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Reliable, efficient electrically pumped silicon-based lasers would enable full integration 

of photonic and electronic circuits, but have previously only been realized by wafer 

bonding. Here, we demonstrate the first continuous-wave InAs/GaAs quantum-dot 

lasers directly grown on silicon substrates with a low threshold current density of 62.5 

A/cm
2
, a room-temperature output power exceeding 105 mW, lasing operation up to 120 

o
C, and over 3,100 hours of continuous-wave operating data collected, giving an 

extrapolated mean time to failure of over 100,158 hours. The realization of high-

performance quantum-dot lasers on silicon is due to the achievement of a low density of 

threading dislocations on the order of 10
5
 cm

-2
 in the III-V epilayers by combining a 

nucleation layer and dislocation filter layers with in-situ thermal annealing. These 

results are a major advance towards silicon-based photonics and photonic-electronic 

integration, and could provide a route towards reliable and cost-effective monolithic 

integration of III-V devices on silicon.   

 

Increased data throughput between silicon processors in modern information processing 

demands unprecedented bandwidth and low power consumption beyond the capability of 

conventional copper interconnects. To meet these requirements, silicon photonics has been 

under intensive study in recent years
1,2

. Despite rapid progress being made in silicon-based 

light modulation and detection technology and low-cost silicon optoelectronic integrated 

devices enabled by the mature CMOS technology
3,4

, an efficient reliable electrically pumped 

laser on a silicon substrate has remained an unrealized scientific challenge
5
. Group IV 

semiconductors widely used in integrated circuits, e.g. silicon and germanium, are inefficient 

light-emitting materials due to their indirect bandgap, introducing a major barrier to the 

development of silicon photonics. Integration of III–V materials on a silicon platform has 

been one of the most promising techniques for generating coherent light on silicon. III–V 

semiconductors with superior optical properties, acting as optical gain media, can be either 

bonded or epitaxially grown on silicon substrates
6-11

, with the latter approach being more 

attractive for large scale, low-cost, and streamlined fabrication. However, until now, material 

lattice mismatch and incompatible thermal expansion coefficients between III–V materials 

and silicon substrates have fundamentally limited the monolithic growth of III–V lasers on 

silicon substrates by introducing high-density threading dislocations (TDs)
12

.  

Lasers with active regions formed from III-V quantum dots (QDs), nano-size crystals, can not 

only offer low threshold current density (Jth) but also reduced temperature sensitivity
13-17

. As 

shown in Figure 1a, within less than 10 years, the performance of QD lasers has surpassed 

state-of-the-art quantum-well (QW) lasers developed over the last few decades in terms of Jth. 

QD lasers have now been demonstrated with nearly constant Jth, output power (Pout), and 

differential efficiency at operating temperatures of up to 100 °C
18

. Very recently, III–V QD 

structures have drawn growing attention for the implementation of compound semiconductor 

lasers on silicon substrates
8-10,19

. This is because QDs have also been proved to be less 

sensitive to defects than conventional bulk materials and QW structures, due to carrier 

localization and hence a reduced interaction with the defects
20

. As shown in Figure 1b and c, a 
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threading dislocation can only “kill” a very limited number of QDs, leaving the rest intact and 

able to provide optical gain. The enhanced tolerance to defects by localized states has also 

been witnessed in defect-insensitive nitride semiconductors, which are now used for the most 

efficient lighting technology
21

. More importantly, Figure 1b and c also reveal that the 

threading dislocation can be either pinned or propelled away from QDs. Therefore, the strong 

strain field of a QD array also prevents the in-plane motion of dislocations, and therefore 

superior reliability is expected from QD lasers compared with QW or bulk devices, even in 

the presence of high-density dislocations
22,23

. 

These unique properties of QDs provide a promising route towards monolithic III-V on 

silicon (III-V/Si) integration. As shown in Figure 1a, III-V QD lasers grown on silicon are 

rapidly approaching the performance of those grown on native GaAs substrates
24,25

. In 

addition, high-performance QD lasers have been successfully demonstrated on Ge-on-Si and 

Ge substrates, offering an albeit indirect route to III-V/Si integration
9,10,26

. However, it would 

be more attractive to realise a laser which did not require the intermediate germanium layer 

both because the requirement for the germanium layer restricts the range of silicon circuits to 

which it can be applied and since it is difficult to couple light through this layer to a silicon 

waveguide due to the high optical absorption coefficient of germanium at telecommunications 

wavelengths. Therefore, a high performance III-V laser directly grown on silicon is the 

preferred solution for silicon photonic-electronic integration.  

