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A RIGOROUS GEOMETRIC DERIVATION OF THE CHIRAL ANOMALY

IN CURVED BACKGROUNDS

CHRISTIAN BÄR AND ALEXANDER STROHMAIER

Abstract. We discuss the chiral anomaly for a Weyl field in a curved background and show
that a novel index theorem for the Lorentzian Dirac operator can be applied to describe the
gravitational chiral anomaly. A formula for the total charge generated by the gravitational
and gauge field background is derived directly in Lorentzian signature and in a mathemat-
ically rigorous manner. It contains a term identical to the integrand in the Atiyah-Singer
index theorem and another term involving the η-invariant of the Cauchy hypersurfaces.

1. Introduction

Anomalies in quantum field theory appear as a violation of conservation laws of currents,
in other words, as currents that are classically preserved but whose quantum counterparts
are not. These anomalies are of direct physical significance. A prominent example is the
chiral anomaly (also ABJ-anomaly or axial anomaly). It explains the rate of decay of the
neutral pion into two photons ([1, 8]), π0 → γγ. We would like to refer to the monograph [10]
for further details and applications in quantum field theory. Apart from high energy physics,
it has also been proposed that this anomaly can be observed more directly in crystals (see
[34], and also [39] for recent experimental evidence).

Some historical remarks. Whereas anomalies were first discovered in perturbative com-
putations in quantum field theory, their appearance is related to the Atiyah-Singer index
theorem. Indeed, the perturbative computation yields a term that looks precisely like the
local Chern character form of the connection induced by an external electromagnetic field
and perturbative computations on curved space-times yield a term that is formally identi-
cal to the Atiyah-Singer integrand ([27, 17]). However, these computations were performed
in Lorentzian signature whereas the Atiyah-Singer index theorem for Dirac operators is a
theorem in Euclidean signature.

A direct computation of the divergence of the anomalous chiral current and the relation to
the local index theorem was studied in Euclidean signature by Nielsen, Römer, and Schroer
in [35], and by Dowker in [19] in great detail. Another popular method using the Euclidean
formulation of quantum field theory and path integrals is the Fujakawa method ([20]), which
has also been applied in curved backgrounds ([21], see also [2]). Both explanations of the
relation to index theory can be seen only as formal manipulations because the process of
Wick rotation, passing from Lorentzian to Euclidean signature, cannot be made sense of in
general.
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Another, more mathematically rigorous, way to understand anomalies in quantum field
theory in external fields is via a careful analysis of the second quantization procedure ([11]).
This was done by Klaus and Scharf for fermions in an external field ([28, 29]). The one-
particle time-evolution in an external field can mix the negative and positive energy solutions
of the Dirac equation. This mixing can occur in such a way that the vacuum is mapped to
a charged sector under the second quantized time-evolution ([28, 29, 31, 13]). The charge
generated by this process relates to the Fredholm index of a certain operator constructed out
of the positive energy projection and the time-evolution operator. This is the point of view
we will take in this paper.

The fact that fermions and chiral charge can be created by a gravitational field was
discovered by Gibbons in [22] (see also [24]). He computed this number in several models and
showed that a Wick rotated Euclidean version was described by the Atiyah-Patodi-Singer
index formula [23], i.e. by the Atiyah-Singer integral and a correction term involving the
η-invariant of the boundary. As pointed out in [22], passing from the Euclidean formulation
to the Lorentzian is highly problematic as only few Lorentzian manifolds admit an analytic
continuation to a real Riemannian space which is non-singular. This is also mentioned by
Lohiyah in [30] where the loss of chiral charge from the Reissner-Nordström black hole was
computed directly but found to be consistent with the predictions of the Atiyah-Singer
formula.

The present article. We will show in this paper that the gravitational chiral charge creation
is given by the index of the Lorentzian Dirac operator with certain boundary conditions. We
use a novel index theorem for hyperbolic operators proved by the authors in [7] to show
that this index is indeed, in analogy to the Atiyah-Patodi-Singer index theorem in Euclidean
signature, given as a sum of the Atiyah-Singer integrand and a correction term involving the
η-invariant. This therefore establishes the formula directly for Lorentzian space-times and
avoids the use of a Wick rotation. This way we overcome the above mentioned problems with
analytic continuation and provide a direct explanation why the Atiyah-Patodi-Singer formula
yields the correct result in the exactly solvable models. Note that hyperbolic operators such
as the Lorentzian Dirac operators have significantly different analytic properties from elliptic
Dirac operators in Euclidean signature. For example, the fact that the hyperbolic Dirac
operator with spectral boundary conditions is a Fredholm operator and has a well-defined
index at all, is due to the global propagation of singularities theorem and not to local regularity
theory as in the elliptic case.

