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Signature of nonlinear damping in geometric structure of a nonequilibrium process
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We investigate the effect of nonlinear interaction on the geometric structure of a nonequilibrium process.
Specifically, by considering a driven-dissipative system where a stochastic variable x is damped either linearly
(∝x) or nonlinearly (∝x3) while driven by a white noise, we compute the time-dependent probability density
functions (PDFs) during the relaxation towards equilibrium from an initial nonequilibrium state. From these
PDFs, we quantify the information change by the information length L, which is the total number of statistically
distinguishable states which the system passes through from the initial state to the final state. By exploiting
different initial PDFs and the strength D of the white-noise forcing, we show that for a linear system, L increases
essentially linearly with an initial mean value y0 of x as L ∝ y0, demonstrating the preservation of a linear
geometry. In comparison, in the case of a cubic damping, L has a power-law scaling as L ∝ ym

0 , with the
exponent m depending on D and the width of the initial PDF. The rate at which information changes also exhibits
a robust power-law scaling with time for the cubic damping.
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I. INTRODUCTION

Many important phenomena in nature are stochastic and
exhibit seemingly complex temporal behavior, nevertheless
often manifesting a remarkable universal property of the
emergence of order (the so-called self-organization) [1–4]. For
a proper understanding of such phenomena, it is essential to
utilize a probabilistic methodology such as a (time-dependent)
probability density function (PDF). Furthermore, in order
to compare different systems, it is invaluable to utilize a
measure which is independent of any particular realization
of a system. This can very conveniently be achieved by using
a geometric measure in a statistical space by assigning a metric
between PDFs. There has in fact been a significant interest in
defining a metric on probability (e.g., [5–10]) from theoretical
and practical considerations. For instance, the Wasserstein
metric which provides an exact solution to the Fokker-Planck
equation [11] for a gradient flow subject to the minimization
of the energy functional (the sum of entropy and potential
energy) [6] has been extensively used in the optimal transport
problem [9]. Unlike the Wasserstein metric which has the unit
of a physical length, a statistical distance based on the Fisher
metric [12,13] is dimensionless and represents the number of
distinguishable states between two PDFs. For example, for
a Gaussian distribution, statistically distinguishable states are
determined by the standard deviation, which increases with the
level of fluctuations; two PDFs which have the same standard
deviation and differ in peak positions by less than one standard
deviation are statistically indistinguishable. Previously, this
fluctuation-based metric has been used mostly in equilibrium
or near equilibrium of classical systems and quite extensively
in quantum systems [14–22].

Compared with a metric defined for any given two PDFs,
significantly much less work has been done in the case of a
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time-dependent PDF in nonequilibrium systems. A continuous
change in PDFs in this case necessitates defining a distance at
any time by comparing two PDFs at times infinitesimally apart
and the summation of these distances over time (see Sec. II).
In our recent work [23–26], we proposed information length
L(t) (see Sec. II) as such a metric, which can quantify the
total number of different states that the system undergoes in
time. This information length was invoked as a new way of
mapping out an attractor structure and a useful measure that
can link stochastic processes and geometry. For instance, by
considering the relaxation of an initially nonequilibrium state
localized around some state x = y0 towards the equilibrium,
we showed that in a stable attractor, the information length
takes its minimum value for a stable equilibrium point [25]
while in a chaotic attractor, it takes its minimum value
for an unstable equilibrium point [23]. Interestingly, in a
chaotic attractor, the property like the Lyapunov exponent
was captured by a sensitive dependence of L on the initial
condition [23]. Furthermore, [26] investigated a geodesic along
which a system undergoes the minimum change in L and
demonstrated its utility as an optimal protocol for controlling
population [26]. We note that the information length is an
extension of the concept of the thermodynamic length [20]
to any arbitrary time-dependent PDF (which often does not
take the canonical forms) in nonequilibrium systems where
thermodynamic state in a strict sense does not exist. An
important case of nonequilibrium processes is classical music
analyzed in [24] where the information length was calculated
by using time-dependent (very intermittent) PDFs that were
constructed from the music MIDI file.

The purpose of this paper is to investigate how nonlinear
interaction affects the time scale of information change and
geometric structure of an attractor by using information length.
In order to isolate the key effect of nonlinear interaction,
we consider stochastic driven-dissipative systems with linear
and nonlinear damping, respectively, which correspond to the
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Ornstein-Uhlenbeck (O-U) process and a nonlinear diffusion
model with a cubic damping [27–31] and investigate simi-
larities and differences during their relaxation processes in
statistical space. Specifically, we quantify the change in time-
dependent PDFs during relaxation by using the information
length [23–26] and examine the difference in geometric
structure associated with the linear O-U process and nonlinear
processes. In particular, we demonstrate how the information
length L depends on the (mean) location y0 of a narrow initial
PDF and explore its scaling relation L ∝ ym

0 with the exponent
m. Interestingly, m is shown to be 1 for the O-U process regard-
less of the strength of a stochastic noise (diffusion coefficient)
and the width of the initial PDF while m depends on the latter
for the cubic process, with a power-law scaling relation.

The remainder of the paper is organized as follows.
Section II discusses information length and Sec. III introduces
our model. Sections IV and V present analytical linear results
and nonlinear solutions. Sections VI and VII provide the time
evolution of the information length and attractor structure.
Conclusions are found in Sec. VIII.

II. INFORMATION LENGTH

We consider a stochastic variable x and suppose that we can
compute its time-dependent PDFs p(x,t) either analytically or
numerically in the case where its governing equation is known,
or construct p(x,t) from experimental or observational data.
Defining the information length involves two steps [23–26]:
First we need to compute the dynamic time unit τ (t), which
is the characteristic time scale over which p(x,t) temporally
changes on average at time t . Second, we need to compute the
total elapsed time in units of this τ (t). As done in [23–26], we
compute τ by utilizing the following second moment E :

E ≡ 1

[τ (t)]2
=

∫
dx

1

p(x,t)

[
∂p(x,t)

∂t

]2

. (1)

We note that E is the root-mean-square fluctuating energy
for a Gaussian PDF (see Appendix A and [26]). As defined
in Eq. (1), τ has dimensions of time, and quantifies the
correlation time over which p(x,t) changes, thereby serving
as the time unit in statistical space (see also Appendix B).
Alternatively, 1/τ quantifies the (average) rate of change of
information in time. We recall that τ (t) in Eq. (8) is related to
the second derivative of the relative entropy (or Kullback-
Leibler divergence) [25]. To show this, we consider p1 =
p(x,t1) and p2 = p(x,t2) and the relative entropy D(p1,p2) =∫

dx p2 ln (p2/p1). To expand D(p1,p2) for an infinitesimally
small |t2 − t1|, we compute

∂

∂t1
D(p1,p2) = −

∫
dx p2

∂t1p1

p1
, (2)

∂2

∂t2
1

D(p1,p2) =
∫

dx p2

[(
∂t1p1

)2

p2
1

− ∂2
t1
p1

p1

]
, (3)

∂

∂t2
D(p1,p2) =

∫
dx

[
∂t2p2 + ∂t2p2(ln p2 − ln p1)

]
, (4)

∂2

∂t2
2

D(p1,p2) =
∫

dx

[
∂2
t2
p2+

(
∂t2p2

)2

p2
+∂2

t2
p2(ln p2− ln p1)

]
.

