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 ���

Abstract: Bromine chemistry, particularly in the tropics, has been suggested to play an important ���

role in tropospheric ozone loss (Theys et al., 2011)) although a lack of measurements of active ���

bromine species impedes a quantitative understanding of its impacts. Recent modelling and ���

measurements of bromine monoxide (BrO) by Wang et al. (2015) have shown current models ���

under predict BrO concentrations over the Pacific Ocean and allude to a missing source of BrO. ���

Here, we present the first simultaneous aircraft measurements of atmospheric bromine monoxide, ���

BrO (a radical that along with atomic Br catalytically destroys ozone) and the inorganic Br ���

precursor compounds HOBr, BrCl and Br2 over the Western Pacific Ocean from 0.5 to 7 km.  The �	�

presence of 0.17-1.64 pptv BrO and 3.6-8 pptv total inorganic Br from these four species �
�

throughout the troposphere causes 10-20% of total ozone loss, and confirms the importance of ���

bromine chemistry in the tropical troposphere; contributing to a 6 ppb decrease in ozone levels due ���

to halogen chemistry.  Observations are compared with a global chemical transport model and find ���
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that the observed high levels of BrO, BrCl and HOBr can be reconciled by active multiphase ���

oxidation of halide (Br�  and Cl� ) by HOBr and ozone in cloud droplets and aerosols. Measurements ���

indicate that 99% of the instantaneous free Br in the troposphere up to 8 km originates from ���

inorganic halogen photolysis rather than from photolysis of organobromine species.  ���

Keywords ���

BrO, CIMS, ozone, troposphere �	�

1. Introduction �
�

Ozone (O3) is one of the most important short-lived gases contributing to greenhouse radiative ���

forcing (RF) and plays a critical role in atmospheric chemistry and air quality (Crutzen et al., ���

1988). Therefore, it is vital to determine the mechanisms that control its regional and global levels. ���

In the troposphere O3 has two sources: in situ photochemical production from anthropogenic ���

precursors such as volatile organic compounds (VOCs) and nitrogen oxides, and transport from the ���

stratosphere (Liu et al., 2002). Subsequently, the temporal and spatial resolution of O3 is rather ���

complex and our current understanding cannot account for the observed O3 variation in the tropical ���

troposphere (Prather et al., 2001). ���

 �	�

The primary loss route of tropospheric ozone is photolysis in the presence of water vapour.  �
�

However, recent studies have indicated that reactive halogens in the troposphere could make an ���

important contribution to photochemical O3 depletion. Especially in tropical regions where higher ���

concentrations of halogenated species (assuming a biological source) are found due to warmer ���

waters, higher biological activity, and fast convective transport into the free troposphere (FT) ���

(Liang et al., 2010, Holmes et al., 2010, Parella et al., 2012, Wang et al., 2015). Inorganic bromine ���

radicals (BrO and Br) are known to be efficient catalysts for O3 destruction.  Sources of ���

tropospheric bromine are poorly constrained (Parella et al., 2012) and include photochemical ���

breakdown of halocarbons (e.g. CHBr3 and CH2Br2), debromination of sea salt aerosol, and input of ���

inorganic bromine (Bry) from the stratosphere (Read et al., 2008). Model calculations have �	�

indicated that bromine chemistry may be responsible for a reduction in the zonal mean O3 mixing �
�

ratio by up to 18% and locally even up to 40% (Holmes et al., 2006) and account for the majority ���

of global oxidation of elemental mercury (Read et al., 2008).  ���

 ���

Only a few pptv (parts per trillion by volume) of BrO are required to have a significant impact on ���

tropospheric chemistry (Holmes et al., 2006). There is recent observational evidence for the ���
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ubiquitous presence of BrO at these levels in the global troposphere, although reported BrO ���

background levels vary widely (Volkammer et al., 2015, Yang et al., 2005, Wang et al., 2015, ���

Mahajan et al., 2010) whilst global models under predict these levels of BrO. Wang et al. (2015) ���

have recently measured and modelled BrO over the tropical Eastern Pacific Ocean and shown �	�

concentrations are up to 2-4 times greater than that predicted in the tropical free troposphere. Their �
�

modelling results also show a bias at the lower tropical transition layer, indicating possible missing ���

sources supplying activated inorganic bromine, which current models are unable to account for. ���

Inorganic precursors to BrO such as BrCl, Br2 and HOBr have previously been measured in the ���

