

This is a repository copy of *The Reaction between* CH₃O₂ and OH Radicals: Product *Yields and Atmospheric Implications*.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/112109/

Version: Accepted Version

Article:

Assaf, E, Sheps, L, Whalley, L orcid.org/0000-0002-4486-9029 et al. (4 more authors) (2017) The Reaction between CH₃O₂ and OH Radicals: Product Yields and Atmospheric Implications. Environmental Science & Technology, 51 (4). pp. 2170-2177. ISSN 0013-936X

https://doi.org/10.1021/acs.est.6b06265

© 2017 American Chemical Society. This document is the Accepted Manuscript version of a Published Work that appeared in final form in Environmental Science and Technology, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acs.est.6b06265. Uploaded in accordance with the publisher's self-archiving policy.

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

1	
2	The Reaction between CH ₃ O ₂ and OH Radicals: Product
3	Yields and Atmospheric Implications
4	
5	
6	Emmanuel Assaf ¹ , Leonid Sheps ² , Lisa Whalley ^{3,4} , Dwayne Heard ^{3,4} , Alexandre
7	Tomas ⁵ , Coralie Schoemaecker ¹ , Christa Fittschen ^{1,*}
8	
9 10	¹ Université Lille, CNRS, UMR 8522 - PC2A - Physicochimie des Processus de Combustion et de l'Atmosphère, F-59000 Lille, France
11 12	² Combustion Research Facility, Sandia National Laboratories, 7011 East Ave., Livermore, California 94551 USA
13	³ School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
14 15	⁴ National Centre for Atmospheric Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
16 17	⁵ Mines Douai, Département Sciences de l'Atmosphère et Génie de l'Environnement (SAGE), F-59508 Douai, France
18	
19 20 21 22	*Corresponding author: Christa Fittschen Phone: +33 3 20 33 72 66, Fax: +33 3 20 43 69 77 e-mail: christa.fittschen@univ-lille1.fr
23	
24	Revised Manuscript
25	Submitted to
26	Environmental Science & Technology
27	

28 Abstract

29 The reaction between CH_3O_2 and OH radicals has been shown to be fast and to play an appreciable 30 role for the removal of CH₃O₂ radials in remote environments such as the marine boundary layer. Two 31 different experimental techniques have been used here to determine the products of this reaction. The 32 HO₂ yield has been obtained from simultaneous time-resolved measurements of the absolute concentration of CH₃O₂, OH and HO₂ radicals by cw-CRDS. The possible formation of a Criegee 33 34 intermediate has been measured by broadband cavity enhanced UV absorption. A yield of ϕ_{HO_2} = 35 (0.8 ± 0.2) and an upper limit for $\phi_{Criegee} = 0.05$ has been determined for this reaction, suggesting a minor 36 yield of methanol or stabilized trioxide as a product. The impact of this reaction on the composition of 37 the remote marine boundary layer has been determined by implementing these findings into a box 38 model utilizing the Master Chemical Mechanism v3.2, and constraining the model for conditions 39 found at the Cape Verde Atmospheric Observatory in the remote tropical Atlantic Ocean. Inclusion of the CH₃O₂+OH reaction into the model results in up to 30% decrease in the CH₃O₂ radical 40 41 concentration while the HO₂ concentration increased by up to 15%. Production and destruction of O₃ 42 are also influenced by these changes, and the model indicates that taking into account the reaction 43 between CH₃O₂ and OH leads to a 6% decrease of O₃.

44

45 TOC Graph

47 Introduction

Peroxy radicals, RO₂, are key species in atmospheric and low temperature combustion chemistry. 48 49 They are reactive intermediates formed during the oxidation of all hydrocarbons. In the atmosphere, 50 their subsequent fate depends on the concentration of NOx. In polluted environments at high NOx 51 they will rapidly be removed by reaction with NO to form NO₂. Subsequent photolysis of NO₂ will 52 lead to an increase in O₃ concentration. With decreasing NO concentration, other reaction pathways 53 become competitive for RO₂: the self- and cross-reactions with HO₂ or other RO₂ radicals, leading mostly to stable products¹. Recently, a new reaction pathway has been suggested as a competitive fate 54 for RO₂ in clean environments, namely the reaction of RO₂ with OH radicals^{2,3}. Archibald *et al.*² have 55 investigated in a modeling study the impact of including the reaction between RO₂ and OH on the 56 57 composition of the Marine Boundary Layer (MBL). Different scenarios were run using the BAMBO model, based on the Master Chemical Mechanism, MCM⁴. Different rate constants and reaction paths 58 59 were considered for RO₂ up to C₄, and for the simplest one, CH₃O₂, leading to the following products:

60

 $OH + CH_3O_2 \rightarrow CH_2OO + H_2O$ (R1a)

(R1b)

(R1c)

 $OH + CH_3O_2 \rightarrow CH_3O + HO_2$

 $OH + CH_3O_2 \rightarrow CH_3OH + O_2$

63 Archibald *et al.* found for all possible reaction channels only a small, negligible effect on the mixing ratios of O₃, NO_x, OH and other trace gas species in the marine boundary layer. However, a substantial 64 65 increase in the mixing ratios of HCOOH was predicted (from 0.16 ppt in the base case, i.e. absence of 66 (R1), to 25.5 ppt at the scenario with the largest rate constant), if the reaction pathway were the 67 formation of the Criegee radical (R1a). A strong increase in the mixing ratio of CH₃OH (from 37 ppt 68 in the base case, i.e. absence of (R1), to 294 ppt at the largest rate constant scenario) resulted if the 69 major pathway were (R1c): the impact on stable species was the smallest if (R1b) was the major path. Ab initio calculations^{5,6} predict pathway (R1b) to be the major reaction, with possible minor 70 contributions of (R1c). Very recently, Müller et al.⁶ have implemented the title reaction into a global 71 72 atmospheric chemistry model and have shown, that a yield of around 18% for (R1c) could explain a 73 large missing source of methanol over remote oceans. It seems therefore important to determine 74 experimentally the product distribution of (R1).

