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1. Introduction 
 
Mathematical and numerical models that deal with hydrodynamics have transformed the way river 
engineering are practiced, and are possibly worth of a comprehensive review of developments in their 
own right (Knight 2013a, Knight 2013b, Duran and Marche 2014, Xing and Shu 2014, Stansby 2013). 
Developments in numerical methods and computing power continue to grow, to cite just a few 
(Caviedes-Voullième and Kesserwani 2015, Kesserwani et al. 2015, Sanders et al. 2010, Dawson et 
al. 2013, Cao et al. 2015, George 2011, Smith and Liang 2013, Lacasta et al. 2013, Zhou et al. 2013, 
Donat et al. 2014, Zanotti et al. 2015, Delis et al. 2011, Juez et al. 2014, Jian et al. 2015, Ran et al. 
2015, Murillo and Garcia-Navarro 2010, Gerhard et al. 2015, Marsooli and Wu 2015, Swartenbroekx 
et al. 2013, Guan et al. 2014, Kim et al. 2014). This growth has opened-up opportunities to increase 
the accuracy, robustness and computational complexity of latest simulation models, and to address 
issues of practical relevance for modelling hydrodynamic processes. Particular examples include the 
treatment of the sink/source terms involved in the governing equations, parameter sensitivity analysis, 
the adoption of more sophisticated numerical schemes for real-scale simulations. 

To exploit such opportunities, there is a growing necessity to promote interdisciplinary research 
across a wider range of experts from mathematics, engineering, physics and computer sciences to 
bridge gaps and to establish a common research perception, in order to tackle the research area in a 
more holistic way. This was the motivation of the “Advances in Numerical Modelling of 
Hydrodynamics” workshop held in Sheffield, UK, in March 2015. The workshop brought together 41 
scientists and engineers from across different countries (France, Belgium, Switzerland, Italy, Spain, 
Portugal, Sweden, UK, Germany, Taiwan, USA, China, South Africa and Saudi Arabia) and career 
stages (from M. Sc. to professorial level). The contributions to this special issue were papers 
presented at the workshop, which were subject to peer-review by the workshop’s scientific advisory 
board (details in Section 3). Selected papers, which were identified to offer significant scientific 
advance to modelling hydrodynamics, were extended and underwent a rigorous peer-review process. 
Acceptance into this Special Issue was based on comprehensive review reports, the authors addressing 
critical reviews, examination by the Guest editors and final decision by the Editor-in-Chief. This 
Special Issue is expected to benefit researchers and engineers addressing theoretical and applied 
aspects of Computational Hydraulics (see also Foreword). 

2. Scope of the accepted papers 
 
 Validity of advanced Riemann solvers for 1D river hydraulics: Approximate Riemann solvers are 

frequently used to solve problems in Computational Fluid Dynamics. Among these solvers, those 
build from the HLL (Harten et al. 1983) and (Roe 1981) approximations emerged very popular in 
the field of computational river hydraulics leading to many improved variants. In this issue, 
Franzini and Soares-Frazão compare the performance some latest versions of the HLL (Interalliée 
HLL and HLLS) and Roe (Augmented with energy balance) Riemann solvers, with a key focus 
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on solving 1D shallow flow with varying channel shapes and geometries. The paper 
diagnostically identifies the pros and cons of these emerging techniques, and discusses their 
implications for practical flow simulations. 

 Coarse-mesh 2D flood model with subgrid-scale effects: Accurate and efficient integration of the 
geometrical details of urban area is an enduring challenge to 2D modelling of surface water 
flooding. Sub-grid models have been devised and applied to account for topographic variability 
that is too small to resolve with the computational mesh (Sanders et al. 2008). In this issue, Özgen 
et al. offer an extended formulation to the depth-averaged shallow water equations with 
anisotropic porosity to account for subgrid-scale effects while using coarse-grid simulations. 
Time-varying porosity terms are introduced as function of the water elevation in the cell and a 
cumulative distribution function of the unresolved bottom elevation to enable full inundation 
across a coarse cell. The applicability of the new equations is verified for various tests and 
compared with high-resolution reference simulations, with highlights on potential efficiency gain 
and on open-ended research challenges. 

