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Abstract The usefulness of previous Coupled Model Intercomparison Project (CMIP) exercises has been
hampered by a lack of radiative forcing information. This has made it difficult to understand reasons for
differences between model responses. Effective radiative forcing (ERF) is easier to diagnose than traditional
radiative forcing in global climate models (GCMs) and is more representative of the eventual temperature
response. Here we examine the different methods of computing ERF in two GCMs. We find that ERF
computed from a fixed sea surface temperature (SST) method (ERF_fSST) has much more certainty than
regression based methods. Thirty year integrations are sufficient to reduce the 5–95% confidence interval in
global ERF_fSST to 0.1Wm�2. For 2xCO2 ERF, 30 year integrations are needed to ensure that the signal is
larger than the local confidence interval over more than 90% of the globe. Within the ERF_fSST method there
are various options for prescribing SSTs and sea ice. We explore these and find that ERF is only weakly
dependent on the methodological choices. Prescribing the monthly averaged seasonally varying model’s
preindustrial climatology is recommended for its smaller random error and easier implementation. As part of
CMIP6, the Radiative Forcing Model Intercomparison Project (RFMIP) asks models to conduct 30 year
ERF_fSST experiments using the model’s own preindustrial climatology of SST and sea ice. The Aerosol and
Chemistry Model Intercomparison Project (AerChemMIP) will also mainly use this approach. We propose this
as a standard method for diagnosing ERF and recommend that it be used across the climate modeling
community to aid future comparisons.

1. Introduction

The ubiquitous framework for understanding surface temperature changes due to specific radiative drivers is
based around energy budget analyses that split forcing and response [Boucher et al., 2013;Myhre et al., 2013;
Sherwood et al., 2015]. This framework has proved invaluable for characterizing the drivers of climate change
and understanding many aspects of how the climate is expected to respond to human and natural drivers
of change.

Forcing has traditionally been calculated as either an instantaneous radiative forcing or stratospherically
adjusted radiative forcing, measured as a Wm�2 change in irradiance at the tropopause for a trace gas
change, land use change, solar irradiance change, or aerosol perturbation [Ramaswamy et al., 2001;
Sherwood et al., 2015]. However, these traditional definitions of radiative forcings do not account for
forcing-driven changes in cloudiness and other rapid adjustments that alter the global energy balance and
ultimately affect the eventual climate response. Such rapid adjustments are accounted for within the concept
of effective radiative forcing (ERF). ERF is defined as the irradiance change at the top of atmosphere (TOA)
following a perturbation to the climate system taking into account any rapid adjustments. The exact defini-
tion of rapid adjustment and, therefore, ERF varies with the calculation method. ERF is more uncertain than
traditional radiative forcing because it involves interactions with multiple aspects of the climate system, e.g.,
clouds, but has become the metric of choice [Boucher et al., 2013] because a forcing-feedback framework
based on ERF gives a more complete picture of the overall expected energy budget change [Chung and
Soden, 2015; Sherwood et al., 2015]. Climate sensitivity parameters (the degree of warming per unit forcing)
are less dependent on the forcing agent when rapid adjustments are accounted for [Hansen et al., 2005;
Shine et al., 2003]. ERF is also more readily calculable from standard climate model diagnostics [Sherwood
et al., 2015].
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Amajor disadvantage of ERF as a metric is that it depends on its method of calculation and there is, as yet, no
agreed method. Two main methods are employed in models: ERF_fSST, which is diagnosed from fixed sea
surface temperature and sea ice integrations [Hansen et al., 2005], or ERF_reg, which is diagnosed from
regression of TOA irradiance against global surface temperature change in integrations of coupled ocean-
atmosphere models where a forcing such as CO2 is abruptly increased [Gregory et al., 2004]. An advantage
of the ERF_fSST method over the ERF_reg method is that it can be employed to make a transient estimate
of ERF from a scenario with time-varying forcings [Andrews and Ringer, 2014]. The ERF_fSST approach is simi-
lar to separating forcing and feedback by timescales, as ERF_fSST includes responses on the timescales of
atmosphere and land surface change but not the responses associated with longer ocean timescales. A
downside is that the land surface response is included in the estimate of global ERF_fSST, and this leads to
a change of global mean surface temperature. A global mean temperature change makes it more difficult
to fit ERF_fSST into a simple forcing-feedback framework whereby feedbacks are related to global tempera-
ture change and forcings are not [Sherwood et al., 2015]. Another downside is that rapid adjustments are no
longer treated as a coupled problem, and at least in one model, the ocean plays an important role in govern-
ing their development [Rugenstein et al., 2016].

One potential disadvantage shared by ERF_fSST and ERF_reg is that both methods require custom model
integrations. Alternatives exist but have greater weaknesses. ERF can be inferred from TOA irradiances in
existing coupled climate model runs, for example, by assuming constant known climate feedbacks [Forster
et al., 2013; Forster and Taylor, 2006] or using an impulse response model that assumes known time-varying
feedbacks [Larson and Portmann, 2016]. Because these methods assume known feedbacks, it is difficult to
attribute the intermodel spread in temperature change to differences in intermodel forcing and/or differ-
ences in feedback mechanisms. ERF may also be estimated by adding estimates of rapid adjustments onto
instantaneous radiative forcing estimates [Chung and Soden, 2015], but this relies on the use of radiative ker-
nels which introduces further uncertainty [Chung and Soden, 2015].

The lack of an agreed methodology is one reason why few of the world’s climate models routinely report for-
cings. This has been a community issue for over a decade that has been particularly noticeable when trying to
understand a model’s response. Modeling groups do not typically know if their trace gas or aerosol change
perturbation experiments give the radiative forcing expected from standard offline estimates of forcing
[Chung and Soden, 2015; Myhre et al., 2013], nor do they know how their forcings compare to other models
under standard historic and future scenarios [Forster et al., 2013].