In order to make a precise mathematical statement about the created physical charge
we work in the framework of algebraic quantum field theory in curved space-times. This is
natural as the notion of particle is not covariant and it is more appropriate in this context
to speak about observables and states. We start by explaining in detail how the Weyl field
is quantized in a globally hyperbolic space-time with spin structure. As is usual in quantum
field theory in curved space-times we split this procedure into two parts (see for example [38]
for an introduction). The field algebra can be constructed in a functorial (covariant) manner
from the field equation. This was first done by Dimock ([18]) for the Dirac field.

In the second step we look at physical representations of the field algebra induced by
states. The Hadamard condition singles out a class of states whose behavior resembles that
of finite energy states in Minkowski space-time. In our context the important fact is that
Hadamard states differ only by smooth integral kernels. Quantities that are a priory singular
and need regularization, such as the expectation value of the energy momentum tensor or
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the electric current, make sense as relative quantities between two Hadamard states. It is
therefore possible to define the relative energy-momentum tensor and the relative current
between two Hadamard states without the need for regularization.

A particular example of a Hadamard state can be defined if the space-time is ultrastatic in
a neighborhood of a smooth spacelike Cauchy hypersurface. Near this Cauchy hypersurface
a one parameter group of time-translations can be defined and it makes sense to define the
vacuum state with respect to this time-evolution by employing the usual frequency splitting
procedure. We will think of this state as the vacuum state seen by an observer moving along
the distinguished timelike Killing vector field near the Cauchy hypersurface. If there are two
such Cauchy hypersurfaces we can compare the two vacua. Due to the interaction with the
gravitational background and the external gauge field between the two Cauchy hypersurfaces
it can happen that the difference of the expectation values of the electric current between
the two states is non-zero. The difference of the expectation values of the total charge
operator turns out to be given essentially by the index of the Lorentzian Dirac operator with
Atiyah-Patodi-Singer boundary conditions. We then apply the index theorem proved by the
authors in [7] to obtain an explicit formula for the charge generated by the background fields.

More recent related work. An index formula for the scattering operator of the Dirac
equation coupled to an external field was established by Matsui in [32, 33]. Bunke and
Hirschmann [12] generalized this to also allow time-dependent metric connections. In these
results there is no η-correction term because they are related to the special case of our result
where the future and past spacelike Cauchy hypersurfaces coincide so that the η-contributions
cancel.

The computation of the divergence of the anomalous regularized current can also be
carried out directly in Lorentzian signature using the Hadamard regularization. This method
makes use of the unique singularity structure of Hadamard states and subtracts the singular
part from the singular current to make it a well-defined covariant and local object. The
computation of the divergence of the resulting current was done in [40] for the mixed and
pure gravitational anomalies and in [15] for the trace anomaly that also can be described by
an index theorem ([14]). The algebraic expressions coincide with the ones obtained in the
Euclidean framework and those obtained in perturbative computations. The divergence of
the anomalous current captures aspects of renormalization in curved space-times. However,
the actual generation of charge in external fields is described by the index of the Dirac opera-
tor and the η-correction term is vital to guarantee that the total charge generated is an integer.

Acknowledgments. It is our pleasure to thank Alan Carey, Klaus Fredenhagen, Harald
Grosse, Stefan Hollands, Ken Richardson, and Christoph Stephan for very interesting and
helpful discussion. We would also like to thank Gary Gibbons for pointing out relevant
references and for explaining to us the history of the chiral anomaly in the cosmological
context. Moreover, we are grateful to the anonymous referees for useful comments and for
pointing out additional literature. We thank Sonderforschungsbereich 647 funded by the
Deutsche Forschungsgemeinschaft for financial support. The work for this paper was carried
out during the programModern Theory of Wave Equations at the Erwin Schrödinger Institute

and we are grateful to the ESI for support and the hospitality during our stay.
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2. The setup

