This is a repository copy of *Optimized organometal halide perovskite solar cell fabrication through control of nanoparticle crystal patterning*.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/112212/

Version: Accepted Version

Article:

https://doi.org/10.1039/C6TC05189H

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
Optimized organometal halide perovskite solar cell fabrication through control of nanoparticle crystal patterning

D. K. Mohamada, B. G. Freestonea, R. Mastersb, M. Reinhardtc, S. Canningd, C. Rodenburgb and D. G. Lidzeya*

The addition of Hydrogen Iodide to organometal halide perovskite precursor solution at 1% by volume leads to a significant enhancement in average power conversion efficiency (PCE) in inverted solar cell devices, increasing from 7.7% to 11.9% and 6.1% to 10.0% in spin-cast and spray-cast devices respectively. We directly attribute this improved device performance to increased thin-film surface coverage coupled with higher optical density. X-ray diffraction studies also reveal that the HI additive facilitates full conversion of the precursor material to the crystalline perovskite phase. From solution studies, we relate these changes in device performance to the presence and distribution of precursor aggregates that effectively pattern the formation of perovskite crystals during film formation.

Organometal halide perovskites are fascinating materials with great implications for optoelectronics. Their combination of high charge-carrier mobility, efficient light absorption and compatibility with low-temperature solution-based processes makes them particularly suited to photovoltaic applications in state-of-the-art devices.

Conventionally, PSC active layers are deposited from a precursor solution of that is most commonly composed of a blend of lead halides and methyl ammonium halides. After casting the precursor solution to create a thin-film, thermal annealing results in the formation of a polycrystalline perovskite crystal film. Managing this process is key to producing high-efficiency PSCs as their performance is very sensitive to active layer microstructure and crystal purity. In this study, we focus on the well characterised PbCl\textsubscript{2}:MAI precursor ink formulation which is used in the single-step deposition of MAPb\textsubscript{1-x}Cl\textsubscript{x} perovskite thin-films in planar PSC device architectures11,12. Critically, we explore two different techniques to deposit the PbCl\textsubscript{2}:MAI precursor: spin-coating and spray-coating. While spin-coating has been the method of choice to fabricate PSCs, there is growing interest in the use of spray-coating13-16 as it presents a ready means for possible manufacture scale-up17. Through careful optimisation of PSC fabrication conditions, we show addition of 1% by volume (v%) of HI to the perovskite precursor solution has a marked positive effect on device behaviour; an observation that applies to PSCs prepared both by spin-casting and spray-casting. Previous work by Heo et al.2 demonstrated that by adding HI at 9.1 v% to a 1:1 PbI\textsubscript{2}:MAI precursor ink facilitates single-step deposition of a continuous MAPbI\textsubscript{3} film without pinholes or impurities, leading to devices having a remarkably high PCE (17.2% average). These authors attributed such effects to the enhanced solubility of MAPbI\textsubscript{3} that favours the growth of a continuous perovskite crystal during the film formation process. Furthermore, it was suggested that the HI facilitated a recovery of decomposed MAI, resulting in the complete consumption of PbI\textsubscript{2} and thus the formation of a pure perovskite crystal.

Rather than the rapid perovskite crystal formation during film casting typical of single halide systems, mixed halide ink systems rely on extended thermal treatments to convert the precursor to the final perovskite form18,19. In such systems, the crystal formation dynamics are distinctly different and thus require another set of processing conditions for the fabrication of efficient PSCs. In order to better understand our results, we employ thin-film absorption, PL emission, scanning electron microscopy (SEM) and X-ray diffraction (XRD) to explore film structure. From our XRD patterns, we conclude that when added at 1% by volume, the HI additive facilitates full conversion of precursor material leading to a pure crystalline...
perovskite phase. In addition, our measurements also suggest an increased lattice spacing that is consistent with an observed red-shift in the onset of absorption and PL. SEM images and optical absorption spectra confirm that thin-films processed from the additive-containing precursor solutions show enhanced surface coverage which further enhances PCE. At higher HI concentrations however, we observe a reduction in device efficiency that appears correlated with the formation of large, disconnected crystallites and poor film coverage. Our measurements confirm therefore that precise control over the composition of the precursor ink is necessary to optimise the structure and performance of the final perovskite film.