Leaving forcings undiagnosed greatly limits the understanding of why the models get the responses they do
and why they might differ [Chung and Soden, 2015; Forster et al., 2013; Marvel et al., 2015; Shindell, 2014; Vial
et al., 2013]. One benefit of diagnosing historic forcing from models is that it will help us to resolve a key dis-
crepancy over estimates of Equilibrium Climate Sensitivity (ECS) identified in the last Intergovernmental Panel
on Climate Change (IPCC) report [Intergovernmental Panel on Climate Change, 2013]. ECS is defined as the glo-
bal mean surface warming at equilibrium from a sustained doubling of carbon dioxide from preindustrial
levels. In the IPCC report estimates of ECS based on historical energy budget analyses were centered around
2 K, consistently smaller than that derived from other methods, which were centered around 3 K [Collins et al.,
2013]. The historic energy budget approach is beginning to be tested in models and such testing has led to
important insights into why estimates may differ. Forcing driver efficacy [Marvel et al., 2015; Shindell, 2014],
shifting spatial patterns of response [Armour et al., 2012; Rose et al., 2014] and temporal evolution of feedback
[Andrews et al., 2015; Gregory and Andrews, 2016] have all been mooted as a possible cause of differences
between ECS estimates. However, a lack of ERF estimates from multiple models means that perfect-model
tests of how sensitivity has varied through time have not been possible and our knowledge is not as devel-
oped as it could be. Knowing historic forcing in models allows us to accurately diagnose how their feedbacks
vary in space and time and allows one to assess how feedbacks for historical scenarios compare to feedbacks
from idealized doubling carbon dioxide experiments. Not knowing historic ERF also makes it difficult to infer
estimates of transient climate response [Gregory and Forster, 2008; Storelvmo et al., 2016], and challenging to
understand causes of decadal variations in surface temperature [Fyfe et al., 2016;Marotzke and Forster, 2015],
hampering our ability to attribute past climate trends to particular causes [Stevens, 2015].

In this paper we make recommendations for how ERFs can be routinely and consistently diagnosed across
models to support Coupled Model Intercomparison Project Phase Six (CMIP6). We specifically test ERF
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diagnosis methods employed as part of the Radiative Forcing and Aerosol-Chemistry MIPs associated with
CMIP6 (RFMIP [Pincus et al., 2016 and AerChemMIP [Collins et al., 2016], respectively). We compare the uncer-
tainty characteristics of ERF_fSST integrations with those of ERF_reg. We also compare methods for estimat-
ing the transient evolution of ERF (ERF_trans) that will be employed for both MIPs, discussing the pros and
cons of the various methods.

2. Methods

We base most of the following analysis on integrations where step change perturbations have been made to
different forcing agents such as CO2 as part of the Precipitation Driver Response Model Intercomparison
(PDRMIP). In this work we analyze data from the Hadley Centre Global Environmental Model (HadGEM2)
and Community Earth System Model (CESM1) model integrations.

Five climate perturbation experiments were simulated: a doubling of CO2 concentration (hereafter denoted
2xCO2), tripling of CH4 concentration (3xCH4), 2% increase in solar constant (2%Sol), 10 times BC concentra-
tion or emissions (10xBC), and 5 times SO4 concentrations or emissions (5xSul).

These experiments were set up slightly differently in the two models which means that the computed for-
cings or responses are not expected to be quantitatively similar. For example, CESM1 scaled present-day
aerosol concentrations based on AeroCom Phase II [see, e.g., Samset et al., 2013], whereas HadGEM2 scaled
preindustrial emissions. For the regression analyses HadGEM2 employed a full ocean model, whereas
CESM1 employed a simple slab-ocean model.

For the baseline and each perturbation experiment, the models ran two sets of simulations: one keeping sea
surface temperatures and sea ice fixed (hereafter denoted fSST) and one with a coupled ocean (coupled). The
fSST simulations were run for 30 years and used to compute ERF_fSST, and the coupled simulations for
100 years to compute ERF_reg. For the regional analyses, all model data were regridded from their native
resolutions (1.875° × 1.25° grid boxes in HadGEM2 and 2.5° × 2° grid boxes in CESM1) to 1° × 1° resolution
before comparisons were made. The fSST-type simulations adopted the sstClim methodology from CMIP5,
where the SST and sea ice climatology was based on an annually repeating monthly averaged preindustrial
climatology of SST and sea ice fraction was interpolated to give daily boundary conditions.

2.1. ERF_reg

Global mean ERF_reg was computed by linearly regressing the global, annual mean net TOA flux change rela-
tive to the baseline simulation against the change in global mean surface air temperature (T) in the coupled
simulations. ERF_reg is defined as the intercept of the regression line with the T = 0 line. Local ERF_reg was
calculated by linearly regressing the local annual mean net TOA flux change against the change in global
mean surface air temperature. The 5%–95% confidence intervals for ERF_reg were calculated using the t dis-
tribution as shown in equation (1),

CIreg ¼ SEreg� tvalue (1)

where CIreg is the ERF_reg 5%–95% confidence interval, SEreg is the standard error of the regression intercept,
and tvalue is the t value from the t distribution with degrees of freedom given by the number of years
regressed over minus two. The standard error of the regression intercept was calculated using

SEreg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑Ti2∑ yi � ylð Þ2
n n� 2ð Þ∑ Ti � Tl

� �2

vuut ; (2)

where Ti is the annual average temperature change, yi is the annual average net TOA flux, n is the number of
years regressing over, and overbars denote the average value of that quantity. We also employed multiple
ensemble members to compute ERF_reg. To test uncertainty in the regression approaches, we ran five more
ensemble members out to 20 years for 2xCO2 in the CESM1 model. The annually averaged data from the
extra ensemble members were simply added to the number of points used in the regression analysis calcula-
tion of the intercept and 5%–95% confidence intervals.

