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THE REVERSE MATHEMATICS OF THE TIETZE EXTENSION THEOREM

PAUL SHAFER

Abstract. We prove that several versions of the Tietze extension theorem for functions with
moduli of uniform continuity are equivalent to WKL0 over RCA0. This confirms a conjecture of
Giusto and Simpson [3] that was also phrased as a question in Montalbán’s Open questions in

reverse mathematics [6].

1. Introduction

The Tietze extension theorem states that if X is a metric space, C ⊆ X is closed, and f : C → R

is continuous, then there is a continuous F : X → R extending f (meaning that F (x) = f(x) for all
x ∈ C). It is a fundamental theorem of real analysis and topology, and, as such, the question of its
logical strength is natural and ripe for consideration. In this work, we analyze the logical strengths
of formalized versions of the Tietze extension theorem in the setting of reverse mathematics, a
foundational program designed by Friedman to classify mathematical theorems according to the
strengths of the axioms required to prove them [2].

In reverse mathematics, we fix a weak base axiom systemWeakSystem for second-order arithmetic
and consider the implications that are provable in WeakSystem. If ϕ and ψ are two statements in
second-order arithmetic, typically expressing two well-known theorems, and WeakSystem ⊢ ϕ→ ψ,
then we say that ϕ implies ψ over WeakSystem and think of the logical strength of ϕ as being
at least that of ψ. We also like to appeal to the equivalence of WeakSystem ⊢ ϕ → ψ and
WeakSystem+ϕ ⊢ ψ in order to think of the strength of ϕ in terms of the additional statements ψ
that become provable once ϕ is considered as a new axiom and added to the axioms of WeakSystem.

Often, as in this work, we wish to compare a theorem ϕ to an axiom system StrongSystem that
is stronger than WeakSystem and proves ϕ. In this situation, if WeakSystem+ϕ ⊢ ψ for every
axiom ψ of StrongSystem, then we say that ϕ is equivalent to StrongSystem over WeakSystem. The
proof of (the axioms of) StrongSystem from WeakSystem+ϕ is called a reversal, from which ‘reverse
mathematics’ gets its name. It is a remarkable phenomenon that equivalences of this sort are the
usual case: a theorem is typically either provable in the standard WeakSystem or equivalent to one
of four well-known stronger systems. These five systems together are known as the Big Five. There
are, however, many fascinating examples of misfit theorems as well, and we refer the reader to [4]
for the tip of that particular iceberg.

It is possible to formalize the Tietze extension theorem in second-order arithmetic in several
different ways, and different formalizations may exhibit different logical strengths. The logical
systems in play are the first three of the Big Five, which are

• the base system RCA0 (for recursive comprehension axiom), which corresponds to com-
putable mathematics and is the standard WeakSystem;

• the stronger system WKL0 (for weak König’s lemma), which adds the ability to make com-
pactness arguments; and

• the yet stronger system ACA0 (for arithmetical comprehension axiom), which adds the
ability to form sets defined by any number of first-order quantifiers (but no second-order
quantifiers).
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The differences among the formalizations of the Tietze extension theorem that we consider arise
from two sources. The first source is the problem of coding closed subsets of complete separable
metric spaces, which are most naturally thought of as third-order objects, as second-order objects.
Closed sets can be coded by negative information (in which case they are simply called closed),
positive information (in which case they are called separably closed), or both simultaneously (in
which case they are called closed and separably closed). In a compact complete separable metric
space, a set is closed if and only if it is separably closed, but both directions of this equivalence are
themselves equivalent to ACA0 over RCA0 [1, Theorem 3.3]. These notions of closedness are thus
distinct when working in RCA0.

The second source of differences is the fact that the statement “every continuous function f : X →
R on a compact complete separable metric space X is uniformly continuous” is equivalent to WKL0
over RCA0 (see [7, Theorem IV.2.2 and Theorem IV.2.3]) and therefore has non-trivial logical
strength. Here ‘uniformly continuous’ means having a modulus of uniform continuity, which is
a function that, when given an ǫ > 0, returns a δ > 0 such that (∀x, y ∈ X)(d(x, y) < δ →
d(f(x), f(y)) < ǫ). Thus though the two statements

(1) For every compact complete separable metric space X, every closed C ⊆ X, and every
continuous f : C → R, there is a continuous F : X → R extending f .

(2) For every compact complete separable metric space X, every closed C ⊆ X, and every
uniformly continuous f : C → R, there is a uniformly continuous F : X → R extending f .

are obviously equivalent in ordinary mathematics, the situation over RCA0 is more complicated.
Following Giusto and Simpson’s terminology from [3], we call statement (1) the Tietze extension

theorem and statement (2) the strong Tietze extension theorem. The following list summarizes
some of the known results.