Results and Discussion

We fabricated a series of devices based on the generic structure ITO/PEDOT-PSS/MA$\text{PbI}_{3-x}\text{Cl}_x$/LiF/Al, where the active perovskite film was deposited from a MAIPbCl_3 (2.9:1) precursor solution in DMF containing HI at 1 v%, with films being subsequently annealed at 90ºC for 90 minutes. Here, both spin-coating and spray-coating were used to deposit MAIPbCl_3 precursor – see Experimental Methods for full formulation and device fabrication details. We summarise performance metrics of devices containing a spin-cast active layer in Table 1. It can be seen that by adding HI to the precursor ink, there is a marked enhancement of device performance in both spin-cast and spray-cast devices, with PCE increasing from 7.7% to 11.9% and 6.1% to 10.0% respectively. This is exemplified in Fig. 1(a) and (b) where optimum HI additive concentration for both device fabrication methods, although it is clear that the spin-cast devices have higher peak and average efficiency in general than the analogous spray-cast devices. This disparity arises from reduced active-layer uniformity and the fact that these films require thicker layers of PCBM to effectively planarise them.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Spin-cast No Additive</th>
<th>Spin-cast 1 v% HI Additive</th>
<th>Spray-cast No Additive</th>
<th>Spray-cast 1 v% HI Additive</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCE (%)</td>
<td>6.7 (7.7)</td>
<td>12.5 (13.8)</td>
<td>6.1 (8.7)</td>
<td>10.0 (11.4)</td>
</tr>
<tr>
<td>FF (%)</td>
<td>± 0.9</td>
<td>± 0.9</td>
<td>± 1.5</td>
<td>± 1.2</td>
</tr>
<tr>
<td>J_{sc} (mAcm$^{-2}$)</td>
<td>± 8.8</td>
<td>± 3.6</td>
<td>± 2.2</td>
<td>± 3.3</td>
</tr>
<tr>
<td>V_{oc} (V)</td>
<td>0.82 (0.88)</td>
<td>0.91 (0.97)</td>
<td>0.73 (0.88)</td>
<td>0.88 (0.93)</td>
</tr>
<tr>
<td>J_{sc} (%)</td>
<td>± 0.07</td>
<td>± 0.03</td>
<td>± 0.10</td>
<td>± 0.06</td>
</tr>
</tbody>
</table>

Table 1 – Performance metrics of PSC devices measured under 1 Sun simulated AM1.5G irradiation after 10 mins light soaking. Average values are expressed in bold, champion metrics in parenthesis and the spread in metrics is represented by the standard deviation.

In a 1 v% HI precursor film we find that the majority of this efficiency improvement results directly from an increase in the J_{sc}, although small increases in V_{oc} and FF are observed as well. We have in fact explored a range of HI concentrations as shown in Fig. 1(d). Here it is evident that 1 v% represents an optimum HI additive concentration for both device fabrication methods, although it is clear that the spin-cast devices have higher peak and average efficiency in general than the analogous spray-cast devices. This disparity arises from reduced active-layer uniformity and the fact that these films require thicker layers of PCBM to effectively planarise them.

Above an optimum 1 v% HI concentration, we find a dramatic roll-off in PSC device performance that results from significant reductions in FF, J_{sc} and V_{oc} (see Fig. 3 and 4). To explore
the origin of this reduction, we used white light reflectivity microscopy to characterise PEDOT:PSS/MAPbI₃-xClₓ thin-film films (post anneal) that were cast using different initial concentrations of HI (see Fig. 2(a) to (d)). Here, it can be set that films containing 0 v% and 1 v% of HI appear relatively compact, however as the HI concentration is increased, the film is increasingly characterised by large, disconnected crystallites having poor surface coverage. This reduction in surface coverage is correlated with a progressive reduction in thin-film optical density as shown in Fig. S5(a) and (b), suggesting that reduced light harvesting ability plays a role in reducing device efficiency. It is apparent however that the addition of 1 v% HI to the precursor solution enhances the performance of devices fabricated by spin- and spray-casting, and underlines the importance of this finding as a transferrable method for controlling perovskite crystallisation dynamics and promoting high PCE.