2.2. ERF_fSST

ERF_fSST was taken as the difference in global mean net TOA flux between the perturbed and control
fSST simulations [e.g., Hansen et al., 2005]. Local differences were integrated and area weighted to derive
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a global mean ERF_fSST. The 5%–95% confidence intervals for ERF_fSST were calculated using the t
distribution

CIfSST ¼ SEfSST�tvalue (3)

where CIfSST is the ERF_fSST 5%–95% confidence interval, SEfSST is the ERF_fSST standard error, and tvalue is
the t value from the t distribution with degrees of freedom given by the length of integration (in years) minus
one. The standard error in ERF_fSST was calculated using equation (4):

SEfSST ¼ σffiffiffi
n

p ; (4)

where σ is the standard deviation of the annual mean anomaly in TOA radiation and n is the number of years
in the integration.

2.3. IRF

Instantaneous radiative forcings (IRFs) were also diagnosed using a double-call methodology in which every
call to the radiation scheme was repeated returning the trace gas or aerosol concentration to its preindustrial
value [Chung and Soden, 2015]. CESM1 computed IRF as the difference in net downwelling flux at TOA from
the first five years from the fSST integration. HadGEM2 computed IRF as the difference in net flux at themodel
level corresponding to the WMO definition of the tropopause, where lapse rate falls to 2 K km�1 or less, from
years two and three of a 3 year fSST integration. These differences were computed locally and these were
integrated and area weighted to derive a global mean IRF. CESM1 only computed IRF for aerosol changes.
We chose to report IRF at the tropopause level in HadGEM2 as we also made estimates of greenhouse gas
IRF in this model. By definition, stratospheric adjustments are not included in the IRF estimate. For green-
house gas perturbations it is important to include stratospheric adjustment in the total radiative forcing esti-
mate and recording fluxes at the tropopause makes stratospheric adjustment a part of the total rapid
adjustment in a consistent way, as the difference between IRF and ERF.

2.4. ERF_nudge

Another way to reduce interannual variability in the TOA imbalance is to combine the ERF_fSST approach
with nudging techniques [Kooperman et al., 2012] that constrain the model evolution by relaxing the model
toward a specified time-dependent dynamical state [Telford et al., 2008]. The prescribed conditions are taken
from the ERA-Interim reanalysis [Dee et al., 2011], however an alternative is to use a preindustrial control run
of the same model [Kooperman et al., 2012]. For ERF estimates atmospheric wind fields are typically nudged
but temperatures are not nudged to allow the atmospheric temperature and cloud fields to rapidly adjust to
the forcing. We perform such experiments in HadGEM2, where atmospheric winds are nudged to ERA-Interim
values and atmospheric temperatures allowed to evolve from 2001 onward (ERF_nudge). Following the
recommendation in Telford et al. [2008], nudging is not applied in the boundary layer to avoid instabilities
arising from differences between the HadGEM2 and ERA-Interim model orography, or near the top of the
model. The relaxation parameter is a subjective choice that drives the strength of the nudging, and is set
to the inverse of the time step in the ERA-Interim data (21,600 s). In ERF_nudge experiments, the results from
years two and three of a 3 year integration are used to determine ERF. Owing to the short simulation length it
is not appropriate to evaluate uncertainty from these runs.

2.5. ERF_trans

In section 4 we also explore modifications of the ERF_fSST approach to provide transient estimates of ERF. We
term these methods ERF_trans. We perform transient integrations in HadGEM2 and CESM1 to test ERF_trans
approaches that have different methods of prescribing SSTs and sea ice. ERF_trans is defined as the differ-
ence in downwelling TOA flux between a run where all forcers have transient evolution and one where
one or more components have emissions (or concentrations) fixed at preindustrial values. Both control
and perturbation experiments use the same SST and sea ice fields. For some experiments SSTs and sea ice
fields are taken from the same annually repeating climatology as used for ERF_fSST. This protocol, based
on each model’s own annually repeating preindustrial climatology for all its experiments, is adopted by
RFMIP. Other experiments use evolving SST and sea ice fields, following the proposed AerChemMIP protocol
[Collins et al., 2016] which prefers to use monthly averaged evolving SST and sea ice fields taken from a par-
allel Atmosphere-Ocean General Circulation Model (AOGCM) integration. In both cases, ERF_trans is defined
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as the difference in downwelling TOA flux between a run where all forcers have transient evolution and one
where one or more components have emissions (or concentrations) fixed at preindustrial values. ERF_trans
could conceivably be defined as the difference in downwelling TOA flux between integrations where one for-
cing evolved compared to one where all forcings are fixed at preindustrial concentrations. However, such a
method would not capture possible interdependence between forcing mechanisms (e.g., the dependence of
CH4 forcing on N2O concentration) and would therefore give a less realistic estimate of ERF.

3. Comparing ERF_fSST and ERF_reg Approaches

This section explores how integration length and/or regression length affect the uncertainty characteristics of
ERF diagnosed by the ERF_fSST and ERF_reg methods. Figure 1 compares the 5–95% confidence interval of
the global ERF produced by the two methods and compares how ERF varies with integration length. For all
forcings and in both models ERF_reg changes considerably as more years are included in the regression. This
is due to nonlinearity in the relationship between TOA irradiance and surface temperature change and has
been seen before for individual models and forcings [Andrews et al., 2015;Meraner et al., 2013]. This nonlinear-
ity is likely caused by climate feedback variations over both time and space and leads to curvature in the rela-
tionship between TOA irradiance and surface temperature change. Uncertainty in ERF also reduce with the
regression length, but they are always greater than 10% of the absolute ERF (for a single ensemble member).
In contrast ERF_fSST is less dependent on run length and has consistently smaller uncertainty. The fSST con-
trol simulation which did not include ocean circulation-driven changes had similar variability to the coupled
model control simulation indicating that the differences between ERF_fSST and ERF_reg confidence intervals
were unlikely to be caused by the different ocean coupling in the two setups.