 Significance of the sediment diffusion term to hydro-morphodynamic modelling: Deterministic 
modelling of bedload transport in sedimentation engineering and computational river dynamics 
have rapidly emerged in recent years (Marsooli and Wu 2015, Kesserwani et al. 2014). In this 
issue, Bohorquez and Ancey examine the importance of sediment diffusion associated with 
advection in bed load transport. The concept of sediment transport is revisited by further 
intertwining with probabilistic theory to identify the role played by particle diffusion in bed load 
transport. Based on the shallow water equations coupled with Exner equation, numerical 
simulations are performed to reproduce channel degradation and antidune development in gravel 
bed streams over steep slopes. Validations with respect to flume experiments is performed to 
illustrate the improvement associated with the inclusion of the diffusion term. 

 Physical and numerical modelling of Hele-Shaw flow: Shallow water flows through thin 
geometries are often associated with Hele-Shaw flow (Boyko et al. 2015). For such flows, the 
advective (inertial) forces are small compared with viscous forces, and the boundary conditions 
are defined by pressures and surface tensions. In this issue, Kalogirou et al. explore analytically, 
numerically and experimentally the damped motion of driven water waves in a Hele-Shaw tank. 
The equations governing the hydrodynamics of the problem are derived from a variational 
principle for shallow water, but with further inclusion of surface tension effects, linear momentum 
damping and incoming volume flux through the boundary at which waves are generated. The 
discontinuous Galerkin method is applied to solve the model equations. Numerical results are 
validated against exact linear wave solutions and laboratory experiments of artificially driven 
waves in the Hele-Shaw tank. 

 Time step enlargement of an explicit finite volume shallow water model: Explicit numerical 
methods, although dictate small time steps due to a Courant–Friedrich–Lewy (CFL) stability 
condition < 1, remain undoubtedly one of the most popular approaches in solving for unsteady 
shallow water flows (Morales-Hernández et al. 2013). In this issue, Morales-Hernandez et al. 
extend their approach for relaxing the CFL condition to > 1 to enable larger time steps in solving 
the inviscid shallow water equations on unstructured triangular meshes. This paper especially 
focuses on the handling of information transfer facing the unstructuredness of the meshes. The 
proposed approach is compared against conventional first- and second-order explicit schemes to 
demonstrate its potential impacts on accuracy and efficiency. 

 Modelling air-entrainment in shallow water flow: In some situations, such as an impact jet or a 
jump formation, air-entrainment into shallow water flow can cause two layer water/air with 
complex turbulent mixing (Lubin et al. 2006, Chanson et al. 2006). Physical and numerical 
modelling of these processes is challenging and demanding due to: the presence of the 
macroscopic interface, multiple parameterization setting and, bubbles formation, interaction and 
transport throughout the free-surface. In this issue, Lopes et al. examine numerically and 
experimentally the aspects of a 3D circular plunging jet of water entering a pool. An explicit term 
is introduced to detect bubble formation and air-entrainment at the free-surface. The capacities of 
a Volume-of-Fluid based model to detect the free-surface and predict the velocities inside the 



water phase is studied, as well as mesh dependency issues. The results obtained are further 
compared and discussed with similar cases in the literature. 

 Comparative study of topography integration techniques in 3rd-order Discontinuous Galerkin 
models: Real-world shallow water flows occur over uneven topographies. Topography 
discretisation techniques are unavoidable for the design of shallow water numerical models 
(Murillo and Garcia-Navarro 2010, Kesserwani 2013). Several techniques have been proposed, 
which are commonly constructed based on the assumption of motionless steady state. However, 
their ability to handle moving-water steady state over discontinuous terrain shapes is still 
questioned. In this issue, Caleffi et al. unravel the capability of five different numerical 
approaches for discretisation of free-surface over bottom steps. A systematic and diagnostic 1D 
analysis is presented crossing aspects of accuracy-order, conservation properties, continuous vs. 
discontinuous terrain shapes, steady and unsteady flows.  

 Theoretical and sensitivity analysis of the divergence discretisation of bed slope source term: The 
divergence formulation of the bed slope source term (Valiani and Begnudelli 2006) within the 
numerical solution of the shallow water equations has emerged as physically-based technique to 
easily, efficiently and accurately integrate the discretisation of the topography in a wide range of 
numerical models and on different mesh structures (Kim et al. 2014, Hou et al. 2013). In this 
issue, Bruwier et al. present a theoretical analysis of the divergence bed slope formulation going 
beyond the classical assumption of locally-constant free-surface elevation and considering the 
influence on energy balance. The analysis is performed for the case of a single topographic step 
and is then tested numerically. A calibration parameter is introduced and tested to further improve 
the use of the divergence formulation on the basis to minimize the energy variation.  
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