To further explore the role of the HI precursor additive on modifying perovskite film-structure, we have used scanning electron microscopy (SEM) to explore MAPbI₃-xClₓ/PEDOT:PSS films at higher resolution as shown in Fig. 3. Here, we compare films cast from solutions without (Fig. 3 (a), (c), (e)) and with a 1% HI additive (Fig. 3 (b), (d), (f)) at comparable thickness (see Table S1). In all figures, the darkest areas correspond to gaps in the film that are most clearly identified in the back-scattered electron (BSE) images as shown in Fig. 3 (a) and (b). From the latter it is immediately clear that the film cast from the precursor containing the 1 v% HI additive forms a more continuous layer and has a significantly increased surface coverage, being 93.8% (no additive) and 99.7% with 1 v% HI additive. We believe this increase in film coverage is primarily responsible for the observed increase in PSC photocurrent due to the enhanced optical absorption in these films. However it is also likely that in devices processed without the HI additive, uncovered regions of PEDOT:PSS form a Schottky junction with the overlying PCBM with a V_OC ~ 0.5V leading to an overall reduction in cell V_OC. The SE images (see Fig. 3(c) to (f), reveal the individual grains from which we determine the average size of the crystallites in films cast from additive-free precursor inks is 36% smaller than films cast without the HI additive (527 ± 20 and 385 ± 19 nm respectively). These findings are in agreement with morphological studies of such samples. From the lower magnification images (Fig. 3(c) and (d)) it is apparent that films cast from the precursor containing the HI additive show strong local morphology variations and contain two distinctly different morphologies: (1) rounded and (2) elongated crystallites. The latter is absent in the film cast from the precursor without the HI additive. In the higher magnification images of both materials (Fig. 3 (e) and (f)) it becomes clear that smaller grains are located on top of rather larger grains. All of the above observations are consistent with a model proposed by Williams et al., that explains the morphological variations in MAPbI₃-xClₓ films as a result of templated topotactic self-assembly in the presence of chloride. In this model the larger rectangular structures in Fig. 3(d) and 3(f) are suggested to result from the rapid growth of MAPbCl₃ present only in films cast from fresh solutions containing PbCl₂, linked to subtle variations in chloride concentration due to aggregation in the solution. We note the absence of such rectangular features in films cast from solutions without the HI additive (Fig. 3(c) and (e)) and speculate that it is related to the nature of aggregates in the additive-free solutions as discussed further below. Thus, the addition of HI to the precursor solution has a strong influence on the perovskite crystallisation dynamics and thus the resultant morphology of the converted perovskite thin-film.

In Fig. 4(a) we plot the optical absorption spectra of spin-cast perovskite films cast with and without the HI additive (1%) deposited onto an ITO/PEDOT:PSS substrate. It is found that there is a clear increase in optical density (by 6%) across the entire spectrum resulting from the addition of HI to the precursor solution. Given that these films are of comparable thicknesses, this increase in absorption may be accounted for...
Finally, we turn our attention to the effect of HI in the context of solution engineering and present the results of these studies in Fig. 6. After ink preparation, we find that perovskite precursors appear turbid indicating the presence of unsolvated precursor materials. In Figure 6(a) to (c) we demonstrate that by adding small quantities of HI, we effectively eliminate these suspended particles leading to the formation of a clear solution. This observation is supported by the dramatic reduction in dynamic light scattering (DLS) count rate after HI addition. This measurement confirms that on addition of HI, there is (i) a large reduction in solution turbidity, and (ii) a change in the average particle size. Indeed, without the presence of HI, the solution contains a significant population of micron-sized crystallites (1370 ± 480 nm). On addition of 1 v% HI, these are apparently absent, and are replaced by a population of nanoparticles having a diameter of 1.7 ± 0.4 nm (see Fig 6(a) and (b)). We note that Williams et al. have also detected the presence of 40 nm diameter aggregates in this precursor ink formulation. Note that owing to difficulties associated with effectively separating the aggregates from their parent solutions without significantly altering them, we restrict our investigation to comparative studies of precursors in solution as shown in Fig. 6. Given the large disparity between MAI and PbCl$_2$ material solubility (see Fig. 6(e) and (f)), we suspect that the suspended particles are in fact undissolved PbCl$_2$ microcrystals. We find that mixing the precursors leads to a large increase in PbCl$_2$ solubility and gives the ink a yellow appearance implying the formation of a lead polyhalide-based soft coordination complex with corresponding solubility and gives a result also consistent with our previous work.