Although QD lasers have demonstrated superior performance on silicon substrates in the last 

few years, our previous publications
8,24,25

 indicate that epitaxially grown GaAs-on-Si 

substrates are much inferior when compared to bulk GaAs substrates in terms of total defect 

density, typically over 2×10
6
 cm

-2
 compared with the order of 10

3
-10

4
 cm

-2
 for a GaAs 

substrate
27

. Furthermore, a high-performance electrically pumped continuous-wave (c.w.) QD 

laser directly grown on a silicon substrate has not yet been demonstrated. Here, by developing 

high-quality GaAs films with low TD density in the range of 10
5
 cm

-2
, we experimentally 

demonstrate high-performance 1310-nm InAs/GaAs QD lasers directly grown on silicon, with 

a record low Jth, high power, and high-temperature c.w. operation. Most significantly, a large 

number of operating hours with negligible degradation has been demonstrated for III-V lasers 

directly grown on silicon substrates for the first time.  

In this work, InAs/GaAs QD lasers were directly grown on silicon substrates using a solid-

source molecular beam epitaxy (MBE) system. In order to realize high-quality III–V lasers on 

silicon, it is necessary to minimize the impact of dislocations. Otherwise, TDs propagating 

into the active region will form nonradiative recombination centers and reduce minority-

carrier lifetimes
23

, leading to degradation of laser performance. To realize practical 

monolithic QD lasers with the performance and reliability necessary for monolithic 

integration, several strategies have been developed and employed in the current work. First, in 

order to prevent the formation of antiphase domains (APDs) while growing polar III-V 

materials on non-polar silicon substrates, phosphorus-doped Si(100) wafers with 4° offcut to 

the [011] plane were used
28

 (FigureS1, Supplementary information I). A thin nucleation layer 

made of AlAs was deposited by migration enhanced epitaxy using alternating Al and As4 flux 

at a low growth temperature of 350 °C. Figure 2a shows the high angle annular dark field 

scanning transmission electron microscopy (TEM) image of the interface. The thin AlAs 

nucleation layer has suppressed three-dimensional growth and provides a good interface for 

succeeding III-V material growth
19

. Following the AlAs nucleation layer, a three-step growth 

technique of GaAs epitaxial growth was performed
8,29

. The three layers of GaAs were grown 

at 350 °C, 450 °C, and 590 °C for 30 nm, 170 nm, and 800 nm, respectively. As shown in 

Figure 2b, most of the defects are well confined in the first 200 nm region thanks to the 

nucleation layer and multi-step temperature growth but still a high density (10
9
 cm

-2
) of TDs 

are seen to propagate towards the active region. To further improve the material quality, 

strained layer superlattices (SLSs) were grown as dislocation filter layers (DFLs) on the top 

of the GaAs buffer layer. Each SLS is made of five periods of 10-nm In0.18Ga0.82As/10-nm 

GaAs, which are repeated for four times separated by 300 nm GaAs spacing layers. The strain 
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relaxation of the SLSs applies an in-plane force to the TDs, which enhances the lateral motion 

of TDs considerably, and hence increases the probability for annihilation. In-situ thermal 

annealing of the SLS was also carried out four times, with the growth paused in the MBE 

reactor, by increasing the substrate temperature to 660 
o
C for 6 minutes. This approach can 

further improve the efficacy of filtering defects by increasing the mobility of the defects, 

leading to the defects annihilation before growth of the subsequent layers. As shown in Figure 