The rate constant has been measured recently for the first time for the two simplest peroxy radicals^{$$-10$$}

76
$$CH_3O_2 + OH \rightarrow \text{ products}$$
 (R1)
77 $C_2H_5O_2 + OH \rightarrow \text{ products}$ (R2)

Large rate constants $k_1 = (2.8\pm1.4)\times10^{-10}$ cm³s⁻¹ and $k_2 = (1.2\pm0.3)\times10^{-10}$ cm³s⁻¹ have been measured by our group for CH₃O₂⁷ and C₂H₅O₂⁸, respectively, although k_1 has very recently been revised by our group to a lower value⁹: $k_1=(1.60\pm0.4)\times10^{-10}$ cm³s⁻¹. The rate constant k_1 has also recently been determined by Yan *et al.*¹⁰ with an even lower value of $k_1=(0.84\pm0.17)\times10^{-10}$ cm³s⁻¹ deduced from 82 fitting UV-absorption signals to a complex mechanism. Because these reactions are fast, they can 83 become competitive with other reaction paths for RO₂ radicals. Fittschen *et al.*³ have integrated (R1) into a detailed box model utilizing the MCM¹¹ and have determined its importance as a sink for 84 CH₃O₂ radicals in remote marine environments. Running the model using conditions found in the 85 remote tropical marine boundary layer during a field campaign at Cape Verde in 2007¹¹ have shown 86 that using the initially reported rate constant from Bossolasco et al.⁷ results in up to 30% of all CH₃O₂ 87 radicals being removed through $(R1)^{3,6}$. The revised rate constant of Assaf *et al.*⁹ will decrease the 88 89 importance of (R1); yet, this reaction is still a substantial sink for CH₃O₂. However, in order to 90 evaluate the impact of this reaction on the composition of the atmosphere it is essential to identify the 91 reaction products. In the current paper we present experiments for the determination of the yields of 92 two possible products: HO_2 radicals from path (R1b) and the Criegee intermediate from path (R1a). 93 The results of these experiments have been implemented into a box model utilizing the MCM, and the 94 impact on the composition of the remote atmosphere has been determined.

95

96 Experimental section

HO_2 yield by cw-cavity ring down spectroscopy (CRDS)

An improved version of a well-described set-up¹²⁻¹⁵, installed at the University of Lille, has been used 98 99 to quantify simultaneously OH, HO₂ and CH₃O₂ radicals by two cavity ring down spectroscopy (cw-100 CRDS) absorption paths, crossing in a slow flow reactor and at a small angle to an Excimer laser 101 photolysis beam. One cavity was equipped with mirrors optimized for a detection of CH_3O_2 radicals at 102 7489.16 cm⁻¹, the other beam path was used for a sequential detection of HO₂ radicals¹⁶ at 6638.205 cm⁻¹ and OH radicals¹⁷ at 7028.831 cm⁻¹. The sequential detection of both species, OH and HO₂, is fast 103 and simple, as the mirrors cover the wavelength region for both species, OH and HO_2 . The entire beam 104 105 path is fibered coupled and changing the wavelength can be accomplished in less than one minute by 106 switching the fiber connectors of the distributed feedback (DFB) lasers without re-alignment of the 107 cavity. Typical kinetic decays are obtained by acquiring ring-down events over several photolysis 108 pulses (20 to 50), and ring-down times τ are converted to absorbance α by the following equation:

109
$$\alpha_t = [A]_t \times \sigma = \frac{R_L}{c} \left(\frac{1}{\tau_t} - \frac{1}{\tau_0} \right)$$
 [Eq. 1]

110 The quantity τ_0 and τ_t are the ring-down times in the presence and absence of the absorbing species, in 111 our case before and after the photolysis pulse, respectively; σ is the absorption cross section of the 112 absorbing species; R_L is the ratio between cavity length (79 cm) and absorption length (in our case the

- overlap of photolysis laser and near IR laser which is 37.7 cm; *c* is the speed of light. For more details
- 114 on the synchronization and acquisition see Parker *et al.*¹⁴.
- 115 Radicals have been generated from the 248 nm photolysis of XeF₂, which is a solid and easy to handle.
- 116 Mixtures have been prepared by introducing a few crystals (0.3-0.5 g) into a home-made Teflon bag,
- which was then filled with around 50 l helium. Evaporation of the crystals led to XeF_2 concentrations
- of around 1Torr, well below its vapor pressure of ($\approx 5 \text{ Torr}^{18}$). Stable flows of this mixture were
- introduced into the photolysis reactor through a Teflon needle valve: the flow rate was determined
- 120 through measurement of pressure increase into a known volume. More details on the use of XeF_2 as a
- 121 photolytic source of F-atom can be found in a recent paper 9 .
- A total of four experiments has been carried out, all at a total pressure of 50 Torr and 295K. Theconcentrations are summarized in Table 1.

124 Table 1: Initial concentrations of stable species and maximum radical concentrations from cw-CRDS125 measurements

O_2 / 10^{18} cm ⁻³	He / 10^{17} cm ⁻³	$CH_4 / 10^{15} cm^{-3}$	$^{a}XeF_{2} / 10^{14} cm^{-3}$	$^{b}CH_{3}O_{2} / 10^{12} \text{ cm}^{-3}$	^b OH / 10 ¹² cm ⁻³	$^{b}\text{HO}_{2,\text{max}}$ / 10 ¹² cm ⁻³
1.30	3.0	1.00	1.94	4.3	0.45	0.58
1.11	5.0	0.82	3.72	8.2	1.7	2.2
1.06	5.5	0.86	4.17	8.9	1.9	2.4
0.86	7.6	0.66	6.04	12.1	4.8	5.2

^a: estimated from weighted XeF₂ in Teflon bag, ^b: as obtained from cw-CRDS measurements using the absorption cross sections given below

128

129 Broadband cavity-enhanced UV spectroscopy

The reaction of OH with CH₃O₂ was also investigated by time-resolved broadband cavity-enhanced 130 UV spectroscopy to test for the possibility of production of formaldehyde oxide, CH₂OO. The 131 132 experimental apparatus, which was developed at Sandia National Lab, has been described in detail previously^{19,20}, and only a brief account is given here. The continuous-wave broadband optical buildup 133 cavity was configured to simultaneously probe the spectral range $\lambda = 300 - 450$ nm with average 134 135 effective path length of ~ 40 m and spectral resolution of 1.5 nm. The optical cavity was integrated into 136 a gas-phase flow reactor with independent control over the experimental temperature, pressure, and 137 sample mixture composition. All experiments were performed at T = 293 K and total P = 30 Torr, and 138 transient UV spectra were recorded with time resolution of 30 µs.

139 Results and discussion

140 This section is divided into three sections: details on the determination of HO₂ yield, obtained by cw-

141 CRDS in Lille, are given in the first part; the determination of an upper limit for the yield of Criegee

intermediate by UV absorption spectroscopy, obtained at Sandia National Lab, is given in the secondpart; the implementation in the MCM and the impact of the new findings onto the composition of the

part, the implementation in the MCM and the impact of the new infinings onto the composition of t

troposphere are presented in the third part.