• The Tietze extension theorem for closed sets (i.e., the negative information coding) is prov-
able in RCA0 (see [7, Theorem II.7.5]). In this case the assumption that X is compact may
be dropped if f is assumed to be bounded.

• The Tietze extension theorem for separably closed sets is equivalent to ACA0 over RCA0 [3,
Theorem 6.9].

• The strong Tietze extension theorem for separably closed sets is equivalent to WKL0 over
RCA0 [3, Theorem 6.14].

• The strong Tietze extension theorem for closed sets is provable in WKL0 because the Tietze
extension theorem for closed sets is provable in RCA0, and WKL0 proves that continuous
functions on compact complete separable metric spaces are uniformly continuous.

• The strong Tietze extension theorem for closed and separably closed sets is not provable in
RCA0. In fact, it implies the existence of diagonally non-recursive functions [3, Lemma 6.17].

Notice that the above list of results leaves open the precise logical strength of the strong Tietze
extension theorem for closed sets and for closed and separably closed sets. Giusto and Simpson
conjecture that these theorems are equivalent to WKL0. Specifically, they make the following
conjecture.

Conjecture 1.1 ([3, Conjecture 6.15]). The following are equivalent over RCA0.

(1) WKL0.
(2) Let X be a compact complete separable metric space, let C be a closed subset of X, and

let f : C → R be a continuous function with a modulus of uniform continuity. Then there
is a continuous function F : X → R with a modulus of uniform continuity that extends f .

(3) Same as (2) with ‘closed’ replaced by ‘closed and separably closed.’
(4) Special case of (2) with X = [0, 1].
(5) Special case of (3) with X = [0, 1].
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The question of whether or not this conjecture holds also appears as Question 16 in Montalbán’s
Open questions in reverse mathematics [6]. Let sTET[0,1] denote statement (5) in Conjecture 1.1
(the notation is chosen to evoke the strong Tietze extension theorem for [0, 1]). We prove that
Conjecture 1.1 is true by proving that RCA0 + sTET[0,1] ⊢ WKL0.

Before continuing, we remark that Giusto and Simpson’s Located sets and reverse mathemat-

ics [3], which contains Conjecture 1.1, is largely concerned with the notion of a located set, where
a closed or separably closed subset C of a complete separable metric space X is called located if
there is a continuous distance function f : X → R, where f(x) = inf{d(x, y) : y ∈ C} for every
x ∈ X. With the assumption of locatedness, the equivalence between closed and separably closed
becomes provable in RCA0: for compact complete separable metric spaces, RCA0 proves that every
closed and located set is separably closed and that every separably closed and located set is closed.
Furthermore, the strong Tietze extension theorem for closed and located sets (and thus for sepa-
rably closed and located sets) is provable in RCA0. These results and many others appear in [3].
However, located sets are not relevant to Conjecture 1.1, so we make no use of them here.

For ease of comparison, the table below displays the strengths of eight versions of the Tietze
extension theorem, taking into account the confirmation of Conjecture 1.1 proven here. The row
labeled ‘Tietze extension theorem’ corresponds to versions of the theorem where f and its extension
are not required to be uniformly continuous, and the row labeled ‘strong Tietze extension theorem’
corresponds to versions of the theorem where f and its extension are required to be uniformly
continuous. The columns represent the different assumptions on the domain C of f . The column
labeled ‘located’ means that C is assumed to be closed and located, which in RCA0 is equivalent to
assuming that C is separably closed and located.

located closed & separably closed closed separably closed
Tietze extension theorem RCA0 RCA0 RCA0 ACA0

strong Tietze extension theorem RCA0 WKL0 WKL0 WKL0

2. Background

We introduce the systems RCA0, WKL0, and ACA0 and then define in RCA0 the analytic and
topological notions relevant to Conjecture 1.1. The standard reference for reverse mathematics is
Simpson’s Subsystems of Second Order Arithmetic [7], and almost all of this section’s material can
be found in expert detail therein. Simpson’s book also contains many, many examples of theorems
that are provable in RCA0, theorems that are equivalent to WKL0 over RCA0, and theorems that
are equivalent to ACA0 over RCA0.

2.1. RCA0, WKL0, and ACA0. The axioms of RCA0 are: a first-order sentence expressing that N is
a discretely ordered commutative semi-ring with identity; the Σ0

1 induction scheme, which consists
of the universal closures (by both first- and second-order quantifiers) of all formulas of the form

[ϕ(0) ∧ ∀n(ϕ(n) → ϕ(n+ 1))] → ∀nϕ(n),

where ϕ is Σ0
1; and the ∆0

1 comprehension scheme, which consists of the universal closures (by both
first- and second-order quantifiers) of all formulas of the form

∀n(ϕ(n) ↔ ψ(n)) → ∃X∀n(n ∈ X ↔ ϕ(n)),

where ϕ is Σ0
1, ψ is Π0

1, and X is not free in ϕ.
RCA0 is the standard base system and captures what might be called effective mathematics. The

name ‘RCA0,’ which stands for recursive comprehension axiom, refers to the ∆0
1 comprehension

scheme because a set X is ∆0
1 in a set Y if and only if X is recursive in Y . The subscript ‘0’ refers

to the fact that induction in RCA0 is limited to Σ0
1 formulas.