(5)

By taking the limit where t2 → t1 = t (p2 → p1 = p) and by
using the total probability conservation (e.g.

∫
dx ∂tp = 0),

Eqs. (2) and (4) above lead to

lim
t2→t1=t

∂

∂t1
D(p1,p2) = lim

t2→t1=t

∂

∂t2
D(p1,p2)

=
∫

dx ∂tp = 0, (6)

while Eqs. (3) and (5) give

lim
t2→t1=t

∂2

∂t2
1

D(p1,p2) = lim
t2→t1=t

∂2

∂t2
2

D(p1,p2)

=
∫

dx
(∂tp)2

p
= 1

τ (t)2
. (7)

See also [20] for similar derivation. Thus, the second derivative
of the relative entropy gives E , the inverse of the square of the
characteristic time over which PDF changes in time.

The total accumulated change in information between the
initial and final times 0 and t , respectively, is defined by
measuring the total elapsed time in units of τ as

L(t) =
∫ t

0

dt1

τ (t1)
=

∫ t

0
dt1

√∫
dx

1

p(x,t1)

[
∂p(x,t1)

∂t1

]2

. (8)

To relate Eq. (8) to the relative entropy, we expand D(p1,p2)
for small dt = t2 − t1 by using Eqs. (6) and (7) and
D(p1,p1) = 0 as

D(p1,p2) = 1

2

{∫
dx

[
∂t1p(x,t1)

]2

p(x,t1)

}
(dt)2 + O[(dt)3], (9)

where O[(dt)3] is higher order term in dt . We can then define
the infinitesimal distance dl(t1) between t1 and t1 + dt by

dl(t1) =
√

D(p1,p2) = 1√
2

√∫
dx

[∂tp(x,t1)]2

p(x,t1)
dt

+O[(dt)3/2]. (10)

We sum dt(t1) at different times t1 = 0,dt, . . . t − dt by using
Eq. (10) and then take the limit of dt → 0 as

l(t) = lim
dt→0

[dl(0)+dl(dt)+dl(2dt)+dl(3dt)+ · · · dl(t − dt)]

= lim
dt→0

[
√

D(p(x,0),p(x,dt)) +
√

D(p(x,dt),p(x,2dt))

+ · · ·
√

D(p(x,t − dt),p(x,t))]

∝
∫ t

0
dt1

√∫
dx

[
∂t1p(x,t1)

]2

p(x,t1)
= L(t). (11)

Thus, the sum of relative entropy calculated at times infinites-
imally apart is the same as L up to a numerical factor. It is
important to note that Eq. (11) or L depends not only on initial
p(x,0) and final PDF p(x,t), but also on a particular path
that a system takes. Thus, in general, l(t)2 in Eq. (11) is not
simply proportional to the relative entropy D(p(x,0),p(x,t)),
which depends only on p(x,0) and p(x,t). See Appendix C
for an example. That is, the relative entropy does not uniquely
determine L as it can take the same value for two different
paths.
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Equation (8) provides the total number of different states
that a system passes through from the initial state with the
PDF p(x,t = 0) at time t = 0 to the final state with the
PDF p(x,t) at time t , establishing a distance between
the initial and final PDFs in the statistical space. For example,
in equilibrium where ∂p

∂t
= 0, E = 0 and hence τ (t1) → ∞ for

all time t1. Measuring dt1 in units of this infinite τ (t1) at any
t1, dt1/τ (t1) = 0 in Eq. (8), and thus

∫ t

0 dt1/τ (t1) = 0. This
can be viewed as that in statistical space there is no flow of
time in equilibrium. In the opposite limit, large E corresponds
to small τ , meaning that information changes very quickly in
dimensional time.

III. MODEL

The particular model that we will explore using these infor-
mation length ideas is the following Langevin equation for
overdamped oscillators:

dx

dt
= F (x) + ξ. (12)

Here, x is a random variable of interest, and ξ is a white noise
with a short correlation time with the following property:

〈ξ (t)ξ (t ′)〉 = 2Dδ(t − t ′). (13)

Here, D is the strength of the forcing. We can easily check
that the dimension of D is length2/time by using that the
dimensions of ξ and δ(t − t ′) are length/time and 1/time,
respectively. F (x) is a deterministic force, which can be inter-
preted as the gradient of the potential U (x) as F (x) = − ∂U (x)

∂x
.

We compare the linear F = −γ x (U = γ

2 x2) and the cubic
F = −μx3 (U = μ

4 x4), where γ and μ have dimensions of
1/time and 1/(time × length2), respectively. The linear system
is the familiar Ornstein-Uhlenbeck (O-U) process, which has
been widely used as a model for a noisy relaxation system
in many areas of physical science and financial mathematics
(e.g., [32]). Numerically, instead of solving Eq. (12) directly,
we will consider the equivalent Fokker-Planck equation [11]

∂

∂t
p(x,t) = ∂

∂x

[
−F (x) + D

∂

∂x

]
p(x,t). (14)

IV. ANALYTIC LINEAR RESULTS

In this section, we provide the main results for the (linear)
O-U process, where we find exact analytic expressions for all
quantities of interest. If the initial PDF is taken as Gaussian
with the inverse temperature β0 as

p(x0,0) =
√

β0

π
exp[−β0(x0 − y0)2], (15)

then the solution at any later time is [25,26]

p(x,t) =
√

β(t)

π
exp{−β(t)[x − y(t)]2}, (16)

where

y(t) = y0e
−γ t , (17)

1

β(t)
= 1

β1(t)
+ e−2γ t

β0
, (18)

1

β1(t)
= 2D(1 − e−2γ t )

γ
. (19)

Here, y(t) = 〈x(t)〉 is the mean position of the Gaussian
profile, and y0 is its initial value. Similarly, β(t) is the
inverse temperature, and β0 is its initial value. As t tends
to infinity, y(t) → 0 and β(t) → γ

2D
≡ β∗. To compare initial

and final equilibrium states, it is convenient also to introduce
D0 = γ

2β0
. The variance at t = 0 and t → ∞ is then given by

〈(x0 − y0)2〉 = 1
2β0

= D0
γ

and 〈x2〉 = 1
2β∗

= D
γ

, respectively.
We note from Eqs. (18) and (19) that when D = D0, β(t) =
β0 = γ

2D
for all time. In this case, the Gaussian simply moves

from y0 to 0 without changing its shape at all. If D is greater
(lesser) than D0, it also broadens (narrows) as it moves.