We start by describing the classical setup which gives rise to the one-particle evolution.
We will consider massless fermions with internal symmetries in an external field on a curved
space-time which satisfy a Dirac equation. Let (X, g) be an even-dimensional Lorentzian
manifold where g has signature (+,−, . . . ,−). We assume that (X, g) is globally hyperbolic
meaning that there exist Cauchy hypersurfaces so that there will be a well-posed initial value
problem for the Dirac equation. Then (X, g) is time-orientable and we fix one time-orientation.
Moreover, we assume that (X, g) is spatially compact, i.e. that the Cauchy hypersurfaces are
compact. We assume a spin structure on X is given so that the complex spinor bundle
SX → X is defined.

Finally, to model the internal symmetries, a Hermitian vector bundle E → X is fixed and,
to describe an external gauge field, a compatible connection ∇E on E is given. Compatibility
means that the Leibniz rule holds for ∇E and the scalar product on E. For example, E
could be a Hermitian line bundle; then ∇E is a U(1)-connection and can describe the electro-
magnetic potential.

2.1. The Dirac operator. Spinors are sections of the bundle SX ⊗ E. Let ∇ be the con-
nection on SX⊗E induced by the Levi-Civita connection ∇S on SX and the connection ∇E

on E, i.e. ∇X(σ ⊗ e) = (∇S
Xσ) ⊗ e + σ ⊗ ∇E

Xe. The Dirac operator acts on spinors and is
locally given by

i /∇ = igαβγα∇β

where we used Einstein’s summation convention and the coefficient matrices satisfy {γα, γβ} =
2gαβ . Here and henceforth {·, ·} denotes the anticommutator.

Since the dimension of X is even the spinor bundle splits into the subbundles of left-handed
and right-handed spinors, SX = SLX ⊕ SRX. The Dirac operator interchanges chirality, i.e.
with respect to the splitting SX ⊗ E = SLX ⊗ E ⊕ SRX ⊗ E we have

/∇ =

(
0 /∇R
/∇L 0

)
.

Note that there is no mass term on the diagonal.
The bundle SX comes equipped with a natural nondegenerate but indefinite inner product

〈·, ·〉. We use the convention that 〈·, ·〉 is antilinear in the first argument and linear in the
second. The subbundles SL/RX are isotropic with respect to this inner product. The same
is of course true for the induced inner products on SX ⊗E and SL/RX ⊗E. Recall that the
inner product on E is positive definite.

The Dirac operator is formally selfadjoint with respect to 〈·, ·〉, i.e.

(1)

∫

X
〈i /∇u, v〉dV =

∫

X
〈u, i /∇v〉dV

where u, v ∈ C∞
0 (X;SX ⊗E) and dV is the volume element on X induced by the Lorentzian

metric.
The formally dual operator of /∇R : C∞(X;SRX ⊗E) → C∞(X;SLX ⊗E) is the operator

/∇
∗
R : C∞(X;S∗

LX ⊗ E∗) → C∞(X;S∗
RX ⊗ E∗) on the dual bundle characterized by

(2)

∫

X
( /∇

∗
Rv)(u)dV =

∫

X
v( /∇Ru)dV

where u ∈ C∞
0 (X;SRX ⊗E) and v ∈ C∞

0 (X;S∗
LX ⊗ E∗).
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Example 2.1. If E is a Hermitian line bundle, then the curvature of the dual connection on
E∗ is the negative of that of E. Up to a factor i, the curvature is a real 2-form which describes
the electro-magnetic field. Locally, if we write ∇E

α = ∂α + iAα then ∇E∗

α = ∂α − iAα. For the
Dirac operators this means i /∇ = iγα(∂α + iAα) = iγα∂α −Aαγ

α while i /∇
∗
= iγα∂α +Aαγ

α.
Thus i /∇

∗
should be thought of as the operator with charge opposite to that of i /∇.

2.2. Dirac conjugation. For u ∈ SRXx ⊗ Ex define u ∈ S∗
LXx ⊗ E∗

x by u(v) = 〈u, v〉.
The map u 7→ u, SRX ⊗ E → S∗

LX ⊗ E∗ is antilinear. Similarly we get an antilinear map
· : SLX ⊗E → S∗

RX ⊗E∗ and the inverse maps S∗
R/LX ⊗E∗ → SL/RX ⊗E are also denoted

by ·. Equations (1) and (2) imply

(3) i /∇
∗
u = (i /∇)u.