RCA0 proves enough number-theoretic facts to implement the codings of finite sets and sequences
that are ubiquitous in recursion theory. Therefore, in RCA0 we can represent the set N<N of all
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finite sequences as well as its subset 2<N of all finite binary sequences, and we can give the usual
definition of a tree as subset of N<N that is closed under initial segments. Thus, in RCA0 we can
formulate (but not prove) weak König’s lemma, which is the statement “every infinite subtree of
2<N has an infinite path.” WKL0 is then the system RCA0 + weak König’s lemma. The fact that
there is a recursive infinite subtree of 2<N with no recursive infinite path can be used to show
that WKL0 is strictly stronger than RCA0. WKL0 captures the mathematics of compactness. For
example, WKL0 is equivalent to the Heine-Borel compactness of [0, 1] (see [7, Theorem IV.1.2]), a
fact that is crucial for our analysis of sTET[0,1].

An important strategy for proving that a theorem implies WKL0 over RCA0 is to employ the
following lemma, which states that WKL0 is equivalent over RCA0 to the statement that for every
pair of injections with disjoint ranges, there is a set that separates the two ranges.

Lemma 2.1 (see [7, Lemma IV.4.4]). The following are equivalent over RCA0.

(i) WKL0.

(ii) If g0, g1 : N → N are injections such that ∀m∀n(g0(m) 6= g1(n)), then there is a set X such

that ∀m(g0(m) ∈ X ∧ g1(m) /∈ X).

For comparison, ACA0, introduced next, is equivalent over RCA0 to the statement that for every
injection there is a set consisting of exactly the elements in the injection’s range.

The axioms of ACA0 are those of RCA0, plus the arithmetical comprehension scheme, which
consists of the universal closures (by both first- and second-order quantifiers) of all formulas of the
form

∃X∀n(n ∈ X ↔ ϕ(n)),

where ϕ is an arithmetical formula in which X is not free.
Jockusch and Soare’s famous low basis theorem [5] can be used to prove that ACA0 is strictly

stronger than WKL0. The strength of ACA0 is great enough to provide a natural and extensive
development of most classical mathematics. Though we do not make further use of ACA0 here, it
is relevant to the discussion in the introduction.

2.2. Analytic and topological notions in RCA0. Following [7, Section II.4], we code integers
as pairs of natural numbers and rational numbers as pairs of integers. A real number is then coded
by a sequence of rational numbers 〈qk : k ∈ N〉 such that ∀k∀i(|qk − qk+i| ≤ 2−k). The expression
‘x ∈ R’ abbreviates the predicate “x codes a real number.” Two real numbers coded by 〈qk : k ∈ N〉
and 〈q′k : k ∈ N〉 are equal if ∀k(|qk − q′k| ≤ 2−k+1).

The definition of a complete separable metric space generalizes the coding of reals by rapidly
converging Cauchy sequences.

Definition 2.2 (RCA0; see [7, Definition II.5.1]). A complete separable metric space Â is coded
by a non-empty set A ⊆ N and a distance function d : A × A → R such that, for all a, b, c ∈ A,
d(a, a) = 0, d(a, b) = d(b, a) ≥ 0, and d(a, b) + d(b, c) ≥ d(a, c).

A point in Â is coded by a sequence 〈ak : k ∈ N〉 of elements of A such that ∀k∀i(d(ak, ak+i) ≤

2−k). The expression ‘x ∈ Â’ abbreviates the predicate “x codes a point in Â.”

If x = 〈ak : k ∈ N〉 and y = 〈bk : k ∈ N〉 code points in Â, then d(x, y) is defined to be
limk d(xk, yk), and (the points coded by) x and y are defined to be equal if d(x, y) = 0.

Definition 2.3 (RCA0; see [7, Definition III.2.3]). A complete separable metric space Â is compact

if there is a sequence of finite sequences 〈〈xi,j : j < ni〉 : i ∈ N〉 of points in Â such that

(∀z ∈ Â)(∀i ∈ N)(∃j < ni)(d(z, xi,j) < 2−i).
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For example, the unit interval [0, 1] is the complete separable metric space coded by {q ∈ Q :
0 ≤ q ≤ 1} with the usual metric, and the sequence 〈〈j2−i : j ≤ 2i〉 : i ∈ N〉 witnesses that [0, 1] is
compact.

In complete separable metric spaces, open sets are coded by enumerations of open balls, and
closed sets are complements of open sets. For the purposes of the remaining definitions, Q+ = {q ∈
Q : q > 0} denotes the set of positive rationals.