145 The yield of HO₂ radicals as products of the reaction $CH_3O_2 + OH$

We have employed a set-up combining two cw-CRDS paths within a laser photolysis reactor to directly quantify the yield of HO₂ radicals, ϕ_{1b} . For this purpose, the reaction has been initiated by the concurrent photolytic production of CH₃O₂ and OH radicals through the following reaction sequence:

149	$XeF_2 + hv_{248nm} \rightarrow Xe + 2 F$	(R3)
150	$F + CH_4 \rightarrow HF + CH_3$	(R4)
151	$CH_3 + O_2 + M \rightarrow CH_3O_2 + M$	(R5)
152	$F + H_2O \rightarrow HF + OH$	(R6)

The ratio between the initial concentrations of CH₃ and OH radicals is given by the ratio of the rates of (R4) to (R6), i.e. the products of the rate constant and the corresponding precursor concentration (CH₄ or H₂O). The subsequent reaction (R5) is under our conditions (\approx 30 Torr O₂) very fast (k'₅ \approx 1.3×10⁵ cm³s⁻¹) and it can be considered that all CH₃ radicals are converted to CH₃O₂. CH₃O₂ radicals have been quantified on one absorption path, while HO₂ and OH radicals have been quantified sequentially on the second path.

The line strength of a ground state $X^2\Pi_{1/2}$ transition of OH radicals in the near infrared region at 159 7028.831 cm⁻¹ has been very recently determined by Assaf and Fittschen¹⁷ to be S = 4.07×10^{-21} cm, 160 with a peak absorption cross section at 50 Torr helium of $\sigma_{OH, 50 \text{ Torr He}} = (1.54\pm0.1) \times 10^{-19} \text{ cm}^2$. The 161 162 current work has been carried out in the presence of high O₂ concentrations (25 to 40 Torr, the 163 complement to 50 Torr being mostly He from the XeF₂ flow), and therefore the peak absorption cross 164 section will be somewhat lower due to increased pressure broadening of O2 compared to He. 165 Unfortunately, the O_2 broadening coefficient γ_{O_2} for the line used in this work is currently not known and has been estimated. In the Hitran data base²¹ one finds the broadening coefficient in air to be γ_{air} = 166 0.095 cm⁻¹atm⁻¹. Taking this value, i.e. considering an identical broadening efficiency for O₂ and N₂, 167 one can calculate from the line strength¹⁷ and considering a Voigt profile $\sigma_{OH, 50 \text{ Torr air}} = 1.16 \times 10^{-19} \text{ cm}^2$. 168 Taking into account the varying He/O₂ ratios, the peak absorption cross section for the different 169 experiments vary between $(1.23 - 1.34) \times 10^{-19}$ cm². The average value of $\sigma_{OH} = 1.27 \times 10^{-19}$ cm² of has 170

- been used in [Eq. 1] to convert α_{OH} into [OH]. An uncertainty of 20% is estimated for this absorption
- 172 cross section.
- 173 The absorption cross section for CH_3O_2 has been taken from Farago *et al.*²². For HO_2 it has been taken
- 174 from Thiébaud et al.²³: this line has an absorption cross section nearly two times higher than
- surrounding lines and is probably the convolution of two nearly perfectly overlapping transition. As a
- 176 result the pressure broadening in Helium²⁴ or in O_2^{25} is very small. The uncertainty of σ_{HO_2} is estimated
- to be less than 10%.

Figure 1: Absolute concentrations of CH_3O_2 (green symbols), HO_2 (red symbols) and OH (blue symbols) following the photolysis of $[XeF_2] = 3.7 \times 10^{14} \text{ cm}^{-3}$ in the presence of $[CH_4] = 6.8 \times 10^{14} \text{ cm}^{-3}$, $[H_2O] = 7 \times 10^{14} \text{ cm}^{-3}$, $[He] = 5.0 \times 10^{17} \text{ cm}^{-3}$ and $[O_2] = 1.1 \times 10^{18} \text{ cm}^{-3}$. Absorption cross sections of $\sigma_{CH_3O_2} = 3.33 \times 10^{-20} \text{ cm}^2$, $\sigma_{HO_2} = 2.72 \times 10^{-19} \text{ cm}^2$ and $\sigma_{OH} = 1.27 \times 10^{-19} \text{ cm}^2$ have been used for conversion of absorbances α for the three species. The black lines represent adjustment to the model in **Table 2**.

Figure 1 shows a typical experiment at 50 Torr total pressure, using the following concentrations: 185 $[XeF_2] = 3.7 \times 10^{14} \text{ cm}^{-3}, [CH_4] = 6.8 \times 10^{14} \text{ cm}^{-3}, [H_2O] = 7 \times 10^{14} \text{ cm}^{-3}, [He] = 5.0 \times 10^{17} \text{ cm}^{-3} \text{ and } [O_2] = 7 \times 10^{14} \text{ cm}^{-3}, [He] = 5.0 \times 10^{17} \text{ cm}^{-3}$ 186 1.1×10^{18} cm⁻³. The concentration time profiles of all three species are presented. It can be seen that the 187 188 initial fast decay in CH₃O₂ concentration is on the same order of magnitude as the decay of the initial 189 OH concentration. It can also be seen that the maximum HO_2 concentration is slightly higher than the 190 initial OH concentration, suggesting a high yield of HO_2 radicals produced in (R1). In order to determine the HO₂ yield, ϕ_{HO_2} , the concentration time profiles have been adjusted to a simple model, 191 192 with the reactions and rate constants shown in Table 2.

193

Table 2: Reaction mechanism used to fit CH₃O₂, OH and HO₂ concentration time profiles

No.	Reaction		$k / \mathrm{cm}^3 \mathrm{s}^{-1}$	Reference
1a	$CH_3O_2 + OH$	\rightarrow CH ₂ OO + H ₂ O	0	
1b		$\rightarrow HO_2 + CH_3O$	$(1.25\pm0.3) \times 10^{-10}$	This work and ⁹

1c	\rightarrow products *	$(0.35\pm0.3) \times 10^{-10}$	
5	$CH_3 + O_2 (+M) \rightarrow CH_3O_2 (+M)$	1.4 ×10 ^{-13,**}	26,27
7	$CH_3O + O_2 \rightarrow CH_2O + HO_2$	1.92×10^{-15}	28
8a	$2 \text{ CH}_3\text{O}_2 \rightarrow 2 \text{ CH}_3\text{O} + \text{O}_2$	1.3 ×10 ⁻¹³	28
8b	$2 \text{ CH}_3\text{O}_2 \rightarrow \text{ products}$	2.2×10^{-13}	28
9	$CH_3O_2 + HO_2 \rightarrow products$	5.2 ×10 ⁻¹²	28
10	$2 \text{ HO}_2 \rightarrow \text{product}$	1.7 ×10 ⁻¹²	29
11	$OH + HO_2 \rightarrow product$	1.0×10 ⁻¹⁰	29,17
12	$HO_2 \rightarrow diffusion$	$8 - 22 \text{ s}^{-1}$	This work

*no information about the products can be obtained from the current experiments **Rate constant in 50
 Torr helium

Four experiments have been carried out with changing XeF₂ concentrations, leading to initial total radical concentrations between $5 - 17 \times 10^{12}$ cm⁻³ and with ratios of CH₃O₂ / OH between 3 and 12 (see Table 1). All four experiments can be very well reproduced with the mechanism and rate constants from **Table 2**, i.e. ϕ_{HO_2} =0.8.