Given Eqs. (16)–(19), one can compute Eq. (1) by carrying
out the analysis in Appendix D as follows:

E = 1

τ 2
= 1

2β2

(
dβ

dt

)2

+ 2β

(
dy

dt

)2

= 2γ 2

T 2
(r2 + qT ). (20)

In Eq. (20), q = β0γ y0
2, r = 2β0D − γ , and T =

2β0D(e2γ t − 1) + γ , following the same notation as in [25].
Note that q is due to the difference in y0 and y(t → ∞) while
r is due to the difference in D0 and D. Thus, the first term
in E involving r represents the information change due to the
change in PDF width when D0 �= 0 while the second term is
due to the movement of the PDF (or the mean value of x).
Recalling D0 = γ

2β0
, we can recast r , q, and T in Eq. (20) as

q = γ 2y2
0

2D0
, r = γ

(
D

D0
− 1

)
, T = γ

[
D

D0
(e2γ t − 1) + 1

]
.

(21)

From Eq. (21), we can see that the dimension of q, r , and
T is the inverse of time. Thus, E and subsequently L are in-
variant under the rescaling γ → α2γ, D0 → αD0,D → αD,
and t → α−2 t . In particular, in the long time limit t → ∞,
L(t → ∞) becomes invariant under the rescaling γ → α2γ,

D0 → αD0, D → αD. From Eqs. (20) and (8), we show in
Appendix E that for r �= 0

L = 1√
2

[
ln

(
Y − r

y + r

)]Yf

Yi

+
√

2

r
H. (22)

Here, Ti and Tf are T evaluated at ti and tf , respectively; Yi

and Yf are Y =
√

r2 + qT evaluated at Ti and Tf , and H is
defined as

H =

⎧⎪⎨
⎪⎩

√
qr − r2 tan−1

(
Y√

qr−r2

)
if qr − r2 > 0,

−
√

r2−rq

2 ln
( Y−

√
r2−rq

Y+
√

r2−rq

)
if qr − r2 < 0.

(23)

In Eq. (22), the contribution from the difference in PDF width
through r �= 0 and that from the difference in mean value of x

(e.g., PDF peaks) through q �= 0 appear in both first and second
terms. Thus, in order to separate their effects, it is simpler to
use Eq. (20), take the limit of q = 0, and calculate Eq. (8):

L= 1√
2

∫ Tf

Ti

{
1

T

1

T + r
|r|

}
dT = 1√

2

|r|
r

ln

[
T

T + r

]
. (24)

Note that as a metric, L is a non-negative quantity. Equa-
tion (24) is the information length solely due to the change
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in the width of PDFs. To simplify Eq. (24), we use T + r =
2β0De2γ t and β(t) = γβ0e

2γ t

T
[Eq. (D4)] to obtain

T + r

T
= β(t)

2D

γ
. (25)

Using Eq. (25) in Eq. (24) with t0 = 0 and tf = t and
β(t = 0) = β0 gives us

L = 1√
2

∣∣∣∣ln β(t)

β0

∣∣∣∣. (26)

We note that Eq. (26) can directly be computed from the
first term in Eq. (20). Then, by calculating the differential
entropy S(t) = − ∫

dx p(x,t) ln p(x,t) = 1
2 [1 + ln π

β(t) ] (with
the Boltzmann constant KB = 1) for p(x,t) given in Eq. (16),
we obtain the following entropy difference:

S(t) − S(0) = 1

2
ln

β0

β(t)
. (27)

Thus, L in Eq. (26) solely due to the change in PDF width is
the same as the magnitude of the change in entropy in Eq. (27)
up to a constant numerical factor. In Appendix C, the relative
entropy between the initial and final PDF is shown to take the
form different from Eqs. (26) and (27).

In the opposite case of r = 0 where the initial and final PDFs
have the same width, β(t) = β0 for all time, and Eqs. (20) and
(8) give us

L = 1√
2

∫ Tf

Ti

√
q

T
3
2

dT = −
√

2q

[
1√
T

]Tf

Ti

. (28)

We use that for r = 0, T = γ e2γ t , Ti = γ at t = 0 and simplify
Eq. (28) as

L(t) =
√

γ y0√
D

[1 − e−γ t ] = 1√
D/γ

[y0 − y], (29)

where y = y0e
−γ t = 〈x〉 is the mean position. Thus, L in

Eq. (29) is the change in the mean position y0 − y between

initial and time t measured in unit of the resolution
√

D
γ

.

Interestingly, this resolution
√

D
γ

is the standard deviation,

which is the square root of the variance 〈(x − 〈x〉)2〉 = D
γ

=
1

2β
= 1

2β0
. In general when q �= 0 and r �= 0, L results from

the mixed contribution from the entropy change (r �= 0) and
the change in y (q �= 0) measured in unit of the resolution. In a
more technical term, β and y in Eq. (20) constitute hyperbolic
geometry upon a suitable change of variables (e.g., see [26]).

V. NONLINEAR SOLUTION

For the cubic system, exact numerical solutions together
with approximate analytical solutions were reported in [31].
One of the interesting results is that starting from a narrow
PDF centered about y0, a rapid initial evolution of the PDF
is dominated by the O-U process with the effective friction
coefficient γe given by

γe ∼ ζμ〈x〉2, (30)

where ζ is an O(1) constant, and 〈x〉 = y0/
√

1 + 2μy2
0 t . This

thus gives β1(t) in Eq. (19) as follows:

1

β1(t)
= 2D(1 − e−2γet )

γe

, (31)

with γe given by Eq. (30). This will be utilized below in
understanding exact numerical results.

For a numerical solution of Eq. (14), we begin by noting
that without any loss of generality any finite interval in x can
always be rescaled to x ∈ [−1,1]. If the initial condition is also
restricted away from the boundaries, then solving (14) on this
finite interval (with boundary conditions p = 0 at x = ±1) is
an excellent match to an unbounded interval. By rescaling t and
D, we can similarly fix μ = 1, thereby reducing the number of
parameters that need to be varied numerically. The numerical
procedure then involves second-order finite differencing in
both space and time, using O(106) grid points in x, and time
steps as small as O(10−7).

Starting from the same initial condition as before,

p(x0,0) = 1√
2D0π

exp[−(x0 − y0)2/2D0], (32)

we numerically solve for p(x,t) at later times, and evaluate E
and L. The system was solved for D and D0 in the range 10−3

to 10−7, and y0 ∈ [0,0.75]. In total, 25 combinations of D and
D0 were considered, with ∼20 y0 values for each. In the next
section, we present the resulting E and L and compare with the
equivalent γ = 1 linear results (obtained either analytically or
numerically as a useful check of the code).