The choice of the number of years to integrate over for ERF_fSST, or to include in a regression analysis for
ERF_reg, is somewhat subjective. For purposes of illustration we select 20 years for both. Figure 2 summarizes
the 20 year results of Figure 1, presenting the uncertainty as error bars. The ERF_fSST and ERF_reg methods
givemore-or-less similar global ERFs for the different forcings, but there are also some interesting differences.
In CESM1, ERF_fSST is more strongly positive than ERF_reg for all but 5xSul creating a systematic difference
between the two approaches. The ERF patterns of the two approaches are shown and briefly discussed in the

Figure 1. Global mean ERF (Wm�2) against (a and c) integration length for ERF_fSST and (b and d) regression length for
ERF_reg. Results are presented for the five perturbation experiments implemented in HadGEM2 and CESM1. Grey shading
denotes the 5%–95% confidence interval. Diamonds mark regression values after 100 years. Also shown as the dotted line
on the CESM1 regression plot is the ERF diagnosed from regression of five ensemble members.
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supporting information. Patterns of ERF_fSST and ERF_reg are broadly similar to each other, but the ERF_reg
pattern has larger uncertainty. Differences between the two ERF methods are expected. First, rapid adjust-
ment estimates within the ERF_reg approach could have elements of SST pattern changes not captured by
the ERF_fSST method [Andrews et al., 2015]. Second, the land surface temperature change in the ERF_fSST
approach contributes to a global mean temperature change and drives a TOA response. How rapid adjust-
ments manifest themselves on this pattern of the land surface temperature response therefore affects the
diagnosed forcing. A simple method of adjusting the ERF_fSST approach to account for its global surface
temperature feedback has been tried before using an adjustment based on the global climate sensitivity
parameter, but this method does not work particularly well in making estimates comparable [Hansen et al.,
2005; Sherwood et al., 2015]. The differences in these processes would be expected to vary both by model
and pattern of temperature response, making it difficult to derive a simple method of directly comparing
the two types of ERF estimate. Indeed, a systematic difference between ERF_fSST and ERF_reg is not seen
in HadGEM2.

Nevertheless, ERF_fSST has consistently smaller sampling errors than a single ensemble member for ERF_reg.
Note that five ensemblemembers of the ERF_regmethod are needed to give comparable confidence interval
to ERF_fSST for the 2xCO2 case examined in CESM1 (Figure 2).

The difference in forcing between the ERF and the double-call IRF methods can be attributed to the effects of
rapid adjustments to the land surface, troposphere, and stratosphere, which are not accounted for in the IRF.
Examining Figure 2, there is evidence of a rapid adjustment with most forcing mechanisms in both models.
The sign and proportional strength of this adjustment varies with forcing mechanism and model. A consis-
tent feature in both models is that the ERF_reg from 10xBC is considerably smaller than its IRF, implying a
negative forcing from rapid adjustment. There is evidence of strongly negative rapid adjustment for 5xSul
in HadGEM2 but not in CESM1. Tropospheric rapid cloud adjustments are the likely cause of differences for
10xBC and 5xSul, in particular the semidirect effect for 10xBC and aerosol-cloud interaction for 5xSul
[Zelinka et al., 2014]. For 2xCO2, the all-sky stratospherically adjusted radiative forcing has been shown to
be 14% lower than the IRF at the tropopause [Myhre and Stordal, 1997]. Stratospheric adjustment therefore
likely explains part of the reason why the 2xCO2 ERF is roughly 30% smaller than the IRF in the
HadGEM2 model.

ERF_nudge values do not reproduce ERF_fSST perfectly. Figure 2 shows that for 2xCO2 and 2%Sol, in parti-
cular, global mean ERFs from ERF_nudge are closer to the IRF values, suggesting that the rapid adjustments

Figure 2. ERF values obtained by ERF_fSST and ERF_reg in the two models across the forcing experiments. Double-call IRF
results for all experiments in HadGEM2 and for 10xBC and 5xSul in CESM1 are also given. ERF_nudge results are also shown
for HadGEM2. Averaging lengths in ERF_fSST and regression lengths in ERF_reg are for 20 years. The results of ERF_reg for
five ensemble members are also shown for 2xCO2 in CESM1. Error bars indicate the 5%–95% confidence interval. The
confidence intervals are not evaluated for ERF_nudge and IRF.
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estimated by the nudging methodology are not as strong as those evaluated by ERF_fSST or ERF_reg. This
also suggests that for these forcing mechanisms in this model that the dynamical rapid adjustments that
are constrained by ERF_nudge contribute to the total ERF and cannot be neglected (see supporting informa-
tion for further comparison).

The form of how ERF_fSST uncertainty depends on run length is shown in Figures 3a and 3c. The ERF_fSST
uncertainty shows limited variation with forcing mechanism and is largely determined by the variability of
the TOA fluxes in the baseline simulation. This variability is slightly larger in HadGEM2 leading to slightly lar-
ger uncertainty, but they are more-or-less equivalent in the two models. The 2% solar experiment has notice-
ably smaller uncertainty in HadGEM2. This appears to be due to reduced variability in this simulation, the
cause of which is under investigation. Broadly speaking, 10 years of data could be expected to give global
ERF to within 0.2Wm�2, whereas 30 years of data would be needed for 0.1Wm�2 accuracy. The accuracy
improves with square root of the number of years in the integration (equation (4)). Therefore, diagnosing
ERFs of 0.01Wm�2 would require centuries of integration and be prohibitive in terms of computer time using
this method. Further analysis (not shown) found that variability in TOA flux in the CMIP5 ensemble mean was
similar to both models employed here (0.19Wm�2). This indicates that the ERF_fSST uncertainty character-
istics of these models are likely representative of the average CMIP5 model. However, two CMIP5 models in
our analyses had over 50% higher variability in TOA flux, which indicates that in some models run lengths of
considerably over 30 years could be needed to constrain ERF_fSST to within 0.1Wm�2.