2b and c, each set of In0.18Ga0.82As/GaAs SLSs can reduce the dislocation density by a few 

times. After the 300 nm GaAs spacer layers of the last SLSs, the dislocation density is 

reduced to the order of 10
5
 cm

-2
 beyond the measurement capability of TEM. A typical atomic 

force microscopy (AFM) image for an uncapped QD sample grown on a silicon substrate with 

exactly the same conditions is shown in the inset of Figure 2d. A good QD uniformity is 

obtained with a density of ~3.0×10
10

 cm
-2

. Based on the developed template, a standard 5-

layer QD laser structure was then grown. A room temperature (RT) photoluminescence (PL) 

emission at around 1300 nm with a full width at half maximum (FWHM) of ~29 meV is also 

obtained, as shown in the Figure 2d, indicating a relatively small dot inhomogeneity. More 

uniformity studies of QDs grown on Si are presented in Figure S3 (Supplementary 

Information II). Cross-sectional scanning TEM measurements are used to characterize the QD 

active region grown on silicon substrates. The typical dot size is ~20 nm in diameter and ~7 

nm in height, as shown in Figure 2e (top-left). The high-resolution high angle annular dark 

field scanning TEM images of a single dot also, to a large extent, show uniform In 

distribution with marginal intermixing as presented in Figure 2e (bottom-left). In addition, a 

nearly defect-free dot-in-well (DWELL) active region is observed, as shown in Figure 2e 

(right) and Figure S2 (Supplementary Information I).  

Broad-area lasers were fabricated as shown schematically in Figure 3a. The lasers were 

processed with as-cleaved facets. A cross-sectional scanning electron microscope (SEM) 

image of a fabricated InAs/GaAs QD laser on a silicon substrate is shown in Figure 3b. It can 

be seen that a very clean and mirror-like facet has been achieved. This is important, because 

imperfectly cleaved facets result in increased mirror loss and reduced differential external 

quantum efficiency. No coatings were applied to the facets. An SEM overview of a complete 

III-V laser on silicon is shown in Figure 3c. Laser bars were then mounted on gold-plated 

copper heat-sinks using indium-silver low melting point solder and Au-wire bonded on the 

ridge to enable test (Supplementary Information III). 

Low Jth and high optical Pout are always desirable goals for laser applications. Figure 4a shows 

the light-current-voltage (LIV) measurements for an InAs/GaAs QD laser grown on a silicon 

substrate under c.w. operation at RT. A clear knee behavior in the L-I curve is observed at the 

lasing Jth of 62.5 A/cm
2
, which corresponds to 12.5 A/cm

2
 for each of the five QD layers. To 

the best of our knowledge, this value of Jth represents the lowest c.w. RT Jth for any kind of 

laser on a silicon substrate to date, and is comparable to the best-reported values for 

conventional QD lasers on GaAs substrate
13,30

. The Pout measured from both facets is as high 

as 105 mW at an injection current density of 650 A/cm
2
, with no evidence of power saturation 

up to this current density.  

In many cases, the lasers exhibit non-linearity or ‘kinks’ in the above threshold LI 

characteristics. To understand the origin of this behavior, the evolution of emission spectra at 

various c.w. injection current densities is presented in Figure 4b. At a low injection of 50 

A/cm
2
, a broad spontaneous emission with a FWHM of 38 nm is observed at a peak 

wavelength of 1316 nm. As the current density increases to 62.5 A/cm
2
, the peak at 1315 nm 

increases sharply in intensity and narrows to 2.4 nm, which is obvious evidence of lasing. 

Further increasing the injection current density gives rise to multi-mode lasing which 

becomes more pronounced at increasingly higher injection. Laser operation from the 

excited states is not observed up to the maximum injection of 650 A/cm
2
, which indicates 

that those kinks observed in the LI curve are mainly related to mode competition and carrier 

redistributions between different modes within the ground state. This behavior is 

characteristic of the broad-area configurations and the non-linear effects are also observed 
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in the near-field of the laser which evolves with carrier injection (Supplementary 

Information IV).  