Dirac conjugation is defined as the map

(4) Γ : S∗
LX ⊗ E∗ ⊕ SRX ⊗ E → S∗

LX ⊗E∗ ⊕ SRX ⊗ E, u⊕ v 7→ v ⊕ u.

Clearly Γ is antilinear and an involution, Γ2 = 1.

2.3. The Cauchy problem. Denote the space of smooth solutions of /∇Ru = 0 by Sol( /∇R) :=
{u ∈ C∞(X;SRX ⊗ E) | /∇Ru = 0} and similarly for /∇L, /∇

∗
R , and /∇

∗
L . The Cauchy problem

for the Dirac equation on globally hyperbolic manifolds is well posed (see e.g. [18, Thm. 2.3]).
This means that for any smooth spacelike Cauchy hypersurface Σ ⊂ X the restriction map

ρΣ : Sol( /∇R) → C∞(Σ;SRX ⊗ E), u 7→ u|Σ,

is an isomorphism of topological vector spaces. If Σ and Σ′ are two smooth spacelike Cauchy
hypersurfaces of X, then we put

UΣ′,Σ := ρΣ′ ◦ (ρΣ)
−1 : C∞(Σ;SRX ⊗ E) → C∞(Σ′;SRX ⊗ E).

This evolution map UΣ′,Σ extends to a unitary isomorphism

(5) UΣ′,Σ : L2(Σ;SRX ⊗ E) → L2(Σ′;SRX ⊗ E) .

Hence there is a unique Hilbert space completion Sol( /∇R) of Sol( /∇R) such that for each
smooth spacelike Cauchy hypersurface Σ ⊂ X the restriction map extends to a Hilbert space
isometry

ρΣ : Sol( /∇R) → L2(Σ;SRX ⊗ E),

see [6, Lemma 3.17]. We denote the scalar product on Sol( /∇R) by (·, ·). Similarly, we
obtain the Hilbert space completions Sol( /∇L), Sol( /∇

∗
R), and Sol( /∇

∗
L ) of Sol( /∇L), Sol( /∇

∗
R),

and Sol( /∇
∗
L ), respectively.

2.4. The fermionic propagator. Let GR : C∞
0 (X;SLX ⊗ E) → C∞(X;SRX ⊗ E) be the

difference between retarded and advanced fundamental solutions of i /∇R. Then GR maps onto
the space of solutions Sol( /∇R) of the Dirac equation /∇Ru = 0. This operator is sometimes
called the fermionic propagator of i /∇R. Similarly, we obtain linear maps

GL : C∞
0 (X;SRX ⊗ E) ։ Sol( /∇L) ⊂ C∞(X;SLX ⊗ E),

GR,∗ : C
∞
0 (X;S∗

RX ⊗ E∗) ։ Sol( /∇
∗
R) ⊂ C∞(X;S∗

LX ⊗ E∗),

GL,∗ : C
∞
0 (X;S∗

LX ⊗ E∗) ։ Sol( /∇
∗
L ) ⊂ C∞(X;S∗

RX ⊗ E∗).

Equation (3) implies

(6) GR,∗u = GRu and GL,∗v = GLv
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for all u ∈ C∞
0 (X;SLX⊗E) and v ∈ C∞

0 (X;SRX⊗E). Using an integration by parts, we can
express the scalar product on the Hilbert space Sol( /∇R) as follows (compare [18, Prop. 2.2])

(7) (GRv, f) = −

∫

X
〈v, f〉dV

where v ∈ C∞
0 (X;SLX ⊗ E) and f ∈ Sol( /∇R). Analogous formulas hold for the scalar

products on Sol( /∇L), Sol( /∇
∗
R), and Sol( /∇

∗
L ), respectively.

By [5, Thm. 4.3] the fermionic propagators extend to operators on distributional sections,
e.g.

GR : C−∞
0 (X;SLX ⊗ E) → C−∞(X;SRX ⊗ E).

The image is precisely the space of distributional solutions of the Dirac equation.