Figures 3b and 3d show the uncertainty characteristics of the ERF_reg method. The ERF_reg uncertainty
depends mostly on the magnitude of the forcing, except for the 2%Sol experiment in the HadGEM2 model,
which has smaller uncertainty. ERF_reg uncertainty is larger than ERF_fSST uncertainty for a single ensemble
member and never falls below 0.1Wm�2 for the forcings considered here. These uncertainty characteristics
can be improved by adding further ensemble members. The dotted line shows a five ensemble member
example for 2xCO2 in CESM1 where uncertainties are reduced compared to the single ensemble member.
As expected, the reduction in uncertainty scales with the square root of the number of ensemble members.
Therefore, to get the ERF_reg 2xCO2 90% confidence interval to less than 0.1Wm�2 would likely require

Figure 3. Global (a and c) ERF_fSST and (b and d) ERF_reg 5%–95% confidence interval against run length and regression
length, respectively. Results are shown for the different forcings (colored lines) in the twomodels. A five ensemble member
regression out to 20 years is shown as the thick dotted line for 2xCO2 in the CESM1 model.
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more than 10 ensemble members assuming 20 year regressions. This is equivalent to at least 200 years of
coupled model integration, a substantial amount of computing resource.

Figure 4 examines the uncertainty in ERF, comparing local ERF to its local 90% confidence interval. The spatial
patterns of IRF, ERF, and confidence intervals for ERF_fSST and ERF_reg are presented in the supporting infor-
mation. For ERF_fSST the robustness of the forcing pattern increases with run length. For run lengths of
30 years ERF_fSST gives an estimate of forcing over more than 50% of the globe that is larger than its confi-
dence interval for the considered experiments. Patterns are not generally as robust from the ERF_reg
method, but still have useful skill over about a third of the globe (for 20 year regressions). Adding ensemble
members to ERF_reg increases the skill, as expected. The amount of pattern significance obtained increases
with the magnitude of the global mean forcing. More spatially, uniform patterns also have higher signifi-
cance. This explains the lower pattern significance for the 3xCH4 and 10xBC experiments, compared
to 2xCO2.

4. Effect of Base Line Climatology and Transient ERF

The utility of the radiative forcing concept relies on the identified roughly linear relationship between forcing
and temperature response. Its utility is further strengthened because simple relationships often exist
between concentration and forcing. In particular, global mean greenhouse gas forcings can usually be esti-
mated to first order using simple formulae that depend on background concentration levels [Forster et al.,
2007], but not on the background climate state [Ramaswamy et al., 2001]. However, different background cli-
mate states may give different ERFs for the same trace gas or aerosol perturbation and this is investigated
here. The biggest influence on ERF from climatological changes is likely to be due to variations in cloudiness.
This may be especially important when trying to diagnose time-varying ERF from the models: as their surface
temperatures warm and climates evolve their ERF for a given perturbation might change. This means that the
ERF diagnosed with preindustrial SSTs (for example) may not be representative of the ERF experienced at a
later date. Conceptually, the ERF that is most representative of a model’s response would come from applying

Figure 4. Percentage of the Earth’s surface where the local ERF is larger than its local 5%–95% confidence interval against
integration length for (left) ERF_fSST and (right) regression length for ERF_reg. Diamonds mark regression values after
100 years. A five ensemble member regression out to 20 years is shown as the thick dotted line for 2xCO2 in the CESM1
model.
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the time-varying SSTs and sea ice
from the equivalently forced coupled
model run in the ERF calculation. This
is the ERF_trans method proposed
by AerChemMIP [Collins et al., 2016].

To gauge the possible differences in
ERF introduced by different prescrip-
tions of SST and sea ice, we perform
two experiments in the HadGEM2
model (Figures 5 and 6) and test
the exact AerChemMIP approach in
CESM1 (Figure 7).

Figure 5 compares 4xCO2 ERF_fSST
generated with a preindustrial
climatology of SSTs to ERF_fSST
generated with +4 K warmer clima-
tological SSTs. Figure 6 further
compares historical ERF_trans for
1979–2008 simulations with sea sur-
face temperature and sea ice taken
from a preindustrial climatology
(sstClim), the Atmospheric Model
Intercomparison Project (AMIP)
mean climatology (AMIPClim), and
a time-varying monthly AMIP cli-
mate state (AMIP).

Figure 5 shows that the pattern of
4xCO2 ERF for the two prescriptions
of SST and sea ice is quite similar.
Locally (in 1° grid boxes) differences
of 20% can be found in ERF over
small areas where baseline clouds
differ. However, the local effects
tend to cancel out in the global
mean and the difference in global
mean ERF estimates is less than 3%,
with the warmer sea surface experi-
ment having a slightly larger glob-
ally averaged ERF. The time-varying
experiments in Figure 6 do not indi-
cate any systematic differences in
ERF_trans caused by employing dif-

ferent SSTs patterns. These results generally indicate that the ERF is relatively insensitive to the prescribed
climate of SST and sea ice, if scaled uniformly, even for quite large changes in these fields representative
of preindustrial and future conditions.