Definition 2.4 (RCA0; see [7, Definition II.5.6 and Definition II.5.12]). An open set in a complete

separable metric space Â is coded by a set U ⊆ N × A × Q+. A point x ∈ Â belongs to U
(abbreviated ‘x ∈ U ’) if

∃n∃a∃r(d(x, a) < r ∧ 〈n, a, r〉 ∈ U).

A closed set C in a complete separable metric space is also coded by a set U ⊆ N×A×Q+, but

now a point x ∈ Â belongs to C (abbreviated ‘x ∈ C’) if x /∈ U .

The idea here is that the pair 〈a, q〉 ∈ A × Q+ codes the open ball B(a, q) of radius q centered
at a and that a set U ⊆ N × A × Q+ codes some sequence 〈B(ak, qk) : k ∈ N〉 of open balls and
hence codes the open set

⋃
k∈NB(ak, qk). Thus in this scheme, open sets are coded by positive

information (enumerations of open balls contained in the open set), and closed sets are coded by
negative information (enumerations of open balls disjoint from the closed set). Alternatively, a
closed set C can be coded by positive information by enumerating a sequence of points whose
closure is C. Such a set is called separably closed.

Definition 2.5 (RCA0; see [3, Definition 4.1]). A separably closed set in a complete separable

metric space Â is coded by a sequence C = 〈xk : k ∈ N〉 of points in Â. A point x ∈ Â belongs to
C (abbreviated ‘x ∈ C’) if

(∀q ∈ Q+)(∃n ∈ N)(d(x, xn) < q).

We can now define a complete separable metric space to be Heine-Borel compact if for every

sequence 〈Uk : k ∈ N〉 of open sets such that (∀x ∈ Â)(∃k ∈ N)(x ∈ Uk), there is an N ∈ N such

that (∀x ∈ Â)(∃k < N)(x ∈ Uk). Although RCA0 proves that [0, 1] is a compact complete separable
metric space in the sense of Definition 2.3, the Heine-Borel compactness of [0, 1] is equivalent to
WKL0 over RCA0.

Theorem 2.6 (see [7, Theorem IV.1.2 and Theorem IV.1.5]). The following are equivalent over

RCA0.

(1) WKL0.

(2) Every compact complete separable metric space is Heine-Borel compact.

(3) The unit interval [0, 1] is Heine-Borel compact.

(4) For every sequence 〈(ak, bk) : k ∈ N〉 of intervals with rational endpoints such that (∀x ∈
[0, 1])(∃k ∈ N)(x ∈ (ak, bk)), there is an N ∈ N such that (∀x ∈ [0, 1])(∃k < N)(x ∈
(ak, bk)).

Finally, we define continuous functions and moduli of uniform continuity.

Definition 2.7 (RCA0; see [7, Definition II.6.1]). Let Â and B̂ be complete separable metric spaces.

A continuous partial function from Â to B̂ is coded by a set Φ ⊆ N×A×Q+×B×Q+ that satisfies
the properties below. Let 〈a, r〉Φ〈b, s〉 denote ∃n(〈n, a, r, b, s〉 ∈ Φ). For a, a′ ∈ A and r, r′ ∈ Q+,
let 〈a′, r′〉 ≺ 〈a, r〉 denote d(a, a′)+ r′ < r and similarly for b, b′ ∈ B and s, s′ ∈ Q+. The properties
that Φ must satisfy are that, for all a, a′ ∈ A, all b, b′ ∈ B, and all r, r′, s, s′ ∈ Q+,

• if 〈a, r〉Φ〈b, s〉 and 〈a, r〉Φ〈b′, s′〉, then d(b, b′) ≤ s+ s′;
• if 〈a, r〉Φ〈b, s〉 and 〈a′, r′〉 ≺ 〈a, r〉, then 〈a′, r′〉Φ〈b, s〉; and
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• if 〈a, r〉Φ〈b, s〉 and 〈b, s〉 ≺ 〈b′, s′〉, then 〈a, r〉Φ〈b′, s′〉.

The domain of the function f coded by Φ is the set of all x ∈ Â such that

(∀q ∈ Q+)(∃〈a, r〉 ∈ A×Q+)(∃〈b, s〉 ∈ B ×Q+)(〈a, r〉Φ〈b, s〉 ∧ d(x, a) < r ∧ s < q).

If x ∈ dom f , then f(x) is the unique y ∈ B̂ such that

(∀〈a, r〉 ∈ A×Q+)(∀〈b, s〉 ∈ B ×Q+)((d(x, a) < r ∧ 〈a, r〉Φ〈b, s〉) → d(y, b) ≤ s).