The uncertainty of the rate constant of (R7), leading to formation of a second HO₂ radical, is given²⁸ 202 203 with \pm 50%. However, the O₂ concentration in our experiments is high, so that this reaction is not the 204 rate limiting step and an uncertainty of k_7 has only a very minor impact on the HO₂ profile. Also, the reactions of CH₃O with OH or HO₂ are probably not important, even though their rate constants are 205 not well known: taking an estimated rate constant 30 of 3×10^{-11} cm³ s⁻¹ for the reaction with OH, even 206 207 under the most unfavorable conditions (high radical and low O₂ concentration), only 1% of the initial 208 OH radicals would react with CH₃O. The influence of (R8) and (R9) are very limited at short reaction 209 times, and therefore any uncertainty of k_8 and k_9 would have a negligible influence on the retrieval of 210 ϕ_{HO_2} . Equally, the uncertainty of k_{II} has only a limited influence on ϕ_{HO_2} : while the reaction itself 211 consumes around 10% of the initial OH radicals at the experiment with the highest, initial radical 212 concentration, the estimated error of 15% on k_{II} would lead to a change of less than 3% in ϕ_{HO_2} .

The major uncertainty of the retrieved value of ϕ_{HO_2} comes from uncertainties in the absorption cross sections used in [Eq. 1] to convert the absorbance α of OH and HO₂ radicals into absolute concentrations. While the absorption cross section of HO₂ radicals is well determined^{24,31,32} and the uncertainty is estimated to be less than 10%, σ_{OH} has only been determined once¹⁷. Additionally, the value used in this work needs to take into account the increased pressure broadening by the high O₂ concentrations. Therefore, the uncertainty on the OH absorption cross section is estimated to be 20%. 219 The impact of this uncertainty on the retrieved ϕ_{HO_2} is illustrated in the left graph of Figure 2, using the same experiment as shown in Figure 1 (zoomed on OH and HO₂ only, the CH₃O₂ profile is not 220 shown). The black lines show the model using $\sigma_{OH}=1.27\times10^{-19}$ cm², while for the blue and red lines the 221 absorption cross section for OH has been varied by 20%. Using the lower limiting value of σ_{OH} in [Eq. 222 223 1] leads to higher OH concentration (red dashed line: the corresponding experimental data points, i.e. 224 the black circles multiplied by 1.2, are not plotted in Figure 2 for clarity). The model allows a good 225 reproduction of OH and HO₂ profiles, but in order to make up for the higher initial OH concentration, the yield of HO₂ radicals must be decreased ($\phi_{HO_2} = 0.67$). The higher value for σ_{OH} (dashed blue line), 226 227 leading to lower OH concentrations, also allows a satisfactory reproduction of the HO₂ profile, now 228 with $\phi_{HO_2} = 0.96$.

229

Figure 2: Concentration time profiles for OH (decaying profile) and HO₂ (rising profile) from the experiment shown in Figure 1, reproduced with the model utilizing the chemical mechanism from Table 2. Left graph: Influence of a 20% uncertainty of σ_{OH} on the HO₂ concentration time profile: full black line OH concentrations obtained by using $\sigma_{OH}=1.27\times10^{-19}$ cm², red dashed line with σ_{OH} decreased by 20%, blue dashed line with σ_{OH} increased by 20% (the corresponding experimental OH data are not plotted for clarity). $\phi_{HO_2} = 0.67$, 0.8 and 0.96 for the red, black and blue lines, respectively. Right graph: Impact of the rate constant k_1 on both profiles: all rate constants as in Table 2, only k_1 has been changed.

238

The right graph of **Figure 2** shows the sensitivity of the experimental data to the rate constant k_1 , 239 whereby the total value has been varied between 1 and 2×10^{-10} cm³s⁻¹. In order to reproduce the 240 241 absolute HO₂ concentration, k_{1b} and k_{1c} have been adjusted to (9/1), (12.5/3.5) and (15/5) × 10⁻¹¹ cm³s⁻ 242 ¹ for the blue, black and red curves. The blue line represents the upper limit of the rate constant recently published by Yan *et al.*¹⁰. A change in k_1 has a strong impact on the predicted HO₂ profile in 243 244 our experiment. Not only would the rise time of HO₂ slow down with a decrease in k_l , but also the 245 final, maximum HO₂ concentration would decrease. This is because the conversion of OH into HO₂ 246 through (R1) is not only governed by ϕ_{HO_2} , but also by the rate constant k_i : a lower rate constant leads to a lower conversion because competing reactions gain in importance, especially the fast reaction 247 (R11). The black line shows the best fit for both species with $k_1 = 1.6 \times 10^{-10} \text{ cm}^3 \text{s}^{-1}$. The dotted red lines 248 correspond to the model using $k_1 = 2 \times 10^{-10} \text{ cm}^3 \text{s}^{-1}$: OH and HO₂ profiles are barely reproduced with this 249

- 250 faster rate constant, the retrieved HO₂ yield would be similar with $\phi_{HO_2} = 0.75$. A decrease to $k_1 =$
- 1×10^{-10} cm³s⁻¹ results in a very poor reproduction the OH and HO₂ profiles: the time evolution is too 251
- slow for both species. With this rate constant, ϕ_{HO_2} would rise to $\phi_{HO_2} = 0.9$ because other loss 252
- 253 reactions, especially (R11), gain in importance.
- 254 In conclusion, our determination of the HO₂ yield at a total pressure of 50 Torr O₂ / He shows that
- 255 HO₂ is the major product with $\phi_{\text{HO}_2} = 0.8 \pm 0.2$.
- 256

Determination of an upper limit for the yield of Criegee intermediate 257 CH_2OO 258

The Criegee intermediate CH₂OO is the product of channel (R1a). Theoretical calculations predict this 259 pathway to be of minor importance^{5,6}, and recent experiments of Yan et al.¹⁰ using UV absorption 260 spectroscopy have determined an upper limit of 5% on channel (R1b). Experiments have been carried 261 262 out at Sandia National Laboratory. XeF₂ was not available to initiate the reaction by the same reaction 263 sequence as in Lille, also the absorption cross section would be even lower at the used wavelength. 264 Therefore, the reaction sequence was initiated by 266-nm photolysis of acetone vapor in He bath gas in the presence of 2.5 Torr $(8.25 \times 10^{16} \text{ cm}^{-3})$ of O₂. The reaction sequence begins with concurrent 265 photolytic production of methyl and acetyl radicals (at an estimated ratio of ~1.5:1) and subsequent 266 rapid reaction of these radicals with excess O₂ forms CH₃O₂ and OH³³⁻³⁵; within less than 1 ms, as 267 summarized below: 268