2.5. Fermionic propagator and Cauchy problem. Let Σ ⊂ X be a spacelike smooth
Cauchy hypersurface with future-directed unit normal field nΣ. Any u ∈ C−∞(Σ;SLX ⊗ E)
gives rise to a distribution uδΣ on X via (uδΣ)(v) =

∫
Σ(ρΣv)(u) dA for all v ∈ C∞(X;S∗

LX ⊗
E∗). Since the support of uδΣ is contained in Σ and hence compact, we can apply GR to
uδΣ. An argument using integration by parts shows that f = GR(uδΣ) ∈ C−∞(X;SRX ⊗E)
is the solution of the Cauchy problem

(8) i /∇Rf = 0 and ρΣf = /nΣu.

Here /nΣ = nα
Σγα denotes Clifford multiplication by nΣ in accordance with Feynman’s slash

convention. The restriction GR : L2(Σ;SLX ⊗ E) ⊂ C−∞
0 (X;SLX ⊗ E) → Sol( /∇R) is

therefore the inverse of the Hilbert space isometry /nΣρΣ : Sol( /∇R) → L2(Σ;SLX ⊗ E) and
hence is itself a Hilbert space isometry.

3. States and the chiral anomaly

In order to describe the quantized Weyl field we start with the construction of the field
algebra. It is essentially the CAR algebra associated with the space of solutions of the Dirac
equation. More precisely, let K be the Hilbert space sum Sol( /∇

∗
R)⊕ Sol( /∇R). We denote the

scalar product by (·, ·)K. This Hilbert space comes with the Dirac conjugation Γ : K → K as
defined in (4). Then the selfdual CAR algebra associated with the pair (K,Γ) is the unital
∗-algebra generated by symbols B(f) where f ∈ K and relations

f 7→ B(f) is complex linear,(9)

{B(f), B(g)} = (Γf, g)K,(10)

B(f)∗ = B(Γf).(11)

The CAR algebra admits a unique C∗-norm and we will denote its C∗-completion by A. This
is our field algebra.

3.1. The field operators. We define the field operators by

Ψ : C∞
0 (X;S∗

RX ⊗ E∗) → A, Ψ(u) = B(GR,∗u⊕ 0),

Ψ : C∞
0 (X;SLX ⊗ E) → A, Ψ(v) = B(0⊕GRv).

Relations (9)–(11) together with (6) and (7) imply that

u 7→ Ψ(u) is complex linear,

v 7→ Ψ(v) is complex linear,



A GEOMETRIC FORMULA FOR THE CHIRAL ANOMALY 7

{Ψ(u1),Ψ(u2)} = 0, {Ψ(v1),Ψ(v2)} = 0,

{Ψ(v),Ψ(u)} = −i

∫

X
〈v,GR,∗u〉dV,

Ψ(u)∗ = Ψ(u),

/∇RΨ = 0, /∇
∗
RΨ = 0.(12)

Here /∇RΨ = 0 is to be understood in the distributional sense, i.e. Ψ( /∇
∗
Ru) = 0 for all u ∈

C∞
0 (X;S∗

LX ⊗ E∗) and similarly Ψ( /∇Rv) = 0 for all v ∈ C∞
0 (X;SRX ⊗ E).

3.2. The n-point functions. A state ω on this algebra is of course uniquely determined by
its n-point functions

ωn(f1, . . . , fn) := ω(B(f1) · · ·B(fn)).

This also defines a distributional section ω̃n ∈ C−∞(Xn;⊠n(SRX ⊗ E ⊕ S∗
LX ⊗ E∗)) on the

n-fold Cartesian product of X by

ω̃n(u1 ⊗ · · · ⊗ un) := ωn(Gu1, . . . ,Gun)

where we have used the notation G = GR,∗ ⊕ GR. We will also refer to this distribution as
the n-point function.

A state is called quasi-free if for all n = 1, 2, 3, . . . and fi ∈ K

ω2n−1(f1, . . . , f2n−1) = 0,

ω2n(f1, . . . , f2n) = (−1)
n(n−1)

2

∑
sgn(s)

n∑

j=1

ω2(fs(j), fs(j+n))

where the sum is taken over all permutations s of {1, . . . , 2n} such that

s(1) < s(2) < · · · < s(n), s(j) < s(j + n).

This means that the state is completely determined by its two-point function.