The idea behind Definition 2.7 is that Φ enumerates pairs of open balls 〈B(a, r), B(b, s)〉 (i.e.,
the pairs of balls coded by the 〈a, r〉 and 〈b, s〉 such that 〈a, r〉Φ〈b, s〉) with the property that if f
is the function being coded by Φ and x is in both B(a, r) and dom f , then f(x) is in the closure of
B(b, s).

Definition 2.8 (RCA0; see [7, Definition IV.2.1]). Let Â and B̂ be complete separable metric

spaces, and let f be a partial continuous function from Â to B̂. A modulus of uniform continuity

for f is a function h : N → N such that

(∀x, y ∈ dom f)(∀n ∈ N)(d(x, y) < 2−h(n) → d(f(x), f(y)) < 2−n).

3. Reversing the strong Tietze extension theorem to weak König’s lemma

In their analysis of sTET[0,1], Giusto and Simpson first show that RCA0 0 sTET[0,1] by showing
that sTET[0,1] fails in REC, the model of RCA0 whose first-order part is the standard natural
numbers and whose second-order part is the recursive sets [3, Lemma 6.16]. To do this, they take
advantage of Theorem 2.6, the fact that WKL0 fails in REC, and the fact that RCA0 proves that
a continuous real-valued function on [0, 1] has a modulus of uniform continuity if and only if it
has a Weierstraß approximation (see [7, Theorem IV.2.4]). Here, a Weierstraß approximation of a
continuous function f : [0, 1] → R is a sequence of polynomials 〈pn : n ∈ N〉 from Q[x] such that
(∀n ∈ N)(∀x ∈ [0, 1])(|f(x)− pn(x)| < 2−n).

The goal in proving that REC 6|= sTET[0,1] is thus to produce a recursive code for a closed and
separably closed C ⊆ [0, 1], a recursive code for a continuous f : C → R, and a recursive modulus of
uniform continuity for f such that no continuous extension of f to [0, 1] has a recursive Weierstraß

approximation. To this end, let Ie = [2−(2e+1), 2−2e] for each e ∈ N, and let D = {0}∪
⋃

e∈N Ie. We
call D the pre-domain of f , as C ⊆ D is obtained from D by enumerating additional open intervals
into the complement of C. The plan is to define f(0) = 0, then for each e ∈ N to define C and f on
Ie to diagonalize against Φe being a Weierstraß approximation to an extension of f . Thus on each Ie
we implement the following strategy. First, by the fact that Theorem 2.6 item (4) fails in REC, fix
a recursive enumeration 〈(ak, bk) : k ∈ N〉 of open intervals with rational endpoints that covers (the
recursive reals in) [0, 1] but has no finite subcover. Transfer this cover to a cover 〈(aek, b

e
k) : k ∈ N〉

of Ie that has no finite subcover by the linear transformation x 7→ (x + 1)/22e+1. Enumerate the
intervals of 〈(aek, b

e
k) : k ∈ N〉 into the complement of C until a stage s is reached that witnesses

Φe,s(2e+1)↓ = p, where p is (a code for) a polynomial in Q[x]. If Φe(2e+1)↑, then s is never found,
and all the intervals in the sequence 〈(aek, b

e
k) : k ∈ N〉 are enumerated into the complement of C. In

this case, Ie is erased from the domain of f , so we do not need to take any action to define f there.
If s is found, then at stage s only the intervals of 〈(aek, b

e
k) : k < s〉 have been enumerated into the

complement of C. We then stop the enumeration, which makes C ∩ Ie = Ie \
⋃

k<s(a
e
k, b

e
k). As no

finite set of intervals from 〈(aek, b
e
k) : k ∈ N〉 covers Ie, we can find a rational q ∈ Ie \

⋃
k<s(a

e
k, b

e
k).

Then we define f on Ie \
⋃

k<s(a
e
k, b

e
k) by making it be constantly 2−2e if p(q) ≤ 0 and making it be

constantly −2−2e otherwise. In both cases we ensure that |f(q)− p(q)| ≥ 2−2e, which successfully
diagonalizes against Φe because if Φe were a Weierstraß approximation to an extension of f , then we
would have |f(q)− p(q)| < 2−(2e+1). Furthermore, C is closed and separably closed by Lemma 3.1
below, and it is easy to write down a modulus of uniform continuity for f .
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Our plan to prove that RCA0+sTET[0,1] ⊢ WKL0 is to formalize and elaborate upon the preceding
argument. Observe, however, that the above argument relies very heavily on the fact that [0, 1] is
not Heine-Borel compact in REC. To replicate this style of argument, we appeal to Theorem 2.6
and work in RCA0 + ¬WKL0. The overall strategy is thus to produce the contradiction RCA0 +
¬WKL0 + sTET[0,1] ⊢ WKL0.