In Fig. 5, we present XRD patterns recorded from films cast from precursor solutions both with and without a 1 v% HI additive onto an ITO/PEDOT:PSS surface. An uncoated ITO/PEDOT:PSS control sample is also shown for reference, as data. Interestingly, the addition of HI, there is (i) a large reduction in solution turbidity, and (ii) a change in the average particle size. Indeed, without the presence of HI, the solution contains a significant population of micron-sized crystallites (1370 ± 480 nm). On addition of 1 v% HI, these are apparently absent, and are replaced by a population of nanoparticles having a diameter of 1.7 ± 0.4 nm (see Fig 6(a) and (b)). We note that Williams et al. have also detected the presence of 40 nm diameter aggregates in this precursor ink formulation. Note that owing to difficulties associated with effectively separating the aggregates from their parent solutions without significantly altering them, we restrict our investigation to comparative studies of precursors in solution as shown in Fig. 6. Given the large disparity between MAI and PbCl$_2$ material solubility (see Fig. 6(e) and (f)), we suspect that the suspended particles are in fact undissolved PbCl$_2$ microcrystals. We find that mixing the precursors leads to a large increase in PbCl$_2$ solubility and gives the ink a yellow appearance implying the formation of a lead polyhalide-based soft coordination complex with corresponding solubility and gives a result also consistent with our previous work.
just above its solubility limit in DMF (40 mg/ml) appears328 to solvate all the previously undissolved PbCl\textsubscript{2} solid. We find329 this solvation process is accompanied by a colour change of330 solution from colourless to yellow, indicative of the presence331 of a mixed lead-halide coordination compound.

\begin{itemize}
\item[(d)] shows pure MAI
\item[(e)] after 1% HI addition and further mixing, Part (d) shows the pure MAI and PbCl\textsubscript{2} precursors before solvent is added, (e) immediately after DMF solvent addition at 312 and 188 mg/ml respectively, and (f) after extended vortex mixing.
\item[(g)] shows pure PbCl\textsubscript{2} in DMF at 40 mg/ml after extended mixing, (h) immediately after 366 2% HI addition, and (i) after further vortex mixing. DMF containing 1% HI is shown for comparison in part (j).
\end{itemize}

![Image 43x360 to 292x709]

Fig. 6 – The effect of HI addition on DMF-based perovskite precursor solutions. Part (a) 2.9:1.0 MAI:PbCl\textsubscript{2} precursor ink at 500 g/l before vortex mixing, (b) after 2 mins vortex mixing and (c) after 1% HI addition and further mixing. Part (d) shows the pure MAI and PbCl\textsubscript{2} precursors before solvent is added, (e) immediately after DMF solvent addition at 312 and 188 mg/ml respectively, and (f) after extended vortex mixing. Part (g) shows pure PbCl\textsubscript{2} in DMF at 40 mg/ml after extended mixing, (h) immediately after 2% HI addition, and (i) after further vortex mixing. DMF containing 1% HI is shown for comparison in part (j).

We propose therefore that by adding HI to our mixed precursor inks, we are able to shift the dynamic solvability from undissolved PbCl\textsubscript{2} microcrystallites towards a fully coordinated mixed halide complex that is readily solvated330. The position of this equilibrium is expected to influence crystal microstructure through the templated self-assembly process331 directed by formation of the chloride-rich (MAPbCl\textsubscript{3})\textsubscript{3-x} intermediate phase332 or through the size and population333 of PbCl\textsubscript{2}, heterogeneous nucleation sites334. Both of these species have been implicated in the dynamics of film formation which is supposed to extend as far back as the solution state up to335 deposition336. In films prepared from inks without the addition of a small volume of a hydrogen iodide additive to the precursor solution, and find that devices cast from a precursor containing 1 v% HI have enhanced power conversion efficiency (13.8% champion power conversion efficiency, (12.5 ± 0.9)% average efficiency). We propose that the HI additive has a strong effect on PbCl\textsubscript{2} solubility and therefore regulates the size and population of aggregates which are implicated in the structural templating occurring early in the film-formation process. We find a small amount (1 v%) of HI leads to the dissolution of large PbCl\textsubscript{2} microcrystals and drives

\section*{Conclusion}

We have fabricated MAPb\textsubscript{1-x}Cl\textsubscript{x} photovoltaic devices based on an inverted architecture, and have explored the effect of the addition of a small volume of a hydrogen iodide additive to the precursor solution that is used to cast the device active layer. We fabricate a range of devices in which various quantities of HI were added to the precursor solution, and find that devices cast from a precursor containing 1 v% HI have enhanced power conversion efficiency (13.8% champion power conversion efficiency, (12.5 ± 0.9)% average efficiency). We propose that the HI additive has a strong effect on PbCl\textsubscript{2} solubility and therefore regulates the size and population of aggregates which are implicated in the structural templating occurring early in the film formation process. We find a small amount (1 v%) of HI leads to the dissolution of large PbCl\textsubscript{2} microcrystals and drives

