQ (self-report) and might have
confounded the groups. Other potential confounders not
taken into account that may have also affected the re-
sults include levels of fat mass, fat-free mass, and dietary
restraint. Thirdly, the relatively small number of subjects
and large inter-individual variability in responses may have
resulted in the study being underpowered to detect signifi-
cant differences. Furthermore, while it was attempted to
match the groups by sex, the final sample included a
slightly greater proportion of women in the LoPA group
compared to the HiPA group (57% vs. 50%, respectively),
which may account for the some of the differences in
body composition observed. However, when sex was
added as a covariate, the significant differences fat-
free mass (p = 0.005) and percentage body fat (p = 0.015)
remained, as well as the trend towards a difference in
fat mass (p = 0.068).

Conclusions
This study provides evidence to support the beneficial
effects of high levels of habitual moderate-to-vigorous
physical activity (≥4 days/week) on body composition
but did not reveal differences in passive overconsump-
tion between non-obese individuals with high and low
levels of physical activity matched for BMI. This may
help to clarify the differential role of physical activity
level in the distinct processes of satiation and satiety.
While satiety appears to be enhanced with higher levels
of physical activity [15], it is likely that other factors have
a stronger influence on satiation. However, it still
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remains unknown if the lack of observed effect on
satiation in LoPA extends to individuals with a greater
accumulation of body fat (obese). Nevertheless, in non-
obese individuals, our data suggest that a high-fat meal
overpowers any physiologic or behavioural influence of
physical activity level on eating behaviour, highlighting
the importance of a healthy diet in maintaining adequate
appetite control and body weight in an obesogenic food
environment.
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