VI. TIME EVOLUTION OF E AND L

Figure 1 shows the results for E when starting with a very
narrow peak (D0 = 10−8) that is very far from the origin
(y0 = 0.7). D = 10−3, 10−5, and 10−7, and the two cases
linear and cubic are considered. Starting with the behavior for
small times (t � 10−4), called stage (i), there are two features
that stand out. First, the two D = 10−3 cases are far above

FIG. 1. E as functions of time t for the linear (dashed lines) and
cubic (solid lines) processes. D = 10−3, 10−5, and 10−7, as labeled.
The initial condition in each case was D0 = 10−8, y0 = 0.7.
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D = 10−5 and 10−7, and linear and cubic are the same. Second,
for D = 10−5 and 10−7, the two different D values follow the
same curves, but the linear and cubic cases are now different,
with linear being approximately four times greater than cubic.
Also, at least for these early times, these four curves are all
essentially independent of t .

To understand these results, we recall that E is a measure
of ( ∂p

∂t
)2, which in turn consists of two parts, the movement

of the PDF (advection) by the damping force F (x) and the
change in width of the PDF due to diffusion D > D0. Since
F is different in the linear and cubic processes while D is the
same,E would evolve similarly for both processes if dominated
by diffusion (diffusion-dominated) while evolving differently
if dominated by advection (advection-dominated) due to the
damping force. We need to combine this knowledge with the
fact that the initial evolution of E in stage (i) is dominated for
small D by advection while for large D by diffusion. To show
this in the linear case, we examine Eq. (20) at t = 0:

E = 2γ 2

(
D

D0
− 1

)2

+ γ 3y2
0

D0
, (33)

where the first and second terms represent the effect of
the diffusion and advection, respectively. Inserting γ = 1,
D0 = 10−8 and y0 = 0.7, D = 10−3 yields E = 2×1010,
whereas D = 10−5 and 10−7 both yield E = 5×107, as in
Fig. 1. Thus, in stage (i),E exhibits the transition from diffusion
dominated to advection dominated as D is reduced. Similar
conclusion can be obtained for the cubic case by replacing
in Eq. (33) by γe ∼ ζμ〈x〉2 [Eq. (30)]. The transition point,
where the two terms in Eq. (33) are comparable, occurs when
D ∼ y0

√
D0/2 = 5×10−5.

This predicted transition from advection dominated to dif-
fusion dominated occurring around D ∼ y0

√
D0/2 = 5×10−5

is indeed observed in Fig. 1. Specifically, for D = 10−3, E
is dominated by diffusion and takes the same (large) value
for linear and cubic. In contrast, for D = 10−5 and 10−7,
E is dominated by the advection, and different evolutions
are observed in linear and cubic processes. We can even
understand why the linear curves are above the cubic curves
by this factor of 4: If the positions of the peaks are expected
to evolve as y0e

−t and y0/
√

1 + 2y2
0 t in the two cases (setting

γ = μ = 1 in the general formulas), then the speeds at which
they initially move are y0 and y3

0 , respectively (obtained by
evaluating | d

dt
〈x〉| at t = 0 in the two cases). For y0 = 0.7 the

linear peak thus moves roughly twice as fast as the cubic
peak, hence a factor of 4 in E . Finally, the reason these
curves remain independent of time up to t ≈ 10−4 is that the
speeds of the peaks are essentially unchanged up to that time
with constant F (x) ∼ −γ x0 and −μx3

0 for linear and cubic,
respectively; diffusion is also not yet playing an important role
and β(t) = β0.

For the linear case, for somewhat larger times in stage (ii),
up to t < O(1), E exhibits a power-law decrease in time. This
can also be inferred from Eq. (20) by keeping the first-order
correction T ∼ γ [ D

D0
2γ t + 1] ∼ γ [ D

D0
2γ t] for D0

2γD
� t � 1

(recall D � D0):

E ∼ 2γ 2

[
1

2t2
+ y2

0

Dt

]
. (34)

TABLE I. Scalings of E in stages (i), (ii), and (iii) for advection-

dominated case for sufficiently small D < y0

√
D0
2 (D0 = 10−8) and

physical origins of such scaling behavior [F (x) and β(t)]; 3 < n < 4.

Process Scaling or contribution Stage (i) Stage (ii) Stage (iii)

E Constant t−1 e−γ t

Linear F (x) −γ x0 −γ x0 ∝e−γ t

β β0 ∝t−1 γ

2D

E Constant t−1 t−n

Cubic F (x) −μx3
0 −μx3

0 ∝t−1

β β0 ∝t−1 —

The second term in Eq. (34) is due to the peak with the variance
〈(x − 〈x〉)2〉 ∝ = 1/2β ∝ t [see Eq. (17)] and F (x) = −γ x ∼
−γy0 for t < O(1), which gives E ∝ t−1. In comparison, the
final stage (iii) is due to the adjustment to the stationary PDF.
This involves an exponential decrease in E since

T ∼ γDe2γ t

D0
� T 2

as t → ∞, and thus

E = 2γ 2

T 2
(r2 + qT ) ∼ 2γ 2q

T
∝ 1

T
∝ e−2γ t → 0,

exponentially decreasing in time as t → ∞. This is physically
due to the exponential decrease in peak position y = y0e

−γ t

while β ∼ γ

2D
. This last stage occurs around t ≈ O(1),

independent of D.
To summarize the O-U process, for a sufficiently small

D < y0

√
D0
2 , the relaxation of the O-U process undergoes three

scaling regimes of E with t : (i) constant, (ii) power law, and (iii)
exponential. The stage (i) is due to the movement of the PDF;
the stage (ii) is due to the diffusion with 1/β ∝ 〈(x − 〈x〉)2〉
[see Eq. (17)] (e.g., due to the Brownian motion where the
rms displacement increases as t1/2); the stage (iii) is due to the
exponential adjustment of the peak position as y = y0e

−γ t in
settling into the equilibrium PDF. These scalings and leading
contribution from F (x) and β responsible for such scalings
are summarized in Table I.

Since τ = E−1/2 is the time unit or correlation time (over
which the physical time is to be measured), our results imply
three stages of (i) constant, (ii) power law, and (iii) exponential
scalings of the time unit τ . Furthermore, in the O-U process, the
final stage starts at t = O(1), the same for all D, suggesting
the independence of the relaxation time on D. Alternately,
this can be viewed as the independence of x and t in linear
processes since D only affects x (dependence of PDFs).