Figure 6 does raise an important question about how to manage variability in ERF. Historical ERF has a signif-
icant variability from the rapid adjustment of clouds, which is a driver of short-term variability within the
models. The contribution of such random climate change to variability in ERF can be gauged by comparing
individual ensemblemembers. The contribution of SST and sea ice variation in ERF_trans can be estimated by
comparing the thick red line to the thick blue line in Figure 6, although given the small number of ensemble
members random noise may still contribute to these ensemble averaged differences. Applying time-varying
SSTs and sea ice (red lines) instead of annually repeating boundary conditions (black and blue lines) does not

Figure 5. The pattern of 4xCO2 ERF in HadGEM2 employing (a) a preindus-
trial SST climatology and (b) a preindustrial SST with a uniform 4 K added.
(c) The difference between the two is shown. Global mean (GM) values are
also shown.
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significantly increase the year-to-year
variability in ERF, so variation in the
SST and sea ice fields appears to be
of secondary importance for ERF.

We also tested the ERF_trans
method for diagnosing historical
sulfate forcing in CESM1, where we
employed evolving historical SSTs
and sea ice for the base climate
state, mimicking the proposed
AerChemMIP protocol for comput-
ing transient ERF. As described in
section 2, ERF_trans was computed
as the difference between two inte-
grations: one with a full set of transi-
ent forcers and one where all forcers
evolved but the atmospheric sulfate
aerosol concentration was kept at
1850 values. In addition, we per-
formed two 30 year time slice inte-
grations at 1850 and 2000
conditions to diagnose ERF_fSST at
the endpoint more accurately.

Figure 7 shows time series of (a) the global surface temperature anomaly, (b) the global mean sulfate burden,
and (c) the resulting ERF_trans. The ERF_fSST for year 2000 calculated from the time slice integrations is
shown by the whisker bar in Figure 7c. In addition, Figure 7c shows the ERF estimated assuming a constant
forcing per gram calculated separately using the ERF_fSST method with annually repeating preindustrial SSTs
and sea ice. For this particular model, interannual variability in ERF_trans has a standard deviation of
0.6Wm�2. Both interannual variation in SSTs and additional random interannual variation in clouds might
contribute to this overall variability. The large year-to-year variation clearly poses challenges for diagnosing
real short-term changes in ERF. As found for HadGEM2, there appears very little bias between ERF_trans
and ERF_fSST (comparing green and black estimates for the present day). Linear scaling of burden appears
to work well for estimating the time evolution of ERF (comparing pale blue and black lines).

A main finding is that the year-to-year variability in ERF_trans makes it difficult to isolate possible real depar-
tures of ERF trend away from linear scaling, such as that seen between 1880 and 1910. The explanation for

Figure 6. ERF for 1979–2008 estimated by different ERF_trans methods of
prescribing SST and sea ice base climates. The base climate states were
taken from either a preindustrial climatology (Preindustrial Clim), a
1979–2008 AMIP mean climatology (AMIP Clim), or an evolving monthly
AMIP climate (AMIP evolving). ERF was computed from pairs of simulations in
HadGEM2, comparing simulations with historical evolution of forcing agents
with one employing preindustrial concentrations. The historical simulations
include greenhouse gas changes, aerosol, volcanic, and solar forcings but
exclude land use changes. Three historical simulations with different atmo-
spheric initial conditions were performed for each base climate state. Thick
lines are ensemble averages.

Figure 7. Illustrates sulfate forcing experiments in CESM1 to compute ERF with the ERF_trans method and compare it with ERF_fSST methods. (a) Global mean tem-
perature anomaly from historically evolving prescribed SSTs, (b) sulfate burden, (c) annually averaged ERF_trans (red), and its 15 year running mean (black). The
green whisker bar shows the ERF from a 30 year ERF_fSST integration with the year 2000 burden (5%–95% confidence interval). Also shown in Figure 7c is ERF
estimated by calculating the global mean ERF per global mean burden for this model derived by the ERF_fSST method (pale blue line).
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this behavior is not immediately apparent. Multiple ensemble members may help by reducing the noise to
manageable levels.

5. Discussion

Figure 2 shows that there is evidence of some systematic variation between the ERF derived from different
approaches. As expected, ERF estimates also generally differ from IRF estimates indicating the importance
of rapid adjustments. Previous studies have found that ERF_fSST is systematically larger than ERF_reg for
4xCO2 experiments across a range of models [Andrews et al., 2012; Chung and Soden, 2015]. Our results show
that such a bias is only likely true for long regression lengths (e.g., the 150 year regressions employed in
Andrews et al. [2012]); short regression lengths give higher ERF_reg estimates. Differences between the meth-
ods are particularly apparent for increases in solar constant in both models. Here we discuss the pros and
cons of the different methods before making our recommendation. These are summarized in Table 1.
5.1. IRF
Pros This is expected to have less spread across models when measured at the tropopause because it does
not depend upon rapid model-dependent feedbacks that contribute to the ERF and is directly comparable
with offline estimates of instantaneous radiative forcing, thereby providing a direct test of a model’s radiative
transfer code. It does not require long model integrations and is the computationally cheapest way to esti-
mate forcing as only radiative transfer codes are required. When used in conjunction with an ERF estimate,
it provides a quantification of rapid adjustments. Among the methods discussed in this study, this is the only
method for quantifying small forcings (≲0.2Wm�2) without a large uncertainty relative to the forcing.

Cons It excludes the effect of rapid adjustments, including stratospheric adjustment and changes to tropo-
spheric clouds and land surface, all of which are known to influence ERF significantly. Special code is
also required.
5.2. ERF_fSST Method
Pros ERF_fSST can be diagnosed from short integrations in atmospheric models that do not require ocean
coupling. It has the best uncertainty characteristics of methods that include rapid adjustments: a 30 year inte-
gration can constrain global forcing to within 0.1Wm�2. Regionality is also well sampled: 2xCO2 forcing has a
signal greater than its 90% confidence interval over 90% of the globe. Different SST formulations can be
tested, and ERF can be diagnosed before a coupled run is undertaken adding to its use in model and
scenario development.