In addition to Jth and Pout, for silicon photonic-electronic integration applications, it is 

important that lasers can operate at high temperature in c.w. mode. This is required because 

silicon-based electronic chips are often required to work in ambient temperature of 65
 o

C or 

even higher, without the use of thermo-electric cooling. Figure 4c shows the c.w. Pout for the 

QD laser at various temperatures. The c.w. lasing in the ground state was maintained until the 

testing was stopped at a heatsink temperature of 75 
o
C due to the limitation of the c.w. current 

source. This Si-based laser has also been tested under pulsed operation; lasing up to 120 
o
C is 

demonstrated with limited self-heating (Supplementary Information IV). To the best of our 

knowledge, this is the first demonstration of QD lasers directly grown on silicon substrates 

that lase up to 75
 o

C and 120
 o

C under c.w. and pulsed operation, respectively. The 

characteristic temperature T0 for this device as estimated under pulsed operation is 51 K 

between 20 and 60
 o
C and 35K between 70 and 120

 o
C (Supplementary Information IV).  

A critical requirement for the practical application of electrically pumped lasers on silicon is 

to achieve sufficient operating lifetime. High reliability, in terms of a long mean time to 

failure (MTTF) is an important pre-requisite to establish the feasibility of delivering 

commercial III-V QD lasers directly grown on silicon substrates. Here we present the results 

from our lifetime study on the InAs/GaAs QD laser epitaxially grown directly on a silicon 

substrate. The ageing test was performed at a fixed temperature of 26 
o
C, with the Pout 

monitored for a constant c.w. drive current of 210 mA (corresponding to 1.75×Ith). Periodic 

LIV characterizations were also performed to monitor changes in the lasing threshold. The 

ageing results are shown in Figure 4d. A 29.7% drop in power, over the ageing test period of 

3,100 hours, is observed, with most of the drop (26.4%) occurring in the first 500 hours, 

followed by a very slow degradation of light output over time. A similar trend was observed 

for the threshold behavior, in which most of the increase in threshold occurred in the early 

stages of testing. An extrapolated MTTF (defined by a doubling of the threshold) of over 

100,158 hours was determined from fitting the threshold with a sub-linear model 

(Supplementary Information V)
23

. It should be noted that these data represent worst case 

results since (i) the laser was operated epitaxial side up, (ii) the laser was not hard soldered to 

a high thermal conductivity heat-sink, and (iii) no facet coatings were used. Nevertheless, the 

estimated lifetime is much longer than the best reported extrapolated MTTF of 4,627 hours 

for a p-doped InAs/GaAs QD laser grown on Ge-on-Si ‘virtual’ substrate
23

. If the standard 

industrial techniques described above were used, even better lifetime performance is 

expected.  

The realization of high-quality GaAs-on-silicon layers with low defects, by employing the 

combined strategies of AlAs nucleation layer, InGaAs DFLs, in-situ thermal annealing and 

utilizing QDs as laser active regions, developed using the MBE epitaxial growth method, 

represents a major step towards substituting III-V/Si epitaxy for the III-V on Ge and on Ge-

on-Si ‘virtual’ substrates. Our results demonstrate that the large lattice mismatch between III-

V materials and silicon will no longer be a fundamental hurdle for monolithic epitaxial 

growth of III-V photonic devices on silicon substrates. In particular, we have achieved c.w. 

lasing up to 75 
o
C, with an ultra low c.w. Jth of 62.5 A/cm

2
, a high output power exceeding 

105 mW at RT, and a long extrapolated lifetime of over 100,158 hours. Our demonstration of 

the ability to grow uniform high-quality III-V materials over the whole Si substrate and then 

fabricate electrically pumped lasers operating in c.w. mode to high temperature, with high 

uniformity and long lifetime, opens up new possibilities for silicon photonics and for the 

direct integration of optical interconnects on the silicon-based microelectronics platform.  

 

 

Methods 
Crystal growth. The epitaxial materials were fabricated by a solid-source Veeco Gen-930 

molecular beam epitaxy system. Phosphorus-doped Si (100) wafer with 4° offcut to the [011] 
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plane was used. Prior to material growth, oxide desorption of silicon substrates was 

performed at 900 °C for 30 minutes. Epitaxy was then performed in the following order: a 6 

nm AlAs nucleation layer, a 1 µm GaAs buffer layer, InGaAs/GaAs dislocation filter layers,  

five layers of InAs/GaAs DWELL structures separated by 50 nm GaAs spacers in the middle 

of a 140 nm undoped GaAs waveguide between 1.4 µm n-type lower and p-type upper 

Al0.4Ga0.6As cladding layers. Each DWELL structure consisted of a layer of 3-monolayer 

InAs QDs sandwiched by 2 nm In0.15Ga0.85As and 6 nm In0.15Ga0.85As. The DWELLs were 

grown at 510 °C and GaAs and AlGaAs layers at 590 °C. Finally, a 300 nm p-type GaAs 

contact layer was grown. 