Arctic at significant concentrations to account for high BrO concentrations (Liao et al., 2011). To ���

date, there have been no previous simultaneous measurements of these inorganic halogens in the ���

tropics. Model simulations of their concentrations and importance to ozone loss are currently ���

constrained by experimental observations of BrO concentrations. ���

 ���

2. Flight Campaign �	�

The NERC CAST (Co-ordinated Airborne Studies in the Tropics) campaign took place in the West �
�

Pacific in January/February 2014. The field campaign had two components: (i) the NERC FAAM 	��

BAe-146 research aircraft based in Guam (13.5oN, 144.8oE); and (ii) ground-based and ozone 	��

sonde measurements in Manus, Papua New Guinea (2.1oS, 147.4oE). CAST was part of an 	��

international collaboration involving the NASA ATTREX (Airborne Tropical Tropopause 	��

Experiment) project based around the Global Hawk, the NCAR-led CONTRAST (Convective 	��

Transport of Active Species in the Tropics) campaign based around the Gulfstream V (HIAPER) 	��

aircraft, and the Japanese SOWER project (Soundings of Ozone and Water in the Equatorial 	��

Region). Together, detailed measurements of atmospheric structure and composition were made 	��

from the ocean surface to 20 km. An overview of this campaign can is given by Harris et al. (2016), 		�

describing the experimental setup, flying conditions and general meteorological and core chemistry 	
�

results. 
��

 
��

In this coordinated campaign, the FAAM BAe-146 made measurements in the lower tropical 
��

troposphere below ~8 km altitude with an emphasis on the boundary layer. The flights were made 
��

to the south of Guam and occasionally penetrated the southern hemisphere (See figure S1 in 
��

supplementary). In total, 25 flights were made between January 25th and 18th 2014 with 90 hours of 
��

measurements. Other composition measurements included H2O, CO, CO2, CH4, N2O, VSLS (very 
��

Short Lived Substances) including many bromocarbons, NO, IO (although never above the limit of 
��



M
AN

US
C

R
IP

T

 

AC
C

EP
TE

D

ACCEPTED MANUSCRIPT

detection), black carbon and aerosol. NOx concentrations averaged at 6 ppt, indicating no influence 
	�

of pollution outflow. 

�

 ����

3. Materials and Methods ����

A chemical ionisation mass spectrometer (CIMS) was used for real-time detection of BrO, Br2, ����

HOBr and BrCl. The CIMS instrument employed here was built by the Georgia Institute of ����

Technology and was set up as in previous studies (Le Breton et al., 2013, 2014). The inlet consisted ����

of 9.5 mm outer diameter PFA tubing of length 580 mm, which was heated to 400C to reduce ����

surface losses. The fast inlet pump (Picolino VTE-3, Gardner Denver Thomas) delivered ambient ����

air to the IMR (Ion Molecule reaction) chamber at a flow rate of 5.8 SLM which was subsampled ����

using an ori�ce of diameter 0.2 mm positioned at the front of the inlet to restrict the �ow into the ��	�

IMR to 0.8 SLM. The pressure in the ionisation region was maintained at 19 Torr (133.3 Pa) ��
�

throughout the �ight by controlling the �ow of nitrogen into the ionisation region using a mass �ow ����

meter.  ����

 ����

The I- ionization scheme was used for the detection of BrO, Br2, BrCl and HOBr as previously ����

utilised by Liao et al., (2011, 2012).  To generate I- a flow of 20 SCCM flow of the ionization gas ����

mix (15 Torr CH3I, 20 Torr H2O and 47.3 PSI N2) combined with a 2 SLM flow of N2 and passed ����

through a 210Po Nuclecel ionizer (NRD inc.). The reagent ion was then carried into the ����

ion-molecule region where Br2 and BrO were detected as an I- adduct producing I.BrO- and I.Br2
-. ����

BrCl was detected as the ionized ion BrCl- due to ion transfer. HOBr was detected as an adduct of ��	�

both I- and H2O as I-.HOBr.H2O. Contrary to Liao et al., (2012) under our conditions it is not ��
�

observed at mass 223 and 225 (I.HOBr-) even with up to 12 ppb of HOBr calibrant and therefore ����

cannot interfere with the BrO signal. A variation of voltage tuning through the collisional ����

dissociation chamber (CDC) and quadrupole can drastically change the clustering abilities of the ����

produced ions and possibly explain this difference. An example in the literature of such variation ����

can be viewed for N2O5, where it has been reported as the adduct I.N2O5
- (Kecher et al., 2009) and ����

NO3
- declustered by the CDC (Le Breton et al., 2014).  ����

 ����

Calibration and gas preparation ����
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The CIMS was calibrated to attain a sensitivity for BrO, HOBr, Br2, BrCl and formic acid in the ��	�

laboratory before and after the campaign. Here, we describe the BrO setup, whereas the calibrations ��
�

for other compounds can be found in the supplementary material. BrO was produced in a flow tube ����

via a moveable injector and produced from the reaction  ����

Br2 +  O    ®   BrO  +  Br   (R1) ����

Oxygen atoms were generated using a Beenakker microwave discharge cavity operating at 60W. A ����

1 SLM flow of He (99.999 %) purified using a molecular sieve trap cooled to 78 K was combined ����

with a 1 SCCM flow of 0.1 % O2 (>99.9995 %) and passed through quartz tubing within the ����

microwave discharge cavity. A 1-10 SCCM flow of a 0.5 % gas mixture of bromine was added into ����

the side arm of the sliding injector, combined with a 3 SLM flow of He, downstream of the ����

microwave discharge cavity reacting with O atoms to produce BrO preceding entrance to the ��	�

CIMS, which was identified at mass m224; I.BrO-. ��
�

The BrO signal calibration was achieved by adding NO to the flow tube via the moveable injector ����

at a constant contact time of 20 ms and by monitoring the resultant NO2 formed by reaction with ����

BrO, using a Thermo Fisher, model 42i NO-NO2-NOx Analyser.  ����

BrO  +  NO    ®    NO2  +  Br  (R2) ����

NO (Technical grade 98.5%, Sigma-Aldrich) was purified by freeze-pump-thaw cycles, and ����

selective freezing of NO2 impurities. NO2 (Technical grade, Air Products 99.5+%, Sigma-Aldrich) ����

was purified by freeze-pump-thaw cycles. He (CP Grade, BOC) was passed through N2 (l) ����

containing a molecular sieve (5Å 4-8 mesh bead, Sigma-Aldrich) before entering the Beenakker ����

cell. All gas mixtures entering the microwave cavities were made up in electronic grade He ��	�

(99.9999 %, BOC).  ��
�

Complete removal of BrO was ensured by adding sufficient NO, confirmed by a constant NO2
 ����

signal with further increases in (NO). The sensitivity was estimated for BrO to be 50 ion counts ppt-����
1 s-1. Validation of the BrO production was confirmed using a flow tube chemical ionization mass ����

spectrometer implementing the SF6
- ionization scheme, as reported previously by Shallcross et al. ����

(2012).  ����

 ����

A time series and mass scan of the BrO signal can be seen in figure 1 where the raw 1 Hz data and ����

30 second averaged data are displayed to show how the limit of detection (0.1 ppt) was achieved. ����

The increased standard deviation during the calibration is as a result of the increased noise from use ��	�
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of the microwave discharge in the production of BrO in the flow tube and not an instrumental ��
�

factor. This would increase a limit of detection (LOD) to 0.36 ppt if these data were used for the ����

calculation, although this would not change any of the analysis as this value is below the 5th ����

percentile. The uncertainty of the BrO data is therefore +15%. The low LOD can be attributed to ����

the tuning of the instrument which has a signal of 0 Hz during background periods.  The instrument ����

was tuned to maximise sensitivity and minimize the LOD by optimisation of the most well ����

characterised species the CIMS detects, formic acid. Simultaneous tuning of the formic acid peak ����

area and minimisation of non-formic acid peaks during a formic acid calibration ensured an ����

increase in counts was not due to increased MCP voltage noise or instrumental interference. This ����

ensures minimal signal at the BrO mass is observed during background periods and attributes. To ��	�

validate this limit of detection for field measurements, dry nitrogen was introduced into the inlet ��
�

before and after a flight to simulate zero ppt BrO ambient air. ����

����

 ����

Fig. 1a. BrO time series and mas scan during a calibration and background period. The standard deviations are ����

reported for both 1 Hz and 30 second averaged data.  ����
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 ����

Figure 1b. Timer series of in flight data utilising the nylon scrubber as a background technique for formic acid ����

and the inorganic halogens.  ����

 ��	�

All calibrations were performed relative to in-flight formic acid calibrations and pre-flight ground ��
�

calibrations, previously described by Le Breton et al. (2012). Calibrations of BrO, Br2, HOBr and �	��

BrCl were performed alongside formic acid calibrations in the laboratory, under varying water �	��

vapour conditions, to assess relative changes in the instrument’s sensitivity. The sensitivity of the �	��

instrument were found to have no dependence on relative humidity. This is attributed to a tuning of �	��

excess reagent ions and the I.(H2O)- cluster which ensures IMR water availability and sensitivity is �	��

not dependent on atmospheric relative humidity. �	��

Inlet losses �	��

The loss of HOBr onto instrument and inlet walls was quantified using a perfluoroalkoxy (PFA) �	��

flow tube inlet system which varied in length from 0.2 m to 2 m. Up to 15 % of HOBr was seen to �		�

convert to Br2 on the inlet walls, although this value did not vary with inlet length. Therefore, it �	
�

was assumed that 15 % of the Br2 signal resulted from HOBr. This was factored into every data �
��

point collected during the campaign.  �
��

 �
��

4. Measurement Results �
��

Here, we report the first simultaneous airborne real-time observations of BrO, Br2, BrCl and HOBr, �
��

in tropical marine air with minimal influence from anthropogenic activity. The 1 Hz inorganic �
��

halogen data were averaged to 30 seconds in order to facilitate comparison with other in-flight �
��
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measurements and model outputs. A time series of these data can be seen in figure 2, displaying the �
��

concentration of BrO, HOBr, BrCl and Br2 during flight B830 with the time displayed as local time, �
	�

together with O3 and altitude. In figure 2 Br2, BrCl and HOBr are all above the limit of detection �

�

threshold throughout the flight. O3 and altitude measurements are also displayed in the figure 2. ����

The measurement uncertainties are 10%, 10%, 10% and 15% respectively. BrO concentrations ����

throughout the campaign ranged from below the limit of detection (0.1 ppt for 30 second averaged ����

data) up to 1.71 ppt, with a mean of 0.69 ppt. These concentrations are within the range of that ����

reported at other equatorial mid-ocean sites such as Cape Verde (Mahajan et al., (2010) and the ����

Canary Islands (Leser et al., (2003). Our results further confirm that BrO is present in the tropical ����

troposphere at globally significant levels. ����

 ����
Fig. 2. A time series during flight B841 (14/02/14) of BrO (blue), Br2 (green), HOBr (red) and BrCl (black) 30 ��	�

second averaged concentrations from the CIMS and O3 (light blue). The aircraft altitude (black) is also ��
�

displayed. ����

 ����

The altitude profile of BrO and O3 can be seen in figure 3A for 4 flights during the campaign. A ����

broad anti-correlation was observed between BrO and O3 during these flights, even though ����

individual profiles varied from flight to flight. Tracer-tracer analysis of all the flight data over 4 ����

altitude bins (figure 3B) is consistent with surface deposition being the dominant route for O3 loss ����

although at higher altitude bins, a larger anti correlation is observed. Further analysis of 2 altitude ����

bins (0-2 km and 2-8 km), where the BrO is split into two samples; above and below the 50th ����

percentile, shows a near identical level of O3 below and above the 50th percentile in the 0-2 km bin. ��	�

The 2-8 km bin shows an 8 ppb reduction in O3 compared with the low BrO sample (the green bar). ��
�
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This is consistent with the model results, i.e. Br driven ozone loss is small in the MBL (most likely ����

due to the already very short life time of O3 at the surface), but is significant above the MBL in the ����

Free Troposphere. It must be noted that this correlation was not observed during every profile. The ����

possibility that observed features were of stratospheric origin was dismissed after analysis of N2O ����

measured by a Quantum Cascade Laser absorption spectrometer (QCL) (Pitt et al., 2015) exhibited ����

no concentrations characteristic of that from a stratospheric source. ����

 ����

A ����

 ��	�

B ��
�

 ����

Fig.3 Figure A shows altitude profile box plots of BrO and O3 for 4 flights. The median, mean, 25th, 75th, 5th and ����

95th quartile ranges are indicated. Graph B shows a correlation plot of ozone and BrO split into 4 altitude bins ����

(red > 6 km, green 4 -6 km, blue 2 – 4 km, black 0 – 2 km) and also a bar chart of binned BrO data by altitude ����

split into BrO concentrations above the 50th percentile (red) and below the 50th percentile (green). ����

 ����

5. Global model simulations ����
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A GEOS-Chem (www.geos-chem.org) global chemical transport model is utilised to interpret ����

observed inorganic bromine mixing ratios. The model is driven by GEOS-5 assimilated ��	�

meteorological data from the NASA Global Modeling and Assimilation Office with 1/2°x2/3° ��
�

horizontal resolution and 47 vertical layers extending from the surface up to about 80 km. The ����

horizontal resolution is degraded to 4°x5°. The model includes a detailed ozone-NOx-VOC-����

aerosol-Br-Cl tropospheric chemistry mechanism as described in great detail by Schmidt et al., ����

(2016) building on the previous bromine mechanism of Parrella et al. (2012) by including chlorine ����

chemistry and more extensive halogen multiphase chemistry. Model sources of inorganic bromine ����

include sea salt debromination, oxidation of bromocarbon (CHBr3, CH2Br2, CH3Br) and input from ����

the stratosphere. In simulating the source of bromine from sea salt aerosol (SSA) we assume that ����

50% of bromide in newly emitted SSA is activated and released as Br2. Model CHBr3 and CH2Br2 ����

emissions are based on emission fields of Hossaini et al. (2013) and modelled bromocarbon mixing ��	�

ratios are consistent with aircraft observations from an ensemble of field campaigns (Parella et al., ��
�

2012). Stratospheric concentrations (monthly and diurnally varying) of Bry (Br, BrO, HOBr, HBr, ����

BrNO3 and BrCl) are taken from a� Goddard Earth Observing System Chemistry-Climate Model ����

(GEOSCCM) simulation that has been demonstrated to yield stratospheric BrO profiles consistent ����

with balloon observations (Holmes et al., 2006). The halogen and heterogeneous chemistry ����

mechanism yields BrO column densities and mixing ratios broadly consistent with ground based ����

and recent aircraft observations (Mahajan et al., 2010 Volkamer et al., 2015, Wang et al., 2015). ����

 ����

Simulated BrO and HOBr (figure 4) show fair agreement (over 55% and 75% of the data points ����

agreeing within error respectively) with observations in the MBL and FT. Agreement is only ��	�

achieved when heterogeneous chemistry is included, as shown in figure 4. Bromine driven O3 loss ��
�

takes place by cycling between Br, BrO and HOBr. Bromine driven oxidation of NOx (a key ozone ����

precursor) also reduces the level of ozone in the troposphere. The BrO measurements in the Pacific ����

by Wang et al., (2015) suggested that their consistent high BrO concentrations were due to a ����

missing inorganic source. Here, the measured inorganic halogen concentrations, similar to that by ����

Wang et al., (2015) further support their hypothesis that inorganic halogen concentrations may ����

often be several ppt in the Pacific. The increase in BrO from heterogeneous chemistry results in a ����

further 6 ppb O3 loss in the model. ����

The model predicts higher levels of BrCl than Br2 in direct contrast with observations. The ����

inconsistent pattern in simulated levels of BrCl and Br2 may be due to multiphase halide exchange ��	�

reactions (BrCl + Br- �  Br2 + Cl-) that are not accounted for in the simulations, which has ��
�
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previously been reported to initiate O3 depletion reactions (Wachsmuth et al., 2002). The model ����

results are unable to account for the observed high levels of Br2 throughout the campaign, seen in ����

figure 4 where the measured sum of BrCl and Br2 is on average 0.5 ppt higher than the model. It ����

must be stated that this value represents absolute reported concentrations and does not account for ����

experimental uncertainty. Extensive laboratory studies have assessed a possible inlet loss of HOBr ����

to form Br2 (Liao et al. 2012 and Neuman et al., 2010). Our results indicate that a maximum of ����

15% of HOBr is lost on the walls, which could not account for the discrepancy between model and ����

measurement.  O3 may play in halogen activation on the inlet, although no sign of this interference ����

was found; i.e. no correlation between observed Br2 and O3 is observed (see figure S4 in the ��	�

supporting material). Furthermore, there remains the possibility that our inlet walls could become ��
�

coated in sea salt and thus increase the Br2 production along the inlet which would be difficult to �	��

take into account. However, Huey and co-workers (see e.g. Neuman et al., 2010) experimentally �	��

determined the efficiency of inlet conversion of HOBr on the inlet on various PFA in comparison �	��

with a pure salt substrate and showed that there is a factor of 5 increase in Br2 production. For the �	��

data presented in the manuscript there would have to be a factor of 20 increase in wall loss �	��

efficiency to explain our observed Br2, thus we are confident that wall loss can not explain the �	��

observed Br2. Liao et al., (2012) found that NaBr deliquescence in the presence of OH and the �	��

photolysis of O3 could produce significant levels of molecular bromine. This source of bromine is �	��

not represented in the model and could therefore account for its underestimation compared to the �		�

measurements. �	
�

 �
��

Fig. 4. Altitude profile box plot of the measured (CIMS) and modelled (GEOS-Chem) concentration of BrO �
��

(upper left), HOBr (upper right), BrCl (lower left,  dashed), Br2 (lower left, full), and ozone (lower right) �
��
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throughout the campaign for 16 flights. Black lines represent the measurements. The red line is output from our �
��

GEOS-Chem simulation. The green curve is model output from a simulation without multiphase halogen �
��

chemistry (no oxidation of Br����  and Cl����  and no halogen release from SSA). The cyan curve shows simulated �
��

ozone when halogen chemistry is not included. The horizontal bars on the observed data lines correspond to the �
��

maximum and minimal values in the data set  �
��

 �
	�

 �

�

6. Contribution of inorganic bromine to ozone loss ����

CAST aircraft measurements of organobromine compounds taken by Whole Air Samples (WAS) ����

(Lidster et al., 2014) and measured by GC-MS (Hopkins et al., 2011) coupled with modelled ����

photooxidation rates show that their contribution to the Br loading is minimal. Our results indicate ����

that at least 99% of Br radicals originates from inorganic halogen species, in contrast to other ����

model studies (Liu et al., 2002). Non-halogen related O3 loss, from photolysis and reactions with ����

OH and HO2 radicals (Yang et al., 2005) was estimated using a steady state approximation ����

implementing all other inorganic halogen measurements as described in the SOM. The average ����

HO2 concentration calculated in the steady state approximation in the upper free troposphere was 6 ��	�

ppt, consistent with Jagle et al., (1997) and Tin et al, (2001). The results from this analysis imply ��
�

that Br from inorganic halogen photolysis can account for up to 20% of the O3 loss in the FT and ����

MBL as shown in figure 5. The figure also suggests that HO2 can account for up to 80% loss of O3 ����

in the upper troposphere. ����

�����

�����

Fig. 5. The graph represents the contribution to O3 loss in the FT and MBL from reaction with HO2 (yellow), ����

O1D (blue), Br from inorganic halogens measured by the CIMS (purple) and OH (red). These values have been ����

calculated from the steady state approximation explained in the SOM. ����
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There remains the possibility that we have overestimated the impact of Br2 photolysis as a result of ��
�

inlet conversion of HOBr. However, even if we assume that all the Br2 that we observe is resultant ����

from HOBr, that would not alter the conclusions of this work. Inorganic Bromine would still be the ����

major source (99%) of Br atoms in the MBL, the source being either from Br2 or HOBr. ����

  ����

7. Conclusions ����

 ����

The recent work by Wang et al., (2015) showing the capacity for inorganic halogen chemistry to ����

destroy ozone in the Pacific region and suggestioning that such high concentrations of BrO may ����

result from high concentrations of inorganic halogens in the region have been further supported by ��	�

the work presented here. The first simultaneous airborne measurements of BrO, Br2, HOBr and ��
�

BrCl suggest inorganic halogen photochemistry is the overwhelmingly dominant source of Br in ����

the FT and MBL in comparison with that of organobromine compounds. Analysis of data from this ����

work reveals that Br radicals generated from inorganic halogen photolysis can account for up to ����

20% of O3 in the FT and to a lesser extent in the MBL as shown in figure 5. Previous model studies ����

suggested that there could be up to 20% less ozone in the tropics as a result of bromine ����

chemistry (von Glasow et al., 2004, Long et al., 2014) and this study has provided the direct ����

evidence of the inorganic sources of bromine. This study also builds on the advancements in this ����

field by Wang et al. (2015) and further supports the hypothesis that a missing source of BrO ����

production may propagate through the debromination of sea salt.  ��	�

 ��
�
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