Compared to the O-U process, the time evolution of E for
the cubic process occurs over a much longer time scale, as seen
in Fig. 1. This is due to the fact that with a cubic nonlinear
damping, the equilibration of a PDF to the final equilibrium
quartic exponential PDF requires the time t � tc where [31]

tc ∼
√

1

Dμ
. (35)

As tc ∝ D−1/2, the relaxation time becomes longer for smaller
D, as previously noted also by [31]. To understand the

022137-5



EUN-JIN KIM AND RAINER HOLLERBACH PHYSICAL REVIEW E 95, 022137 (2017)

evolution of E(t), it is useful to utilize the effective γe in
Eq. (30). Specifically, at small and intermediate times, γe is
almost independent of t as γe ∝ μy2

0 , and thus the behavior
of E for the cubic process is quite similar to that of the
O-U process. For stage (iii), the prediction based on Eq. (20)
becomes questionable due to large fluctuations. It suffices for
the purpose of this paper to conclude from Fig. 1 that E in stage
(iii) follows power law as E ∝ t−n (3 < n < 4). To summarize,
for a sufficiently small D, the relaxation of the cubic process
undergoes three scaling regimes of E with t : (i) constant, (ii)
power law, and (iii) power law. The stage (i) is due to the
movement of the PDF, similarly to linear case; the stage (ii) is
due to the diffusion, similar to the linear case. The last stage
with the power-law scaling is different from the exponential
scalings in the O-U process. The scalings are summarized in
Table I together with leading behavior of F (x) and β.

Our results demonstrate that nonlinear interaction promotes
power-law scalings of statistical measures E (τ ) with respect to
time. Making an analogy to power-law scaling often observed
in self-organizing system which ensures scale invariance, we
speculate that power-law scale of statistical measures may
also be induced in self-organizing systems through nonlinear
interaction. This issue will need to be explored further in
the future. Furthermore, compared with the O-U process,
nonlinear interaction in the cubic process results in E which
varies much less rapidly. (That is to say, a power law evolves
much slower than exponential.) Recalling that a geodesic is
a particular path with a constant E along the path [26] which
minimizes the total L between given two times, we infer that
the cubic process follows a path which is closer to a geodesic
compared to the O-U process. Thus, we expect a smaller L in
the cubic process than in the O-U process, and this will shortly
be shown to be observed in our numerical results.

Furthermore, in comparison with the linear case where the
relaxation time to the equilibrium is independent of D, the
dependence of tc in Eq. (35) on D reflects that the diffusion
affects not only x, but also key transition time scale [e.g., tc
in Eq. (35)], implying a close link between x and t through

FIG. 2. L as functions of time t for the linear (dashed lines) and
cubic (solid lines) processes. All parameter values as in Fig. 1.

nonlinear interaction. We note that [31] showed that the cubic
system can be linearized by introducing a nonlinear time which
depends on x, which is most likely why tc is affected by D

(i.e., through x which depends on D).
Finally, Fig. 2 shows L for the six cases corresponding to

Fig. 1. Since E in Fig. 1 monotonically decreases in time, the
largest contribution toL comes fromE at small times. The most
prominent difference between the O-U and cubic processes
is that the relaxation time tc to converge to the stationary
state is much longer for the cubic process and depends on
D. Furthermore, L tends to be smaller for the cubic process,
confirming our expectation above.

VII. ATTRACTOR STRUCTURE: L VS y0

In the absence of a stochastic forcing, a system with either
linear or cubic damping has one stable equilibrium point
x = 0, to which all initial positions approach in the long time
limit. The proximity of different x to the equilibrium point
x = 0 can be quantified by the difference in the potential
V (x) (= γ

2 x2 and μ

4 x4 for the linear and cubic processes,
respectively), or its gradient F (x). In the presence of the
stochastic forcing ξ , any initial value of x always tends to
approach x = 0 for sufficiently large time, and fluctuates
around it, forming an equilibrium distribution. In this case,
V (x) from the deterministic force does not provide an accurate
measure of the difference between different initial points due
to ξ .

Motivated by this, [23] considered the relaxation of an
initial nonequilibrium state strongly localized around x = y0

[i.e., modeled by p(x,0) ∝ δ(x − y0)] into the final equilib-
rium state around x = 0 and defined the distance between
the point y0 and x = 0 by the total L between the initial
localized PDF and the final equilibrium PDF. This L provides
a metric which quantifies the distance between x = y0 and
the equilibrium, serving as a useful measure to differentiate
different x’s in view of the proximity to the equilibrium point
x = 0.1 As L measures different states along a path that a
system passes through, it can be viewed as a “Lagrangian or
dynamic” measure of a metric. In general, when an initial PDF
has a finite width [24–26], the total L between an initial PDF
with the mean value y0 and final equilibrium PDF was used
as the distance between y0 (mean value of x at t = 0) and
x = 0 (mean value of x at t → ∞). This metric consequently
depends on both the strength D of the stochastic noise (which
determines the width of the final equilibrium PDF) and the
width of the initial PDF.

In order to elucidate the effect of nonlinear interaction
on the geometric structure, we now present how this metric
depends on y0 for different D and D0 for the O-U and cubic
processes. Figure 3 shows the results of the total L (in the limit
t → ∞) as a function of y0, for D0 and D equal to 10−3, 10−5,
and 10−7. Focusing on the linear case first, the dependence
on y0 is clearly linear, except for small regions near y0 = 0,
where a sufficiently large mismatch between D and D0 yields
results dominated by diffusion rather than movement of the

1The difference between different initial points (y0’s) is then
quantified by the difference in corresponding L’s.
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FIG. 3. L as functions of y0 for the linear (dashed lines) and cubic (solid lines) processes. The nine panels (a3)–(c7) are labeled such that
rows (a,b,c) correspond to D0 = 10−3, 10−5, and 10−7, respectively, and columns (3,5,7) correspond to D = 10−3, 10−5, and 10−7 respectively.

peak from y0 to 0. Table II summarizes the slopes of these
straight lines (including also additional D and D0 values). For
the simplest D = D0 cases, where Fig. 3 indicates an exactly
linear relationship for all y0, the slopes clearly scale as D− 1

2 .
Above the diagonal in Fig. 3 or Table II (D < D0) yields a
greater slope than below the diagonal (D > D0).

To understand these results, we examine Eqs. (22), (23),
and (28). When y0 �= 0, Eqs. (22) and (23) imply that L in
general has a complex dependence on y0, D0, and D. Some
simple scaling relations are, however, obtained when D = D0,
or when y0 is sufficiently large. First, when D = D0, r = 0; so
using Ti = γ and Tf → ∞ (since tf → ∞), q = β0γy2

0 and

TABLE II. Slopes of L versus y0 for the linear process, for
different D and D0 as indicated.