Let g0, g1 : N → N be two injections with disjoint ranges. By Lemma 2.1, we wish to separate the
ranges of g0 and g1 using sTET[0,1]. A first idea would be to follow the proof that REC 6|= sTET[0,1]

and use Ie to code whether or not e should be in a separating set. Enumerate the intervals of
〈(aek, b

e
k) : k ∈ N〉 into the complement of C until a stage s is reached that witnesses either g0(s) = e

or g1(s) = e. If g0(s) = e, then define f to be 2−2e on the remaining portion of Ie; and if g1(s) = e,
then define f to be −2−2e on the remaining portion of Ie. The idea would then be to decode a
separating set from an extension F of f by checking whether or not F is ≥ 0 on Ie. The problem is
of course that not every F (q) for q ∈ Ie correctly codes whether or not e should be in a separating
set. We would need to find a q ∈ Ie that is sufficiently close to a member of C, where the meaning
of ‘sufficiently close’ is determined by F ’s modulus of uniform continuity.

We refine this idea by replacing each Ie with a sequence of disjoint closed intervals 〈Ie,m : m ∈ N〉
where the length of each Ie,m is at most 2−m, and we choose a rational qe,m ∈ Ie,m for each e,m ∈ N.
The pre-domain for our f is {0} ∪

⋃
e,m∈N Ie,m. The refined strategy is to implement the above

näıve coding plan for Ie on each interval Ie,m. In the end, if e is in the range of g0 or g1, then
C ∩ Ie,m is non-empty for every m ∈ N. So in this case, for every m ∈ N, qe,m is a point in Ie,m
that is within 2−m of a point in C. Thus we are able to decode whether or not e should be in a
separating set from an extension of f and the extension’s modulus of uniform continuity.

The first lemma says that the closed sets we consider are also separably closed. It is implicit
in [3], but we make it explicit as a matter of convenience.

Lemma 3.1 (RCA0). If 〈Je : e ∈ N〉 is a sequence of pairwise disjoint closed sub-intervals of [0, 1]
with rational endpoints such that C = {0} ∪

⋃
e∈N Je is closed, then C is also separably closed.

Proof. Let Q = 〈qn : n ∈ N〉 be an enumeration of the rationals in {0} ∪
⋃

e∈N Je. We show that
the closure of Q is C. Clearly 0 is in the closure of Q, and if x ∈ Je it is easy to see that x is
in the closure of the rationals in Je. Conversely, suppose that x /∈ {0} ∪

⋃
e∈N Je. Then x is in

some open interval (a, b) contained in the complement of C. By shrinking this interval, we can
find an m ∈ N \ {0} such that (x − 1/m, x + 1/m) is contained in the complement of C. Thus
∀n(|x− qn| ≥ 1/m), so x is not in the closure of Q. �

We remark that in Lemma 3.1, Q can even be taken to be a set of rationals, rather than a
sequence of rationals. Let Q contain 0 and the set of rationals q such that there is an e less than
q’s code with q ∈ Je.

The next lemma prepares f ’s pre-domain {0} ∪
⋃

e,m∈N Ie,m.

Lemma 3.2 (RCA0 + ¬WKL0). For each e ∈ N, let Ie = [2−(2e+1), 2−2e]. Then there are pairwise

disjoint closed intervals with rational endpoints 〈Ie,m : e,m ∈ N〉, rationals 〈qe,m : e,m ∈ N〉, and
open intervals with rational endpoints 〈(ae,mk , be,mk ) : e,m, k ∈ N〉 such that

(i) {0} ∪
⋃

e,m∈N Ie,m is closed;

(ii) qe,m ∈ Ie,m;

(iii) Ie,m ⊆ Ie, and the length of Ie,m is less than 2−m;

(iv) 〈(ae,mk , be,mk ) : k ∈ N〉 is an open cover of Ie,m with no finite subcover;

(v) if 〈e,m〉 6= 〈e′,m′〉, then Ie,m and (ae
′,m′

k , be
′,m′

k ) are disjoint.

Proof. By ¬WKL0 in the form of the negation of Theorem 2.6 item (4), fix an open cover 〈(ak, bk) :
k ∈ N〉 of [0, 1] by open intervals with rational endpoints that has no finite subcover. By adjusting
the endpoints of the intervals as necessary, assume that (∀k ∈ N)(−2−2 < ak < bk < 1 + 2−2). For
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each e ∈ N, transfer 〈(ak, bk) : k ∈ N〉 to Ie via the linear transformation x 7→ (x + 1)/22e+1, and
denote the transferred sequence of intervals by 〈(aek, b

e
k) : k ∈ N〉. Notice that if e 6= e′ then (aek, b

e
k)

and (ae
′

k′ , b
e′

k′) are disjoint for all k and k′.
The procedure described below is clearly uniform in e, so we think of fixing an e ∈ N and

enumerating

• 〈Ie,m : m ∈ N〉;
• 〈qe,m : m ∈ N〉;
• helper pairwise disjoint open intervals with rational endpoints 〈(ce,m, de,m) : m ∈ N〉 (used
to later define 〈(ae,mk , be,mk ) : k ∈ N〉 for each m); and

• an increasing sequence of indices 〈ke,m : m ∈ N〉 and a sequence of finite sets of open
intervals with rational endpoints 〈Ue,m : m ∈ N〉 such that, for all m ∈ N,

⋃
n≤m Ie,n ⊆⋃

k≤ke,m
(aek, b

e
k) and

⋃
k≤ke,m

(aek, b
e
k) \

⋃
n≤m Ie,n =

⋃
n≤m

⋃
O∈Ue,n

O.