Cons Land surface temperatures change lead to a degree of global mean surface temperature changemaking
the forcing less applicable to a simple global framework that uses global mean temperature to separate for-
cing and response. Approaches that fit the ERF_fSST into such a framework by making a global averaged
feedback based “correction” to the land surface-based global temperatures change do not work well
[Hansen et al., 2005; Sherwood et al., 2015]. A modified fSST approach has also been tried where both land
and sea surface temperatures are fixed to climatological values [Shine et al., 2003]. However, this cannot read-
ily be implemented in models with sophisticated land surface schemes that need to capture the diurnal cycle
in soil temperatures. To quantify the ERF_fSST with 30 year integration with reasonable accuracy, the forcing
magnitude should be larger than 0.1Wm�2, otherwise longer simulations are needed.
5.3. ERF_reg Method
Pros Both forcing and response can be diagnosed from a single model integration. Regression to T = 0 is also
conceptually attractive from a global energy budget point of view, as it separates driver mediated responses
(forcings) from global mean surface temperature mediated responses (feedbacks) [Sherwood et al., 2015]. As
it is computed directly from coupledmodel integrations, it maybemore akin to the forcing realized within the
actual modeling framework employed to gauge climate response.

Cons ERF_reg cannot be readily be determined for time-dependent forcing scenarios as step change experi-
ments requiring many years of model integration would be needed at each time slice considered. ERF_reg
also depends on the choice of number of years of data used in the regression analysis, as well as the type
of regression. These choices are rather subjective and, as different models would be expected to have differ-
ent time-dependent feedbacks, it is not clear how the regression length or regression model could be stan-
dardized to give a comparable forcing across different models [Andrews et al., 2015]. Uncertainties are large
for a single ensemble member, and large ensembles would be needed to match the confidence interval of
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ERF_fSST. Regional uncertainties would be larger still. The computer resources needed for such large ensem-
bles would be prohibitively large, making ERF_reg unsuitable for small forcings or distinguishing small for-
cing differences.
5.4. ERF_nudge Method
ProsAs with ERF_fSST, only a few years of model integration are required to obtain a good estimate of ERF. In
addition, interannual variability in TOA flux differences is much reduced compared to ERF_fSST: a variant of
ERF_fSST from a 10 year nudged experiment has only around one tenth of the standard error from a free-
running integration [Kooperman et al., 2012, Figure 2d].

Cons ERFs estimated from nudging likely fail to account for any rapid adjustment in the circulation. Such
nudged ERFs are therefore not strictly equivalent to ERF_fSST, and it is an open question as to whether this
could lead to significant global and/or regional systematic biases between nudged and standard methods.
Additionally, implementing nudging is complex and requires a modification to climate model code.
Nudging also requires subjective choices in relation to which model levels and variables should be nudged,
as well as the choice of model/reanalysis data set to nudge to.
5.5. ERF_trans Method
Pros Can provide transient ERF estimates from paired integrations without the need for multiple time slice
integrations. Paired integrations, which are performed for other reasons, can be checked easily for forcing
and feedbacks. By using time evolving SSTs, it has the potential to account for some SST nonlinear effects,
such as ERF dependence on cloud base state. Decadal changes in ERF may be detected if the forcing signal
is large enough.

Cons The year-to-year random error is expected to be large requiring multiple ensemble members and/or
decadal averaging to detect typical forcing trends. Any effect of SST base state on forcing is likely to be small
and swamped by random error. This makes the use of time evolving SSTs unhelpful for determining year-to-
year changes in ERF without a large number of ensembles.

6. Summary and Recommendations

If our ambition is to estimate ERF to within 0.1Wm�2 globally, the ERF_fSST approach meets this goal with
30 years of model integration. To obtain similar uncertainty characteristics from the ERF_reg approach would
require more than 45 ensemble members of 20 year coupled model integrations, making ERF_fSST a far more
computationally efficient method.

The attractiveness of the ERF_reg method lies in its simple split of forcing and response, whereby ERF_reg
does not have a contribution from a global mean temperature change. ERF_reg is also calculated within
the same coupled modeling framework used to model the response so may be more representative of the
energy budget changes felt within coupled model integrations. These potential conceptual benefits are lim-
ited, though, as simple global linear regression is unlikely to capture the intricacies and multiple timescale of
model response. Different regression approaches could be used, but there is no clear justification for choos-
ing betweenmethods. There are also conceptual issues with the fSST approach as this method incorporates a
residual global temperature change that does not fit a simple global temperature driven feedback model.
The conceptual issues with both ERF_reg and ERF_fSST really show the limitations of a forcing/response fra-
mework based on the global energy budget. In reality processes are not divided between forcing and
response and they affect both TOA energy budget and surface temperature on many different timescales.
Nevertheless, we argue that ERF, however it is calculated, presents a useful first-order comparison of how cli-
mate models “feel” an anthropogenic or natural perturbation.

ERF_fSST has a clear advantage over ERF_reg in terms of the computational overhead needed to reduce
uncertainties to workable levels. This computational overhead makes ERF_fSST approaches far more suitable
for quantifying forcings across drivers and/or models and examining regional differences in forcing.
ERF_trans is a variation of the ERF_fSST method and can be usefully employed to quantify time-varying ERFs.