�����D0

D
10−3 10−4 10−5 10−6 10−7

10−3 31.6 60.5 95.0 131 167
10−4 41.5 100 192 301 415
10−5 46.1 132 316 606 951
10−6 47.3 148 416 1000 1917
10−7 47.5 153 467 1317 3162

2β0 = γ /D0 in Eq. (28) gives us

L =
√

2q

γ
=

√
γ y0√
D0

. (36)

Thus, when D = D0, L has an exact linear scaling with y0,

with slope
√

γ

D
, as seen also in Table II (where γ = 1).

Second, for a sufficiently large y0 such that q � 1, a clear
linear relation between L and y0 is obtained, with different
slopes for D > D0 and D < D0. When D > D0 and q � 1
(0 < r < q), the leading order contribution to L comes from
H in Eq. (23) as (see Appendix F for details)[

tan−1

(
Y√

qr − r2

)]Yf

Yi

∼ π

2
− 1√

r0
,

where r0 = D
D0

− 1 and, thus (see again Appendix F),

L∼
(

π

2
−

√
D0

D

) √
γ y0√

D − D0
∼

(
π

2
−

√
D0

D

)√
γ y0√
D

, (37)

where r ∼ D
D0

is used for D � D0. Thus, when D > D0, L is
determined by measuring the change in the mean position y0

in units of
√

D to leading order, and takes its maximum value
π

√
γ

2
y0√
D

for a very narrow initial distribution (as D0
D

→ 0).
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FIG. 4. As in Fig. 3, but now showing log10(L) as functions of log10(y0), and for the cubic process only.

These scalings can also be confirmed above the diagonals in
Table II.

When D < D0 and q � 1 (r < 0), the leading order
contribution to L comes from H in Eq. (23) as[

ln

(
Y −

√
r2 − rq

Y +
√

r2 − rq

)]Yf

Yi

∼ ln
2

1 − √|r0|
∼ ln

4D0

D
,

where |r0| = 1 − D
D0

and, thus,

L ∼
√

γ y0

2
√

D0
ln

4D0

D
∼

(
ln 2 + ln

√
D0

D

)√
γ y0√
D0

. (38)

Thus, when D0 > D, L is given by y0 measured in units of√
D0/ln

√
D
D0

, increasing as D0
D

→ ∞. It is interesting to see

the logarithmic correction factor ln
√

D0
D

to y0 measured in

units of
√

D0, which is due to the narrowing of the PDF.
Again, these values are quite close to the exact results in Table
II. We have checked similar results with L ∝ y0 for different
initial PDFs (quartic exponential PDFs).

In sharp contrast to the linear case, Fig. 3 shows that for
the cubic case, L is clearly not linearly dependent on y0.
However, plotting the same data on a log-log scale, Fig. 4
shows that for sufficiently large y0, clear power-law scalings
emerge. For y0 < O(D1/4) L is dominated by diffusion, and

hence largely independent of y0. For y0 > O(D1/4), though, in
the regime dominated by the advection by damping force F , all
nine panels exhibit power-law behavior. For sufficiently small
values of D, the power-law regime O(D1/4) < y0 < O(1)
would also extend over arbitrarily many orders of magnitude.
The slopes, that is, the power-law exponents, of these straight
line portions at large y0 are presented in Table III. We infer
asymptotic scalings L ∼ (y0)m with the exponent m around
1.5 to 1.9. This suggests that geometry is curved by the
nonlinear interaction in the statistical space. What is more
interesting is that this scaling of L ∝ ym

0 has no resemblance
to either the quartic potential V (x) ∝ x4 or its gradient
F ∝ x3. That is, the combined action of the deterministic
force and stochastic force results in a unique characteristic

TABLE III. Slopes of log10 L versus log10 y0 for the cubic process,
for different D and D0 as indicated.

�����D0

D
10−3 10−4 10−5 10−6 10−7

10−3 1.69 1.62 1.56 1.53 1.60
10−4 1.77 1.74 1.64 1.58 1.56
10−5 1.74 1.85 1.76 1.70 1.59
10−6 1.63 1.91 1.88 1.80 1.66
10−7 1.52 1.91 1.96 1.88 1.78
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of the geometry of the attractor, governed by a power law with
index m = m(D,D0) < 2. In comparison, L ∝ y0 for the O-U
process manifests the preservation of a linear geometry both by
the linear damping force and the white-noise stochastic force.

To trace the origin of this power-law scaling, we again
utilize the result that the dominant contribution to L comes
from the initial and intermediate stages, where the effect of
damping can be approximated by a linear friction constant γe

in Eq. (30). Thus, we can get an estimate on the upper bound
on m by replacing γ by γe in Eqs. (22) and (23) and taking
〈x〉 ∼ y0 as follows:

L ∼
⎧⎨
⎩

ψ
√

μ√
D

y2
0 if D > D0, 0 < r < q,

φ
√

μ√
D0

y2
0 if D < D0, r < 0,

(39)

for q � 1. Here, ψ and φ are O(1) constants. Equations (39)
thus show that the power-law scaling has the upper bound
as L ∼ ym

0 where m � 2. We have checked similar power
scalings for different initial PDFs (quartic exponential PDFs).

VIII. CONCLUSION

We investigated the effect of nonlinear interaction on a met-
ric structure in a nonequilibrium process. By considering linear
and nonlinear (cubic) damping, we computed the information
change in the relaxation of an initial nonequilibrium state to
a final equilibrium state and measured by the information
length L the number of distinguishable states that a system
undergoes during the relaxation. We explored scalings of
statistical quantities of τ (the inverse of the rate of change ofL)
and L. Specifically, we illustrated that nonlinear interactions
promoted temporal power-law scaling of τ ∝ tn. By varying
D0 and D, we also demonstrated power-law scalings of L with
the mean position y0 of the initial PDF. For a linear damping,
an underlying linear geometry was captured in L ∝ y0. In
comparison, the cubic damping supports a power-law relation
L ∝ ym

0 , with a varying power index m ∼ 1.5–1.9, depending
on D and D0. This has to be contrasted with m = 1 in the
linear case. This demonstrates that nonlinear interaction tends
to change geometric structure of a nonequilibrium process
from linear to power-law scalings.

We emphasize that L is path specific and is a dynamical
measure of the metric, capturing the actual statistical change
that occurs during time evolution. This path specificity would
be crucial when it is desirable to control certain quantities
according to the state of the system (e.g., time-dependent
PDF) at any given time. An interesting example would be
the treatment of large population (e.g., of bacteria, tumor
cells) where the treatment should be adjusted according to
the status of the population to optimize desirable outcomes
while avoiding undesirable side effects (e.g., resistance). A toy
optimization problem was addressed in terms of a geodesic
solution in [26]. Due to the generality of our methodol-
ogy, we envision a large scope for further applications to
natural phenomena to characterize nonequilibrium processes
(e.g., relaxation processes). Beyond analytical and numerically
solvable models, L can be applied to any data as long as
time-dependent PDFs can be constructed from data (e.g., see
[24]). Such application of L to data is currently underway.
Exploration of different metrics would also be of great interest.