To start, let ke,0 be the least k such that (aek, b
e
k) intersects Ie, and choose an open interval

(ce,0, de,0) ⊆ Ie ∩ (aeke,0 , b
e
ke,0

). Now choose a closed interval Ie,0 ⊆ (ce,0, de,0) of length at most 2−0

and a rational qe,0 ∈ Ie,0. Enumerate (the at most finitely many intervals coding)
⋃

k≤ke,0
(aek, b

e
k) \

Ie,0 into Ue,0. The construction proceeds in this manner. Suppose at stage m + 1 we have 〈Ie,n :
n ≤ m〉, 〈qe,n : n ≤ m〉, 〈(ce,n, de,n) : n ≤ m〉, 〈ke,n : n ≤ m〉, and 〈Ue,n : n ≤ m〉. The
set De,m = Ie \

⋃
k≤ke,m

(aek, b
e
k) must be a finite union of closed intervals where at least one of

the intervals is non-degenerate (i.e., not a point) because no finite collection of intervals from
〈(aek, b

e
k) : k ∈ N〉 covers Ie. Let ke,m+1 be the least k such that (aek, b

e
k) intersects a non-degenerate

component interval of De,m, and choose an open interval (ce,m+1, de,m+1) ⊆ De,m∩(aeke,m+1
, beke,m+1

),

a closed interval Ie,m+1 ⊆ (ce,m+1, de,m+1) of length at most 2−(m+1), and a rational qe,m+1 ∈ Ie,m+1.
Enumerate (the at most finitely many intervals coding)

⋃
k≤ke,m+1

(aek, b
e
k)\

⋃
n≤m+1 Ie,n into Ue,m+1.

Immediately we see that (ii) and (iii) are satisfied. For (i), consider the closed set C described

by the simultaneous enumeration of the open intervals 〈(2−(2e+2), 2−(2e+1)) : e ∈ N〉 and the open
intervals in

⋃
e,m∈N Ue,m. Suppose that x ∈ {0} ∪

⋃
e,m∈N Ie,m. If x = 0, then it is clear that

x ∈ C. If x ∈ Ie,m, then x is in no interval of the form (2−(2e+2), 2−(2e+1)), and it is in no interval
O ∈

⋃
n∈N Ue′,n for an e′ 6= e. Furthermore, x is in no interval O ∈

⋃
n∈N Ue,n either. This is because

when Ie,m is defined at stage m for e, Ie,m is chosen disjoint from the intervals in
⋃

n<m Ue,n, and
at stages n ≥ m the intervals added to Ue,n are chosen to be disjoint from Ie,m. Hence x ∈ C.
Conversely, suppose that x /∈ {0} ∪

⋃
e,m∈N Ie,m. If x is not in any Ie for e ∈ N, then clearly

x /∈ C. So suppose that x ∈ Ie. Let k be such that x ∈ (aek, b
e
k), and let m be such that k < ke,m.

Then x ∈
⋃

k≤ke,m
(aek, b

e
k) \

⋃
n≤m Ie,n, so x ∈

⋃
n≤m

⋃
O∈Ue,n

O. Thus C = {0} ∪
⋃

e,m∈N Ie,m,

establishing (i).
To establish (iv), for each e,m ∈ N, transfer 〈(ak, bk) : k ∈ N〉 to Ie,m via the linear transformation

that maps 0 to the left endpoint of Ie,m and maps 1 to the right endpoint of Ie,m. Denote the
transferred sequence of intervals by 〈(ae,mk , be,mk ) : k ∈ N〉. To also ensure (v), intersect each
interval (ae,mk , be,mk ) with (ce,m, de,m), which suffices because Ie,m ⊆ (ce,m, de,m), and the intervals
of 〈(ce,m, de,m) : m ∈ N〉 are pairwise disjoint. �

Theorem 3.3. RCA0 + sTET[0,1] ⊢ WKL0.

Proof. We derive the contradiction RCA0 + ¬WKL0 + sTET[0,1] ⊢ WKL0. Let g0, g1 : N → N be
injections with disjoint ranges. Our goal is to separate the ranges of g0 and g1.