Chung and Soden [2015] explored three types of ERF_fSST estimates for 4xCO2 within CMIP5 models. The
approaches used different base states based on the model’s climatological SSTs, an AMIP-based climatology,
or aqua planet simulations. There were differences in the computed ERF_fSST between the base states but no
strong bias, consistent with our results from section 4. Using annually repeating climatological SSTs and sea
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ice as the base state has the main advantage that they are periodic, so the control experiments need only be
run for 30 years, rather than 240 years to cover 1860 to 2100 scenarios. They also have the advantage of being
easier/smaller for modeling groups to produce as boundary conditions for their atmospheric models.
Employing an AMIP-based SST and sea ice climatology as in Andrews [2014] or Chung and Soden [2015]
has the advantage of being able to piggyback off exiting AMIP runs that are routinely performed bymodeling
centers. The ERF may also be more representative of time period being analyzed. However, if a coupled simu-
lation had different SSTs than the AMIP simulation, an AMIP-derived ERF would not represent the forcing
within an individual model. Further, as AMIP simulations are based on observed SSTs, it is not straightforward
to adapt the method for future forcings. Ideally, one might use an ERF_trans method where SSTs are
employed from the partner coupledmodel integration, either individual ensemblemembers or the ensemble
average (as proposed in AerChemMIP). This means that one may need to perform long coupled model inte-
grations before the simulations to diagnose forcing can be done, limiting the use of forcing diagnostics as a
model development tool. There would only be an incentive to add this degree of complication if there was
clear evidence that there was a strong forcing dependence on SST or if one wanted specifically to capture
short-term variability in ERF. Our tests of ERF_trans show that any global SST dependent effect is likely small
and swamped by year-to-year random error, although, there may be greater regional differences for indivi-
dual forcings, e.g., the BC on snow forcing would depend on snow cover in a given climate. On the other
hand, if there were other reasons to perform ERF_trans-like simulations, decadal averaged forcing may be
derived from these simulations.

Generally, ERF_fSST and ERF_trans were very insensitive to the choice of SST and sea ice base climate. This is
encouraging for comparing ERF in studies that employ different SST and sea ice base climate formulations. A
particular example arises when comparing ERF derived from concentration and emission-based models, as
concentration based models routinely use preindustrial base states and emission-based models often use
present-day base states to take advantage of being able to use observed wind fields.

We recommend adopting an ERF_fSST approach for ERF estimates going forward, using a fixed SST and sea
ice seasonally varying climatology based on the model’s own preindustrial climatology. This method is cur-
rently proposed by RFMIP for both its time slice simulations and for historic and future scenarios.
AerChemMIP also currently proposes a fixed preindustrial climatology for its time slice experiments. The
free-running integrations are suitable for diagnosing ERF to within a 5% to 95% confidence interval of
0.1Wm�2 for a 30 year simulation. If better accuracy is needed, nudging approaches may provide a useful
way forward but are hard to implement and have not yet been sufficiently tested in a range of models.

IRFs are a poor representation of ERF but are nevertheless useful to compute. First, they provide a set of very
useful tests of a model’s radiative transfer code, allowing a more direct comparison with other models and
also with sophisticated line by line radiative transfer codes [Collins et al., 2006; Forster et al., 2011;
Oreopoulos et al., 2012; Pincus et al., 2015]. Second, computing both IRF and ERF within the samemodel allows
an accurate quantification of the effects of rapid adjustment. The standard IRF method employs a second
radiation call under preindustrial concentrations to give an estimate of direct forcing that be compared with
ERF to estimate rapid adjustment. Additional radiation calls with aerosol scattering and absorption neglected,
and cloud scattering and absorption neglected, to distinguish the forcing from aerosol-cloud interaction
from aerosol-radiation interaction are needed to distinguish types of rapid adjustment [Ghan, 2013; Ghan
et al., 2012].

AerChemMIP will use time-varying SSTs from one coupled model ensemble member in its ERF_trans experi-
ments in an effort to achieve a better representation of the evolution of ERF changes realized in the coupled
model integration. The approach allows the study of changes in the chemical composition with cheaper
model integrations omitting the ocean component. Our results show that random interannual variability will
likely swamp any signal of SST-driven interannual forcing change. Our results also show that using a simpler
approach of a standard fixed SST and sea ice climatology (as employed in RFMIP) is unlikely to create a sys-
tematic bias. We also give a strong cautionary note over the signal to noise ratio that it is possible to achieve
with any ERF_trans method. One ensemble member can only pick up large interannual changes in forcing
(>0.6Wm�2), such as that from volcanic eruptions (Table 1). Three ensemble members would be able to
detect globally averaged decadal variations in forcing larger than 0.1Wm�2 per decade (Figure 3 and
Table 1).
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We recommend that both RFMIP and AerChemMIP carefully consider the expected noise characteristics from
their ERF_fSST30 year integrationsandplan their analysesaccordingly. ForERF_trans, RFMIPareproposing four
transient experiments of three ensembles eachwith (i) all anthropogenic and natural changes, (ii) greenhouse
gas changes, (iii) natural changes, and (iv) aerosol changes. The ERFs in theseexperiments are expected todiffer
bymore than the detectable limit of 0.1Wm�2 per decade, so their analyses should prove useful. AerChemMIP
are currently proposing further simulations to diagnose ERF_trans due to changes in methane, nitrous oxide,
tropospheric ozone precursors, and stratospheric ozone depleting substances. We note that these simulations
haveother purposes aswell, such as a characterization of atmospheric composition in a changing climate.With
respect to forcing characterization, it is questionable as to whether the proposed ERF_transmethod would be
able todetect decadal forcing changes fromsuchexperiments given themagnitudeof the randomerrors high-
lightedhere.We therefore suggest that AerChemMIP includes IRF estimates for small forcings and/or considers
long ERF_fSST time slice integrations where rapid adjustments are deemed important.

Our paper has clearly shown the value in carefully testing proposed model comparison protocols. We have
tested some of the proposed RFMIP and AerChemMIP protocols. We urge other proposed CMIP6 MIPs to
carefully test methods and proposed analyses before making firm requests to the world’s climate modeling
community. For ERF, we recommend adopting a simple and parsimonious approach based on ERF_fSST inte-
grations. This will encourage many more modeling groups to routinely estimate ERF from their simulations.
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