\section*{Experimental}

We have fabricated MAPb\textsubscript{1-x}Cl\textsubscript{x} photovoltaic devices based on an inverted architecture, and have explored the effect of the addition of a small volume of a hydrogen iodide additive to the precursor solution that is used to cast the device active layer. We fabricate a range of devices in which various quantities of HI were added to the precursor solution, and find that devices cast from a precursor containing 1 v% HI have enhanced power conversion efficiency (13.8% champion power conversion efficiency, (12.5 ± 0.9)% average efficiency). We propose that the HI additive has a strong effect on PbCl\textsubscript{2} solubility and therefore regulates the size and population of aggregates which are implicated in the structural templating occurring early in the film formation process. We find a small amount (1 v%) of HI leads to the dissolution of large PbCl\textsubscript{2} microcrystals and drives

\section*{Photovoltaic device fabrication}

We have fabricated MAPb\textsubscript{1-x}Cl\textsubscript{x} photovoltaic devices based on an inverted architecture, and have explored the effect of the addition of a small volume of a hydrogen iodide additive to the precursor solution that is used to cast the device active layer. We fabricate a range of devices in which various quantities of HI were added to the precursor solution, and find that devices cast from a precursor containing 1 v% HI have enhanced power conversion efficiency (13.8% champion power conversion efficiency, (12.5 ± 0.9)% average efficiency). We propose that the HI additive has a strong effect on PbCl\textsubscript{2} solubility and therefore regulates the size and population of aggregates which are implicated in the structural templating occurring early in the film formation process. We find a small amount (1 v%) of HI leads to the dissolution of large PbCl\textsubscript{2} microcrystals and drives
the dynamic solution equilibria toward the formation of fully ordered lead-halide coordination complexes which has a marked positive effect on device efficiency; an observation that is replicated in devices that are prepared by spin-casting and spray-casting. We have used XRD to study the structure of the perovskite films, and conclude that the additive facilitates full conversion of precursor material leading to a pure crystalline perovskite phase. In addition, we see increased lattice spacing and corresponding red-shift absorption and PL onsets. SEM images and optical absorption spectra confirm that thin-films processed from precursor solutions containing 1 v% HI additive have enhanced surface coverage which further enhances PCE.

Materials and Methods

Solar Cell Fabrication

ITO substrates (20 Ω sq−1) purchased from Ossila Ltd were cleaned by sonication in Helmanex solution, deionized water, then isopropyl alcohol (IPA), then dried with compressed nitrogen and ozone-plasma treated before use. To deposit PEDOT:PSS by spin-coating, Clevios PVP AI4083 was filtered through a 0.45 µm PVDF syringe filter and then cast at 5000 rpm to form a 35±2 nm thick layer that was annealed in air at 120 °C for 10 minutes prior to use. For spray-coating (USI prism 300), the ultra-sonic tip was held at 40 mm above the substrate surface and vibrated at kHz while fluid from a coating reservoir above was fed to the tip. The ink droplets created were directed to the surface using a carrier gas whose pressure was set to 10 psi giving a wide spray pattern (ca 50 mm). At the same time, the spray head was robotically scanned a distance of 150 mm over ITO devices in a single pass. We also found that multiple pass spray-routines create poor quality films as they tend to re-dissolve the underlying films. Unlike airbrush techniques in which droplets contain very little solvent when they reach the surface, ultrasonic spray-cast films consist of droplets which coalesce to form a fully wet film before drying. Note that the width of the spray-pattern is significantly larger than that of the individual device pixels (each having a size (2 x 2) mm²), and thus significant heterogeneity across the spray-mist pattern is inevitable. The sample surface is not anticipated. Substrates were allowed to dry on a hotplate to ensure stable elevated temperatures in order to control the wet film drying rate. Perovskite precursor solutions were prepared from methyl ammonium iodide (MAI, purchased from Ossila Ltd), hydrogen iodide (Sigma 210021) and PbCl₂ (Sigma 203572) and used as received. Spin-coated samples were cast at a spin-speed of 4000 rpm from a 500 mg ml⁻¹ solution containing 0 to 4 v% HI in DMF (Sigma 227056). Prior to film deposition, the substrate and casting solution were held at a temperature of 90 °C and 70 °C respectively to enable rapid drying of the films and to optimize device performance. Spray-cast perovskite precursor films were deposited from a 200 mg ml⁻¹ 2.9:1.0 MAI:PbCl₂ solution in DMF containing 0 to 4 v% HI (solution at ambient temperature) onto substrates held at 47 °C with a head-speed of 220 mm s⁻¹. In all cases, film thickness was determined from post-annealed films at five locations using profilometry. Spray-coated and spin-coated film thickness was adjusted to be within 20% of each other however the addition of HI was seen to modulate this (see Table S1). Lab humidity was controlled with an air conditioning system and a desiccant dehumidifier (Humidity control systems Ltd DC31 T16).