-	~ ~
	<u> </u>
	r 1 9
~	0.0

269	$CH_3COCH_3 + hv \rightarrow CO + 2 CH_3$	~20%	(R 13a)
270	\rightarrow CH ₃ CO + CH ₃	~80%	(R 13b)
271	$CH_3 + O_2 (+ M) \rightarrow CH_3O_2 (+ M)$	~100%	(R 5)
272	$CH_3CO + O_2 \rightarrow OH + co-products$	10 - 50%	(R 14)

273

274 The yield of OH radicals in (R14) is pressure dependant and still controversially discussed: Carr et al.³⁴ for example report a yield of $\phi_{OH} \approx 0.5$ for (R14) at 50 Torr, while recent publications of 275 Papadimitriou et al.³⁶ and Bouzidi et al.²⁵ report yield of 0.1 - 0.2 at 20 Torr. Therefore, CH₃O₂ is 276 generated by this system in excess over OH (ratio CH_3O_2 : OH \approx (3-15) : 1). Two different 277 278 experimental runs were performed. In the first, the initial molar fraction of acetone was adjusted to produce an estimated $[CH_3O_2] = 4.8 \times 10^{12} \text{ cm}^{-3}$ and a lower limit for $[OH] \ge 3.2 \times 10^{11} \text{ cm}^{-3}$; in the 279 second, the acetone concentration was increased to form $[CH_3O_2] = 8.9 \times 10^{12} \text{ cm}^{-3}$ and $[OH] \ge 6 \times 10^{11}$ 280 cm^{-3} . 281

The resulting transient spectra, averaged over kinetic times 0-5 ms, are presented in Figure 3. The 282 spectra reveal a single broad absorption feature with maximum intensity at the low-wavelength edge 283

Environmental Science & Technology

of the accessible experimental range, 300 nm, which most likely arises solely from the methyl peroxy radical. Simulations (also shown in **Figure 3**) of the predicted transient signal using the reported absorption cross-section of CH₃O₂ at 300 nm³⁷, $\sigma = 3.3 \times 10^{-19}$ cm², are in qualitative agreement with the observed spectra, which confirms our expectations of methyl peroxy radical concentration formed by reactions (R5) and (R13). The time evolution of the CH₃O₂ absorption is included as the inset in **Figure 3**.

Small Criegee intermediates such as formaldehyde oxide and acetaldehyde oxide were recently 290 shown^{20,38-40} to have very strong UV absorption bands in the 300 - 400 nm range with peak absorption 291 cross-sections of the B \leftarrow X transition of $\sim 1 \times 10^{-17}$ cm². Thus, UV absorption is a sensitive detection 292 method for Criegee intermediates, and our experiments have a detection limit for CH2OO below 293 \sim 5×10⁸ cm⁻³. Transient absorption due to CH₂OO is expected to decay on the timescale of a few ms, 294 primarily due to the reaction with excess acetone vapor⁴¹, yet we observe essentially no decaying 295 296 signals in our experiment. The presence of transient CH_3O_2 absorption somewhat obscures our probe spectral region; nonetheless, based on the signal near the peak of CH₂OO spectrum ($\lambda \sim 360$ nm), we 297 can report a realistic upper limit for CH₂OO concentration of $<1\times10^{10}$ cm⁻³ in our experiments. Even if 298 we adopt the most conservative possible approach and assign all of the transient absorption at 360 nm 299 to CH₂OO, the upper limit for its concentration at t=1 ms is still below 2.5×10^{10} cm⁻³. Being again 300 conservative and using the lower limit for the OH-concentration this leads to an upper limit of ϕ_{1a} < 301 0.05. This result is in very good agreement with theoretical calculations, but also with the recent 302 finding of Yan et al.¹⁰, who also determined an upper limit of $\phi_{1a} < 0.05$ for the formation of the 303 304 Criegee intermediate in (R1).

Figure 3: Experimental transient spectra, averaged over the kinetic times 0 - 5 ms following the 248 nm photolysis of acetone in He bath gas in the presence of 2.5 Torr O₂ (total P = 30 Torr). Inset: transient absorption, averaged over probe $\lambda = 300 - 340$ nm, as a function of kinetic time. Red and black spectra and kinetic traces are from run A ([CH₃O₂] = 8.9×10^{12} cm⁻³ and [OH] = 3×10^{12} cm⁻³) and B ([CH₃O₂] = 4.8×10^{12} cm⁻³ and [OH] = 1.6×10^{12} cm⁻³), respectively. Blue and yellow diamonds show the simulated transient absorption at 300 nm for run A and B, respectively, assuming that only CH₃O₂ contributes to the signal.

313

314 Modeling and Atmospheric Implication

315 A box model constrained to the Master Chemical Mechanism v3.2 has been run to test the atmospheric 316 significance of HO₂ production from the reaction of OH with CH₃O₂ under clean, low NO_x conditions. 317 The model was constrained with gas-phase composition field data (including the concentrations of the 318 halogen oxides IO and BrO), photolysis rates and meteorological parameters taken during the RHaMBLe project that took place in 2007⁴² at the Cape Verde Atmospheric Observatory (CVAO) 319 320 which is situated on the island of Sao Vicente in the tropical Atlantic Ocean (23.96° S, 46.39° W). This model has been described previously and was used to calculate OH and HO₂ concentrations for 321 comparison with those measured at the CVAO¹¹. Inclusion of reaction (R1b) in the model has a 322 substantial impact on the predicted CH₃O₂ levels, decreasing the concentration of CH₃O₂ by ~30% 323 324 during the afternoon (Figure 4). Taking into account the HO₂ (and CH₃O) production from (R1b) 325 reported here, the model predicts approximately 20% more HO_2 at CVAO (Figure 4). This increase in 326 modeled HO₂ further enhances the destruction of CH_3O_2 (alongside the enhanced destruction due to 327 the reaction with OH) by increasing the loss of CH_3O_2 via reaction with HO_2 (by 15%) which is the 328 dominant CH₃O₂ sink, accounting for 50% of the total CH₃O₂ destruction in this environment.

Figure 4a: Diurnal ratios of modelled radical concentrations with reaction (R1b) included: without reaction (R1b) included in the model simulations. **b:** Diurnal concentrations of modelled OH (blue), HO₂ (red) and CH₃O₂ (green) (with R1b – solid coloured lines, without R1b – dashed coloured lines) compared with measured OH and HO₂ (black lines). Errors bars represent the 1 σ day-to-day variability in the averaged data.