Device fabrication. The broad-area lasers with 50 µm wide stripes were fabricated by 

standard lithography and wet chemical etching techniques, the ridge was etched to roughly 

100 nm above the active region, to give improved carrier confinement. Ti/Pt/Au and 

Ni/GeAu/Ni/Au were deposited on p
+
-GaAs contacting layer and exposed n

+
-GaAs buffer 

layer to form the p- and n- contacts, respectively. After lapping the silicon substrate to 120 

microns, the lasers were cleaved to the desired cavity lengths and mounted (as-cleaved) onto 

the heat-sink. 

Measurements. AFM measurements were performed with a Nanoscope Dimension™ 3100 

SPM AFM system in ambient conditions using a noncontact mode. Conventional scanning 

TEM was performed using a JEOL 2010F field-emission gun TEM operating at 200 kV. 

Dislocation density measurements were derived from a series of bright field scanning TEM 

images using conventional inset-grid method and EELS to calculate the sample thickness. 

High-resolution high angle annular dark field Z-contrast scanning TEM images were acquired 

with a JEOL R005 aberration corrected TEM operating at 300 kV with a convergence semi-

angle of 21 mrads and a TEM inner annular collection angle of 62 mrads. The reliability study 

was carried out in auto current control (ACC) mode at 26 
o
C under a constant c.w. current 

stress of 210 mA.  The output power was collected from a photodetector normal to the laser 

facet, while periodic LIV measurements were taken to monitor the changes in lasing threshold.  

Other standard laser device characteristics were all measured under c.w. and pulsed 

conditions (1% duty-cycle and 1µs pulse-width).  
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Figure 1. Development and advantages of QD lasers. (a) The historical development of 
low-dimensional heterostructure lasers showing the record threshold current densities. The 
red star indicates the threshold value achieved in this work. The blue star is the value 
normalized to a single QD layer. (b) Schematic of the interaction between QDs and threading 
dislocations. (c) Bright field scanning TEM images showing the potential interactions between 
threading dislocations and the QDs. 
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Figure 2. Epitaxial growth and structural characterization of QD lasers. (a) High angle 
annular dark field scanning TEM image of the interface between the 6 nm AlAs nucleation 
layer and a silicon substrate. (b) Bright field scanning TEM image of DFLs. (c) Dislocation 
density measured at different positions indicated in (b). (d) A PL spectrum for QD active 
region grown on silicon. The inset in (b) shows a representative AFM image of an uncapped 
QD sample grown on silicon. (e) High resolution bright field scanning TEM images of a single 
dot (top-left), corrected high angle annular dark-field scanning TEM images (false colour) of a 
single QD (bottom-left), and bright field scanning TEM image of the QD active layers (right).  
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Figure 3. Fabricated III-V laser directly grown on silicon substrates. (a) Schematic of the 
layer structure of an InAs/GaAs QD laser on a silicon substrate. (b) A cross-sectional SEM 
image of the fabricated laser with as-cleaved facets, showing very good facet quality. (c) An 
SEM overview of whole III-V laser on silicon.  
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Figure 4. Silicon laser performance characterization. (a) LIV characteristics for a 50 µm × 
3200 µm InAs/GaAs QD laser grown on a silicon substrate under c.w. operation at 18 

o
C. (b) 

Emission spectra for a 50 µm × 3200 µm InAs/GaAs QD laser grown on a silicon substrate at 
various injection current densities under c.w. operation at 18 

o
C. (c) Light output power versus 

current density for this InAs/GaAs QD laser on silicon at various heat sink temperatures. (d) 
Ageing data for InAs/GaAs QD laser on Si at constant heat sink temperature of 26 

o
C and 

c.w. drive current of 210 mA.  
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