For each e ∈ N, let Ie = [2−(2e+1), 2−2e]. By ¬WKL0, let 〈Ie,m : e,m ∈ N〉, 〈qe,m : e,m ∈ N〉, and
〈(ae,mk , be,mk ) : e,m, k ∈ N〉 be as in Lemma 3.2, and let D denote the closed set {0} ∪

⋃
e,m∈N Ie,m.

The plan is to define a continuous function f with a modulus of uniform continuity on a closed and
separably closed subset of D such that if F is a continuous extension of f to [0, 1] with a modulus
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of uniform continuity, then, for each e ∈ N, the value of F (qe,m), for an m chosen according to e
and F ’s modulus of uniform continuity, codes whether or not e should be in a separating set.

Let E denote the closed set whose complement is coded by

{(ae,mk , be,mk ) : e,m ∈ N ∧ (∀s ≤ k)(g0(s) 6= e ∧ g1(s) 6= e)}.

Let C be the closed set D ∩ E. Notice that for each e,m ∈ N, either Ie,m and E are disjoint (if
∀s(g0(s) 6= e ∧ g1(s) 6= e)) or Ie,m ∩ E is a finite union of closed intervals with rational endpoints
(if ∃s(g0(s) = e ∨ g1(s) = e)). Thus C is of the form {0} ∪

⋃
e∈N Je for 〈Je : e ∈ N〉 a sequence of

pairwise disjoint closed intervals with rational endpoints. Therefore C is also separably closed by
Lemma 3.1.

We now define the continuous function f with modulus of uniform continuity h to which we
apply sTET[0,1]. Let

f(x) =





0 if x = 0

2−2e if x ∈ Ie ∩ C ∧ ∃s(g0(s) = e)

−2−2e if x ∈ Ie ∩ C ∧ ∃s(g1(s) = e).

To do this, for each e,m ∈ N, wait while the intervals from 〈(ae,mk , be,mk ) : k ∈ N〉 covering Ie,m are
being enumerated into the complement of C. If this enumeration never stops, then Ie,m is disjoint
from C and f is not defined on Ie,m. If this enumeration stops at some stage s, then either g0(s) = e
or g1(s) = e, and Ie,m ∩ C is determined at this stage. Thus the appropriate pairs of intervals can
start being enumerated into the code for f to define f(x) = 2−2e on Ie,m ∩ C if g0(s) = e and
f(x) = −2−2e on Ie,m ∩ C if g1(s) = e.

Let h : N → N be the function h(n) = 2n+2. We show that h is a modulus of uniform continuity

for f . Suppose that x < y are in C and satisfy |x − y| < 2−(2n+2). If y ∈ Ie for an e ≤ n, then

|x− y| < 2−(2n+2) implies that x must also be in Ie, which means that |f(x)− f(y)| = 0 < 2−n. If
y ∈ Ie for an e > n, then |f(y)| = 2−2e and |f(x)| ≤ 2−2e, so |f(x)− f(y)| ≤ 2−2e+1 < 2−n. Thus
h is a modulus of uniform continuity for f .

By sTET[0,1], let F be a continuous extension of f to [0, 1] with modulus of uniform continuity
H. Define a set X as follows. Given e ∈ N, let m = H(2e+ 2), and use F to approximate F (qe,m)

to within 2−(2e+2) (i.e., find a rational q such that |F (qe,m) − q| < 2−(2e+2)). Define e ∈ X if and
only if this approximation is ≥ 0. This X separates the ranges of g0 and g1. Suppose ∃s(g0(s) = e).
Then Ie,m∩C 6= ∅ and F (x) = f(x) = 2−2e on Ie,m∩C. As qe,m ∈ Ie,m and Ie,m has length at most

2−m = 2−H(2e+2), it must be that |F (qe,m) − 2−2e| ≤ 2−(2e+2). Thus if q approximates F (qe,m) to

within 2−(2e+2), then |q − 2−2e| ≤ 2−(2e+1), which implies that q is positive and hence that e ∈ X.

Similarly, if ∃s(g1(s) = e), then any approximation of F (qe,m) to within 2−(2e+2) must be within

2−(2e+1) of −2−2e and thus must be negative, which implies that e /∈ X. �

Corollary 3.4. Conjecture 1.1 is true.

Proof. First, in Conjecture 1.1, (1) implies (2), (3), (4), and (5) as explained in the introduction:
RCA0 proves the Tietze extension theorem for closed sets (i.e., the version without uniform conti-
nuity; see [7, Theorem II.7.5]), and WKL0 proves that continuous functions on compact complete
separable metric spaces have moduli of uniform continuity (see [7, Theorem IV.2.2]). Next, each
of (2), (3), and (4) implies (5) because (5) is a special case of each of (2), (3), and (4). Finally, (5)
implies (1) by Theorem 3.3. �
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