335

Tropospheric ozone is an important greenhouse gas and in remote oceanic regions, integrating (R1b) 336 337 into a model impacts also on its formation and destruction paths. At conditions such as found at the 338 CVAO, ozone production via reaction of peroxy radicals with NO is small, and ozone is typically 339 destroyed during the day via deposition and photochemical reactions (Table 3). HO₂ accounts for 9% of the daily ozone destruction cycle observed at CVAO and, as the reaction of CH_3O_2 with O_3 is 340 significantly slower than the reaction of HO_2 with O_3 , overlooking an additional source of HO_2 from 341 342 reaction (R1b) may influence model estimates of ozone destruction (dO_3). The reaction of HO₂ with ozone proceeds $\sim 17\%$ faster when (R1b) is included; the reactions of HO₂ with IO and BrO are also 343 344 enhanced by $\sim 18\%$ and this serves to increase dO₃ further. Considering all the net ozone destroying 345 reactions (**Table 3**), it is estimated that (R1b) enhances dO_3 by ~4%. Reaction (R1b), also serves to modify ozone production (pO₃) by a reduction in the rate of CH₃O₂+NO and an enhancement in the 346 347 rate of HO₂+NO reactions. Overall pO₃ is predicted to decrease modestly (by \sim 75 pptv d⁻¹) when (R1b) 348 is considered and so taking both the changes in pO_3 and dO_3 into account, this study suggests that 349 tropospheric ozone in remote regions will be over-estimated by $\sim 6\%$ by models which do not consider 350 the reaction of CH₃O₂ with OH. Remote oceanic regions cover approximately two thirds of the Earth's 351 surface and so omission of the reaction of CH₃O₂ with OH yielding HO₂ may lead to significant overpredictions in tropospheric ozone on a global scale. 352

353	Table 3: Percentage contribution of the rate limiting O ₃ destruction steps with and without (R1b	o)
354	included in the model simulation	

O ₃ destruction rate determining step	% Contribution to O ₃ destruction without (R1b)	% Contribution to O ₃ destruction with (R1b)
$O^1D + H_2O$	62.8	60.2
$OH + O_3$	5.8	5.3
$HO_2 + O_3$	8.5	9.5
$BrO + HO_2$	5.1	5.7
BrO + NO	1.1	1.1
BrO + BrO	0.2	0.2
BrO + IO	2.3	2.2
$IO + HO_2$	11.7	13.2
IO + NO	0.8	0.7
IO + IO	2.0	2.0

355

The concentration of methanol is generally underpredicted by global models compared to the 356 measured CH₃OH concentration. In the recent work of Müller *et al.*⁶ it was proposed that a significant 357 vield of CH₃OH in (R1) could help to explain this discrepancy. The best estimate from their theoretical 358 359 calculations predict yields for CH₃OH and for the stabilized CH₃OOOH between 0.05 and 0.1, but each with a wide error margin of a factor ~ 3.5 . This is in very perfect agreement with the 360 361 measurements presented in this word. However, in order to best reproduce measured CH₃OH 362 concentrations, a CH₃OH yield of 18%, together with a yield of 21% for stabilization of the initially 363 formed trioxide, CH₃OOOH, would be needed. This scenario leaves a yield of 61% for HO₂ formation 364 through channel (R1b). However, Müller et al. used for their model the excessively high rate constant of Bossolasco et al.⁷, and hence their study overstates the overall importance of (R1). As a result the 365 366 CH₃OH yield would need to be increased further (leading consequently to an even lower value for the 367 HO₂ yield) in order to bring into agreement the CH₃OH predictions with measurements. While a yield of 61% HO₂ would be within the error limit of the current work, an even higher value is not in 368 369 agreement with the above presented measurements. However, it has to be noted that the current 370 measurements for the HO₂ yields have been carried out at low pressure (50 Torr helium $/ O_2$) and that 371 the product distribution might change with pressure. Therefore, product distributions should be 372 determined at higher pressures in order to find out if the title reaction could be a significant source of 373 CH₃OH in the remote troposphere. The present set-up is not very suitable for this task, because the 374 absorption lines of OH and HO₂ suffer from broadening, making their detection at higher pressure less 375 sensitive. Also the uncertainty of the derived yield would increase, if the appropriate broadening 376 coefficients are not well known. The better way would be the direct detection of CH₃OH, but 377 unfortunately the cw-CRDS set-up is not sensitive to this species.

378

379

380 Acknowledgements

This project was supported by the French ANR agency under contract No. ANR-11-LabEx-0005-01 CaPPA (Chemical and Physical Properties of the Atmosphere). Development of the time-resolved broadband cavity-enhanced UV spectrometer was supported by the Laboratory-Directed Research and Development (LDRD) program at Sandia National Laboratories. Sandia is a multi-mission laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the National Nuclear Security Administration under contract DE-AC04-94-AL85000. DEH and LKW are grateful to the Natural Environment Research Council for funding.