APPENDIX A: FLUCTUATING HAMILTONIAN E

To appreciate the relation between E and fluctuating energy,
we express the PDF p(x,t) as

p(x,t) =
√

β

π
e−SA ≡ e−SA+F . (A1)

Here, F = 1
2 ln β

π
is the free energy; SA is the effective action

which can be related to the Hamiltonian H of the stochastic
system (see [33]) as

H = −∂SA

∂t
, (A2)

which is a stochastic analogy to the Hamilton-Jacobi relation
[33,34]. Specifically, it was shown in [33] by a path integral
formulation that H is given in terms of

H (t) = −∂SA

∂t
= D

2
2 − μx,

where  is the conjugate momentum. Note that  stems from
the stochastic noise. Taking the time derivative of Eq. (A1)
gives us

∂p(x,t)

∂t
= (Ḟ + H )p(x,t), (A3)

where Ḟ = dF
dt

. First, we integrate both sides of Eq. (A3) over
x and use the conservation of the total probability as follows:

0 =
∫

dx
∂p

∂t
=

∫
dx(Ḟ + H )p(x,t) = Ḟ + 〈H 〉, (A4)

where 〈H 〉 is the mean (average) value of the Hamiltonian.
Therefore,

Ḟ = −〈H 〉. (A5)

That is, the mean value of the Hamiltonian compensates for
the change in free energy to conserve the total probability.
We now compute the second moment which is related to E in
Eq. (20) as

E =
∫

dx
1

p

(
∂p

∂t

)2

=
∫

dx(H + Ḟ)2p(x,t)

= 〈(H + Ḟ)2〉 = 〈(δH )2〉, (A6)

where δH = H − 〈H 〉 = H + Ḟ is the fluctuating Hamilto-
nian. By using Eq. (A5), it is interesting to observe that

〈(δH )2〉 = 〈H 2〉 + 2〈H 〉Ḟ + Ḟ2 = 〈H 2〉 − 〈H 〉2.

APPENDIX B: PHYSICAL MEANING OF L

In this appendix, we make an analogy to a deterministic
system to elucidate the key concepts of τ and L in Eqs. (1) and
(8). Specifically, we consider the case where an object is not
moving but its length changes according to the time-dependent
function l(t). For this deterministic function l(t), the easiest
way of extracting the characteristic time scale τ (t) of l(t) is by
computing

1

τ (t)
= 1

l

(
dl

dt

)
. (B1)
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By using Eq. (B1) in Eq. (8), we can then measure the total
time between initial t = 0 and final time t in unit of τ (t) as

L(t) =
∫ t

0

dt1

τ (t1)
. (B2)

For example, if we take l(t) = Aeλt where A > 0 and λ > 0
are constant, then τ (t) = λ−1, thus, Eq. (B2) gives

L(t) =
∫ t

0

dt1

τ (t1)
=

∫ t

0
dt1λ = λt = ln

(
Aeλt

A

)
= ln

[
l(t)

l(0)

]
.

(B3)

We realize that l(t)
l(0) in Eq. (B3) is just the total number

of a segment of (initial) length l(0) within the final length
l(t) and that Eq. (B3) is nothing more than the entropy (by
using kB = 1). Thus, L(t) characterizes the change in entropy
(amount of disorder) over time t when the object has no mean
motion.

Switching back to the stochastic case with the time-
dependent PDF p(x,t), we now consider the rate at which
p(x,t) changes in time to extract the time scale of p(x,t) as

1

τ (x,t)
= 1

p(x,t)

∂p(x,t)

∂t
. (B4)

As can clearly be seen from Eq. (9), the characteristic time
scale τ (x,t) depends not only on t , but also x. To obtain
the dynamic time unit τ (t) independent of x, we can take
an average of Eq. (B4) over x as

1

τ (t)
≡

∫
dx p(x,t)

1

τ (x,t)
=

∫
dx p(x,t)

1

p(x,t)

∂p(x,t)

∂t

=
∫

dx
∂p(x,t)

∂t
= 0, (B5)

where the last equality follows from the total probability
conservation. Therefore, in order to obtain a nonzero τ (t),
we can consider squaring Eq. (B4) before taking the average
over x:

1

[τ (t)]2
≡

∫
dx p(x,t)

1

[τ (x,t)]2

=
∫

dx p(x,t)
1

p(x,t)2

[
∂p(x,t)

∂t

]2

=
∫

dx
1

p(x,t)

[
∂p(x,t)

∂t

]2

, (B6)

obtaining Eq. (1) in the main text. We note that Eq. (B6)
corresponds to the second time derivative of relative entropy
(or Kullback-Leibler divergence), as shown in Eq. (7).

APPENDIX C: COMPARISON BETWEEN
L IN EQ. (26) [(27)] AND ENTROPY

To demonstrate that L take the form different from the
relative entropy, it is valuable to consider p1 = p(x,t1) and
p2 = p(x,t2) that have the same zero mean value but different
width with inverse temperatures β1 and β2:

p1 =
√

β1

π
e−β1x

2
, p2 =

√
β2

π
e−β2x

2
. (C1)

We can then easily compute the relative entropy between p1

and p2 as

D(p1,p2) =
∫

dx p2 ln (p2/p1)

=
∫

dx p2 ln (p2) −
∫

dx p2 ln (p1)

=
∫

dx p2

[
ln

√
β2

π
− β2x

2

]

−
∫

dx p2

[
ln

√
β1

π
− β1x

2

]

= ln

√
β2

π
− β2〈x2〉2 −

[
ln

√
β1

π
+ β1〈x2〉2

]

= 1

2
ln

β2

β1
− 1

2

[
1 − β1

β2

]
. (C2)

Here, 〈x2〉2 = ∫
dx p2x

2 = 1
2β2

was used. While the first term
in Eq. (C2) appears to be similar to Eqs. (26) or (27), the second
term inside the square brackets takes a different form. We can
now show that the integral of the square root of Eq. (C2) for
small |t2 − t1| becomes similar to Eqs. (26) or (27). To this
end, we expand terms in Eq. (C2) by letting β2 = β1 + δ:

D(p1,p2) = 1

2
ln

[
1 + δ

β1

]
− 1

2

[
1 − β1

β1 + δ

]

= 1

2

[
δ

β1
− 1

2

δ2

β2
1

]
− 1

2

[
δ

β1
− δ2

β2
1

]
+ O

(
δ3

β3
1

)

= 1

4

δ2

β2
1

+ O

(
δ3

β3
1

)
, (C3)

where ln (1 + x) = x − 1
2x2 + O(x3) was used. By taking a

square root of Eq. (C3), writing δ = β̇1dt , and then summing
over time in the limit δt → 0, we obtain∫ t

0
dt

1

2

β̇1

β1
= 1

2
ln

β(t)

β(0)
, (C4)

which is the same as the entropy change in Eq. (27).