The perovskite films were spin-coated with a PCE50BM electron-extraction layer (95% purity supplied by Ossila Ltd). Spin-cast films were deposited in a nitrogen-filled glove-box. PCBM solutions for spin-casting were prepared at 50 mg ml⁻¹ or 70 mg ml⁻¹ in chlorobenzene, creating 150 and 200 nm thick films respectively. Prior to deposition, solutions were heated to 70 °C for 1 hour, allowed to cool and then filtered through a 0.45 µm PTFE syringe filter. A cathode of LiF and aluminium was thermally evaporated at 2 nm at 0.1 Å s⁻¹ and 100 nm at 1 Å s⁻¹ respectively within a vacuum chamber held at ca 10⁻⁶ mbar. Devices were encapsulated using a UV-treated epoxy (supplied by Ossila Ltd) before testing.

Steady-state photoluminescence was performed using a Laser- LC CU CW 450 nm diode laser rated at 1mW with a power density of ~0.1 W/cm² on the sample. All photoluminescence spectroscopy was performed under vacuum (<10⁻⁵ mBar). UV-vis measurements were performed under ambient conditions using UV-VIS-NIR light source (Ocean Optics – DH-2000-BAL), collection fibre optic cables (Ocean Optics) and spectrometer (Ocean Optics – HR2000+ES).

X-ray diffraction

Thin-film X-ray diffraction was performed on perovskite/PEDOT:PSS/ITO glass samples using a Bruker D8 diffractometer using Cu-Kα radiation in 0.05° increments over the Bragg angle range of 10–50°.

SEM

Samples were imaged in a FEI Nova NanoSEM 450, operating at a primary beam energy of 5 keV. The through-lens detector (TLD) was set to secondary electron mode in order to generate images that best emphasised any holes in the film. For crystallite size measurements the TLD was set to backscattered electron imaging mode in order to generate images that best emphasised any holes in the film. For crystallite size measurements the TLD was set to secondary electron mode in order to generate images that best highlighted grain boundaries.

Dynamic Light Scattering (DLS).

Perovskite precursor ink solutions were prepared under representative conditions and analysed using a Malvern Zetasizer NanoZS instrument. Data were averaged over three consecutive measurements of ten runs each. Measurements were made at 25°C.

Solar cell characterisation

Device performance was tested under ambient conditions using a Newport 92251A-1000 solar simulator (AM1.5). An NREL certified silicon reference cell was used to calibrate the integrated light-output from the simulator to 100 mW cm⁻² at 25
"C. Here, an aperture mask (0.025 cm2) was placed over a solar cell to accurately define the device area and minimize absorption of stray light. PCEs were determined for a cell initially held at +1 V, swept to -1 V and back to +1V a rate of 0.4 V s$^{-1}$. Performance metrics are quoted from the portion of J-V sweep as the bias is swept from +1 to -1V.

Acknowledgements

This work was funded by the UK Engineering and Physical Sciences Research Council via grants EP/M025020/1 ‘Improved resolution mapping of performance and degradation mechanisms in printable photovoltaic devices’, EP/J01736/1 ‘Supersolar Solar Energy Hub’ and EP/M014797/1 ‘Improved Understanding, Development and Optimisation of Perovskite based Solar Cells’ and EP/N008065/1 ‘SEE MORE PROPERTIES’. B.F. thanks the EPSRC for the provision of a studentship via the ‘Centre for Doctoral Training in New and Sustainable PV’ (EP/L01551X/1).

References

34. E. Mosconi, J. M. Azpiroz and F. De Angelis, Chemistry of Materials, 2015, 27, 4885-4892.