389	References
389	References

390	(1) Tyndall, G. S.; Cox, R. A.; Granier, C.; Lesclaux, R.; Moortgat, G. K.; Pilling, M. J.;
391	Ravisnankara, A. K.; Wallington, I. J., Atmospheric Chemistry of Small Organic Peroxy
39Z 202	(2) Archibald A T · Detit A S · Dercival C L · Harvey I N · Shallcross D F. On the
393	Importance of the Reaction between OH and RO ₂ Radicals Atmos Sci Lett 2009 10 102-
394	108
396	(3) Fittschen C · Whalley L K · Heard D F. The Reaction of CH ₂ O ₂ Radicals with OH
397	Radicals: A Neglected Sink for CH_3O_2 in the Remote Atmosphere, <i>Environ. Sci. Technol.</i>
398	2014, 110, //00-//01 (4) Soundard S. M.: Ionkin M. E.: Dorwont P. G.: Billing M. I. Protocol for the
399	(4) Saunders, S. M., Jenkin, M. E., Derwehr, K. O., Finnig, M. J., Florocor for the Development of the Master Chemical Mechanism MCM v3 (Part A): Tropospheric
400	Degradation of Non Aromatic Volatile Organic Compounds Atmos Cham Phys 2003 3
401	161-180
402	(5) Bian H: Zhang S: Zhang H. Theoretical Study on the Atmospheric Reaction of
404	CH_2O_2 with OH Int. I. Ougntum Chem 2015 115 1181-1186
405	(6) Müller J-F Liu Z Nguyen V S Stavrakou T Harvey J N Peeters J The
406	Reaction of Methyl Peroxy and Hydroxyl Radicals as a Major Source of Atmospheric
407	Methanol, Nature Communications 2016, 7, 13213
408	(7) Bossolasco, A.; Faragó, E. P.; Schoemaecker, C.; Fittschen, C., Rate Constant of the
409	Reaction between CH ₃ O ₂ and OH Radicals, Chem. Phys. Lett. 2014, 593, 7-13
410	(8) Faragó, E. P.; Schoemaecker, C.; Viskolcz, B.; Fittschen, C., Experimental
411	Determination of the Rate Constant of the Reaction between C ₂ H ₅ O ₂ and OH Radicals, <i>Chem.</i>
412	Phys. Lett. 2015, 619, 196-200
413	(9) Assaf, E.; Song, B.; Tomas, A.; Schoemaecker, C.; Fittschen, C., Rate Constant of the
414	Reaction between CH ₃ O ₂ Radicals and OH Radicals revisited, J. Phys. Chem. A 2016, 120,
415	8923-8932
416	(10) Yan, C.; Kocevska, S.; Krasnoperov, L. N., Kinetics of the Reaction of CH_3O_2
417	Radicals With OH Studied Over the 292 – 526 K Temperature Range, J. Phys. Chem. A 2016,
418	120, 6111–6121
419	(11) Whalley, L. K.; Furneaux, K. L.; Goddard, A.; Lee, J. D.; Mahajan, A.; Oetjen, H.;
420	Kead, K. A.; Kaaden, N.; Carpenter, L. J.; Lewis, A. C.; Plane, J. M. C.; Saltzman, E. S.;
421	Leven even the Transieal Atlantic Occar, Atmos Chem. Phys. 2010 , 10, 1555, 1576
422	Layer over the Hopical Atlantic Ocean, Almos. Chem. Phys. 2010, 10, 1555-1576
423	(12) Intebaud, J., Fillschen, C., Near Infrared Cw-CKDS Coupled to Laser Photolysis. Spectroscopy and Kinetics of the HO. Padical Appl. Phys. B 2006, 85, 383–380
424	(12) Parker A : Join C : Schoemaacker C : Fittschen C Kingtics of the Practice of OH
425	Redicals with CH ₂ OH and CD ₂ OD Studied by Laser Photolysis Coupled to High Repetition
420	Rate Laser Induced Fluorescence <i>React Kinet Catal Lett</i> 2009 96 291-297
427	(14) Parker A · Jain C · Schoemaecker C · Szriftgiser P · Votava O · Fittschen C
420	Simultaneous Time-Resolved Measurements of OH and HO ₂ Radicals by Coupling of High
430	Repetition Rate LIF and cw-CRDS Techniques to a Laser Photolysis Reactor and its
431	Application to the Photolysis of H ₂ O ₂ Appl. Phys. B 2011 , 103, 725-733
432	(15) Votava, O.; Masat, M.; Parker, A. E.; Jain, C.; Fittschen, C., Microcontroller Based
433	Resonance Tracking unit for Time Resolved Continuous wave Cavity-Ringdown
434	Spectroscopy Measurements, Rev. Sci. Instrum. 2012, 83, 043110
435	(16) Thiebaud, J.; Crunaire, S.; Fittschen, C., Measurement of Line Strengths in the $2v^1$
436	Band of the HO ₂ Radical using Laser Photolysis / Continous wave Cavity Ring Down

436 Band of the HO₂ Radical using Laser Photolysis / Continuous wave C
 437 Spectroscopy (cw-CRDS), *J. Phys. Chem. A* 2007, *111*, 6959-6966

Assaf, E.; Fittschen, C., Cross Section of OH Radical Overtone Transition near 7028 438 (17)439 cm^{-1} and Measurement of the Rate Constant of the Reaction of OH with HO₂ Radicals, J. Phys. Chem. A 2016, 120, 7051-7059 440 Tellinghuisen, P. C.; Tellinghuisen, J.; Coxon, J. A.; Velazco, J. E.; Setser, D. W., 441 (18)442 Spectroscopic Studies of Diatomic Noble Gas Halides. IV. Vibrational and Rotational 443 Constants for the X, B, and D States of XeF, J. Chem. Phys. 1978, 68, 5187-5198 444 Sheps, L.; Chandler, D. W., Time-resolved broadband cavity-enhanced absorption (19)445 spectrometry for chemical kinetics; ;,, Sandia National Laboratories: Livermore, CA, 2013, 446 SAND2013-2664 447 (20) Sheps, L.; Scully, A. M.; Au, K., UV absorption probing of the conformer-dependent reactivity of a Criegee intermediate CH3CHOO, PCCP 2014, 16, 26701-26706 448 449 (21) Rothman, L. S.; Gordon, I. E.; Babikov, Y.; Barbe, A.; Chris Benner, D.; Bernath, P. F.; Birk, M.; Bizzocchi, L.; Boudon, V.; Brown, L. R.; Campargue, A.; Chance, K.; Cohen, E. 450 451 A.; Coudert, L. H.; Devi, V. M.; Drouin, B. J.; Favt, A.; Flaud, J. M.; Gamache, R. R.; Harrison, J. J.; Hartmann, J. M.; Hill, C.; Hodges, J. T.; Jacquemart, D.; Jolly, A.; 452 Lamouroux, J.; Le Roy, R. J.; Li, G.; Long, D. A.; Lyulin, O. M.; Mackie, C. J.; Massie, S. T.; 453 Mikhailenko, S.; Müller, H. S. P.; Naumenko, O. V.; Nikitin, A. V.; Orphal, J.; Perevalov, V.; 454 Perrin, A.; Polovtseva, E. R.; Richard, C.; Smith, M. A. H.; Starikova, E.; Sung, K.; Tashkun, 455 S.; Tennyson, J.; Toon, G. C.; Tyuterev, V. G.; Wagner, G., The HITRAN2012 Molecular 456 Spectroscopic Database, J. Quant. Spectrosc. Radiat. Transfer 2013, 130, 4-50 457 458 (22) Faragó, E. P.; Viskolcz, B.; Schoemaecker, C.; Fittschen, C., Absorption Spectrum and Absolute Absorption Cross Sections of CH₃O₂ Radicals and CH₃I Molecules in the 459 Wavelength Range 7473–7497 cm⁻¹, J. Phys. Chem. A **2013**, 117, 12802-12811 460 Thiebaud, J.; Aluculesei, A.; Fittschen, C., Formation of HO₂ Radicals from the 461 (23) Photodissociation of H₂O₂ at 248 nm, J. Chem. Phys. 2007, 126, 186101 462 (24) Morajkar, P.; Bossolasco, A.; Schoemaecker, C.; Fittschen, C., Photolysis of CH₃CHO 463 at 248 nm: Evidence of Triple Fragmentation from Primary Quantum Yield of CH₃ and HCO 464 Radicals and H Atoms, J. Chem. Phys. 2014, 140, 214308 465 Bouzidi, H.; Djehiche, M.; Gierczak, T.; Morajkar, P.; Fittschen, C.; Coddeville, P.; 466 (25) Tomas, A., Low-Pressure Photolysis of 2,3-Pentanedione in Air: Quantum Yields and 467 Reaction Mechanism, J. Phys. Chem. A 2015, 119, 12781-12789 468 Selzer, E. A.; Bayes, K. D., Pressure Dependence of the Rate of Reaction of Methyl 469 (26) 470 Radicals with Oxygen, J. Phys. Chem. 1983, 87, 392-394 471 Fernandes, R. X.; Luther, K.; Troe, J., Falloff Curves for the Reaction $CH_3 + O_2$ (+ M) (27) 472 \rightarrow CH₃O₂ (+ M) in the Pressure Range 2 - 1000 Bar and the Temperature Range 300 - 700 K. 473 J. Phys. Chem. A 2006, 110, 4442-4449 474 Atkinson, R.; Baulch, D. L.; Cox, R. A.; Crowley, J. N.; Hampson, R. F.; Hynes, R. (28) G.: Jenkin, M. E.; M. J. Rossi; Troe, J., Evaluated Kinetic and Photochemical Data for 475 Atmospheric Chemistry: Volume II - Gas Phase Reactions of Organic Species, Atmos. Chem. 476 Phys. 2006, 6, 3625-4055 477 Atkinson, R.; Baulch, D. L.; Cox, R. A.; Crowley, J. N.; Hampson, R. F.; Hynes, R. 478 (29)479 G.; Jenkin, M. E.; Rossi, M. J.; Troe, J., Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry: Volume 1 – Gas Phase Reactions of O_x , HO_x , NO_x , and SO_x , 480 Species, Atmos. Chem. Phys. 2004, 4, 1461-1738 481 482 (30) Tsang, W.; Hampson, R. F., Chemical kinetic data base for combustion chemistry. Part I. Methane and related compounds, J. Phys. Chem. Ref. Data 1986, 15, 1087 483 Ibrahim, N.; Thiebaud, J.; Orphal, J.; Fittschen, C., Air-Broadening Coefficients of the 484 (31)