APPENDIX D: DERIVATION OF EQ. (20)

From p(x,t) in Eq. (13), we obtain

∂p

∂t
=

{
β̇

[
1

2β
− (x − y)2

]
+ 2β(x − y)ẏ

}
p, (D1)

where we recall y = 〈x〉 = y0e
−γ t . Using Eq. (D1) in Eq. (1)

gives us

1

[τ (t)]2
=

∫
dx

{[
1

2β
− (x − y)2

]
β̇ + 2β(x − y)ẏ

}2

p

= β̇2

[(
1

2β

)2

− 1

β
〈(x − y)2〉 + 〈(x − y)4〉

]

+ 4β2〈(x − y)2〉ẏ2

= 1

2β(t)2

(
dβ

dt

)2

+ 2β

(
dy

dt

)2

. (D2)
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Here, β̇ = dβ

dt
and ẏ = dy

dt
; we used 〈(x − y)2〉 = 1

2β
and

〈(x − y)4〉 = 3( 1
2β

)
2
. To obtain the last equation in Eq. (20), it

is useful to express β in Eq. (18) in the following form:

β = 1
1
β1

+ 1
β0

e−2γ t
= 1

2D(1−e−2γ t )
γ

+ 1
β0

e−2γ t
(D3)

= γβ0e
2γ t

T
, (D4)

where we used T = 2β0D(e2γ t − 1) + γ . By differentiating
Eq. (D3), we then obtain

β̇ = −2γβ2e−2γ t

[
2D

γ
− 1

β0

]

= −2β2e−2γ t [2β0D − γ ]
1

β0
. (D5)

Equations (D4) and (D5) and r = 2β0D − γ then give us

β̇2

2β2
= 2γ 2r2 1

T 2
. (D6)

Similarly, using ẏ = d
dt

(y0e
−γ t ) = −γy0e

−γ t , T =
2β0D(e2γ t − 1) + γ , and q = β0γ y0

2, we obtain

2βẏ2 = 2qγ 2 1

T
. (D7)

Finally, using Eqs. (D6) and (D7) in Eq. (D2) gives us Eq. (20).

APPENDIX E: DERIVATION OF EQS. (22) AND (23)

By using Eqs. (20) and (21) in Eq. (8), we obtain

L = 1√
2

∫ Tf

Ti

{
1

T

1

T + r

√
r2 + qT

}
dT . (E1)

To compute Eq. (E1), we let Y =
√

r2 + qT and recast it as

L =
√

2

r

∫ Yf

Yi

{
r2

Y 2 − r2
+ qr − r2

Y 2 + qr − r2

}
dY

= 1√
2

[
ln

(
Y − r

Y + r

)]Yf

Yi

+
√

2

r
H, (E2)

where Yi and Yf are Y evaluated at Ti and Tf , and H is defined
as

H =
∫ Yf

Yi

qr − r2

Y 2 + qr − r2
dY. (E3)

Equation (E3) is to be evaluated separately for two cases:
q � r and q < r . First, for q � r , we use Y =

√
qr − r2 tan θ

in Eq. (E3) to obtain

H =
√

qr − r2

∫
sec2 θ

tan2 θ + 1
dθ (E4)

=
√

qr − r2

[
tan−1

(
Y√

qr − r2

)]Yf

Yi

. (E5)

Second, in the q < r case, we let Y =
√

|qr − r2| sec θ =√
r2 − qr sec θ (cos θ =

√
r2−qr

Y
) to obtain

H = −
√

r2 − qr

∫
1

sin θ
dθ

= −
√

r2 − qr

2

[
ln

(
Y −

√
r2 − qr

Y +
√

r2 − qr

)]Yf

Yi

. (E6)

We note that Eq. (E2) is continuous across q = r . In summary,
Eqs. (E5) and (E6) lead to Eq. (23) in the text; Eq. (E2) gives
Eq. (22) in the text.

APPENDIX F: DERIVATION OF EQ. (37)

In this appendix, we show the main steps leading to Eq. (37)
when D > D0, q � 1, and 0 < r < q. In this case, we note
that H in Eq. (22) is given by the first line in Eq. (23) and thus

H

r
=

√
q

r
− 1 tan−1

(
Y√

qr − r2

)
, (F1)

where

Y =
√

qT + r2, q = γ 2y2
0

2D0
, r = γ

(
D

D0
− 1

)
,

T = γ

[
D

D0
(e2γ t − 1) + 1

]
.

We evaluate Eq. (F1) at t = 0 and t → ∞ to compute the
second term on the right-hand side of Eq. (22). To this end,
first, we approximate the argument of the arctan function in
Eq. (F1) for large q � 1 as

Y√
qr − r2

=
√

qT

r2 + 1
q

r
− 1

∼
√

T

r

∼
√

D0

D − D0

[
D

D0
(e2γ t − 1) + 1

]
. (F2)

In the long time limit as t → ∞, we let φ ≡ D0
D−D0

[ D
D0

(e2γ t − 1)] (→ ∞), and evaluate Eq. (F2) as

Y√
qr − r2

∣∣∣∣
t→∞

∼
√

φ + D0

D − D0
. (F3)

On the other hand, at t = 0, Eq. (F2) is simplified as

Y√
qr − r2

∣∣∣∣
t=0

∼
√

D0

D − D0
. (F4)

We now evaluate
√

q

r
− 1 in front of the arctan function in

Eq. (F1) at t = 0 and t → ∞, which in both limits becomes

√
q

r
− 1 ∼

√
γy2

0

2D
− 1 ∼

√
γ

2D
y0. (F5)
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Thus, by putting Eqs. (F3)–(F5) in Eq. (F1), we obtain

[
H

r

]∞

t=0

∼ y0

√
γ

2D

[
tan−1

√
φ + D0

D − D0

− tan−1

√
D0

D − D0

]
∼ y0

√
γ

2D

(
π

2
−

√
D0

D

)
, (F6)

by using φ → ∞, D0 � D, and tan−1 x ∼ x for x � 1.
In comparison with the contribution from the second term
involving H on the right-hand side of Eq. (22), the contribution
from the first term involving the logarithmic function can be
shown to be negligible by following similar analysis as above.
Therefore, multiplying Eq. (F6) by

√
2 gives Eq. (37) in the

main text.
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