HO₂ Radical in the 2v₁ Band Measured Using cw-CRDS, J. Mol. Spectrosc. 2007, 242, 64-69

Tang, Y.; Tyndall, G. S.; Orlando, J. J., Spectroscopic and Kinetic Properties of HO₂ 486 (32) Radicals and the Enhancement of the HO₂ Self Reaction by CH₃OH and H₂O, J. Phys. Chem. 487 A 2010, 114, 369-378 488 Blitz, M. A.; Heard, D. E.; Pilling, M. J., Study of Acetone Photodissociation over the 489 (33) 490 Wavelength Range 248-330 nm: Evidence of a Mechanism Involving Both the Singlet and 491 Triplet Excited States, J. Phys. Chem. A 2006, 110, 6742-6756 492 Carr, S. A.; Baeza-Romero, M. T.; Blitz, M. A.; Pilling, M. J.; Heard, D. E.; Seakins, (34) 493 P. W., OH Yields from the $CH_3CO + O_2$ Reaction using an Internal Standard, *Chem. Phys.* 494 Lett. 2007, 445, 108-112

495 (35) Khamaganov, V. G.; Karunanandan, R.; Horowitz, A.; Dillon, T. J.; Crowley, J. N.,

Photolysis of CH₃C(O)CH₃ at 248 and 266 nm: pressure and temperature dependent overall
quantum yields., *PCCP* 2009, *11*, 6173-6181

498 (36) Papadimitriou, V. C.; Karafas, E. S.; Gierczak, T.; Burkholder, J. B., CH3CO + O2 +

M (M = He, N2) Reaction Rate Coefficient Measurements and Implications for the OH
Radical Product Yield, *J. Phys. Chem. A* 2015, *119*, 7481-7497

501 (37) Maricq, M. M.; Wallington, T. J., Absolute ultraviolet cross sections of methyl and 502 ethyl peroxy radicals, *J. Phys. Chem.* **1992**, *96*, 986-992

503 (38) Ting, W.-L.; Chen, Y.-H.; Chao, W.; Smith, M. C.; Lin, J. J.-M., The UV absorption

spectrum of the simplest Criegee intermediate CH₂OO, *PCCP* **2014**, *16*, 10438-10443

- 505 (39) Sheps, L., Absolute Ultraviolet Absorption Spectrum of a Criegee Intermediate 506 CH₂OO, *Journal of Chemical Phylics Letters* **2013**, 4201-4205
- 507 (40) Lewis, T. R.; Blitz, M. A.; Heard, D. E.; Seakins, P. W., Direct evidence for a
- substantive reaction between the Criegee intermediate, CH2OO, and the water vapour dimer,
 PCCP 2015, *17*, 4859-4863
- 510 (41) Taatjes, C. A.; Welz, O.; Eskola, A. J.; Savee, J. D.; Osborn, D. L.; Lee, E. P. F.;
- 511 Dyke, J. M.; Mok, D. W. K.; Shallcross, D. E.; Percival, C. J., Direct measurement of Criegee
- intermediate (CH2OO) reactions with acetone, acetaldehyde, and hexafluoroacetone, *PCCP*2012, *14*, 10391-10400
- 514 (42) Lee, J. D.; McFiggans, G.; Allan, J. D.; Baker, A. R.; Ball, S. M.; Benton, A. K.;
- 515 Carpenter, L. J.; Commane, R.; Finley, B. D.; Evans, M.; Fuentes, E.; Furneaux, K.; Goddard,
- A.; Good, N.; Hamilton, J. F.; Heard, D. E.; Herrmann, H.; Hollingsworth, A.; Hopkins, J. R.;
- 517 Ingham, T.; Irwin, M.; Jones, C. E.; Jones, R. L.; Keene, W. C.; Lawler, M. J.; Lehmann, S.;
- Lewis, A. C.; Long, M. S.; Mahajan, A.; Methven, J.; Moller, S. J.; Müller, K.; Müller, T.;
- 519 Niedermeier, N.; O'Doherty, S.; Oetjen, H.; Plane, J. M. C.; Pszenny, A. A. P.; Read, K. A.;
- 520 Saiz-Lopez, A.; Saltzman, E. S.; Sander, R.; von Glasow, R.; Whalley, L.; Wiedensohler, A.;
- 521 Young, D., Reactive Halogens in the Marine Boundary Layer (RHaMBLe): the tropical North
- 522 Atlantic experiments, Atmos. Chem. Phys. 2010, 10, 1031-1055