3.3. Hadamard forms and relative currents. A two-point function is said to be of
Hadamard form if its wavefront set WF(ω̃2) satisfies

WF(ω̃2) ⊂ {(x1, ξ1, x2, ξ2) ∈ T ∗(X ×X) | (x1, ξ1) ∼ (x2,−ξ2), ξ2 is future directed},

where (x1, ξ1) ∼ (x2, ξ2) means that these vectors are in the same orbit of the geodesic flow.
It is known (see e.g. [37, 26] in the case of the Dirac field) that Hadamard forms are unique
up to smooth kernels, i.e. if ω1 and ω2 are states with two-point functions of Hadamard form
then

ω̃1,2 := ω̃1 − ω̃2 ∈ C∞(X ×X;⊠2(SRX ⊗ E ⊕ S∗
LX ⊗ E∗)).

Note that ω̃1,2 is a smooth bi-solution of the Dirac equation. We can then define the relative

current Jω1,ω2 ∈ Ω1(X) as follows. Given a state ω we define Ŝω : C∞
0 (X;S∗

RX ⊗ E∗) →
C−∞(X;S∗

LX ⊗ E∗) as the unique operator such that

ω(Ψ(v)Ψ(u)) = (Ŝωu)(v)

for all v ∈ C∞
0 (X;SLX ⊗ E). Note that if ω has Hadamard form then we actually have Ŝω :

C∞
0 (X;S∗

RX⊗E∗) → C∞(X;S∗
LX⊗E∗). We put Ŝ := Ŝω1−Ŝω2 . If both ω1 and ω2 have two-

point functions of Hadamard form then the operator Ŝ has smooth integral kernel. We denote
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the integral kernel of Ŝ evaluated at (x, y) ∈ M×M by ŝ(x, y) ∈ Hom(S∗
RXy⊗E∗

y , S
∗
LXx⊗E∗

x).
Moreover, by (12), we obtain

(13) /∇
∗
R ◦ Ŝ = Ŝ ◦ /∇

∗
R = 0.

For ξ ∈ TXx denote Clifford multiplication with ξ by /ξ ∈ Hom(SRXx ⊗Ex, SLXx ⊗Ex) and
its dual by /ξ∗ ∈ Hom(S∗

LXx ⊗ E∗
x, S

∗
RXx ⊗ E∗

x). Now /ξ∗ ◦ ŝ(x, x) ∈ End(S∗
RXx ⊗ E∗

x) and we
can set

Jω1,ω2(ξ) := tr(/ξ∗ ◦ ŝ(x, x)).

Since ŝ is smooth on M × M , this defines a smooth one-form Jω1,ω2 ∈ Ω1(X). In physics
terminology, one could write this definition as

Jω1,ω2
µ (x) = lim

y→x

(
ω1(Ψ

Ȧ
(x)(γµ)

B
Ȧ
ΨB(y))− ω2(Ψ

Ȧ
(x)(γµ)

B
Ȧ
ΨB(y))

)
,

where the Einstein summation convention was used on the dotted spinor index Ȧ and spinor
index B. The relative current can be thought of as the expectation value ω2(:Jµ(x):) of the
normally ordered current operator :Jµ(x):, where the normal ordering has been done with
respect to state ω1. It follows directly from the definitions that

[ /∇, f ] = ✚✚∇f and [f, /∇
∗
] = ✚✚∇f ∗

where f ∈ C∞(X) is a function and ∇f its gradient vector field. For any smooth compactly
supported function f ∈ C∞

0 (X) we get, using (13) twice,
∫

X
fδJω1,ω2 dV =

∫

X
Jω1,ω2(∇f) dV = Tr(✚✚∇f ∗Ŝ) = Tr(f /∇

∗
R Ŝ − /∇

∗
RfŜ) = −Tr(fŜ /∇

∗
R) = 0.

Here we have used the canonical trace Tr on the algebra of integral operators whose integral
kernel have compact support in the first variable. Its properties are described in Appendix A.

This shows δJω1,ω2 = 0. If Σ is a spacelike smooth Cauchy hypersurface and nΣ the
future-directed unit normal vector field along Σ, then we can integrate the relative current
Jω1,ω2(nΣ) along the Cauchy hypersurface. Since the current is co-closed the integral does
not depend on the choice of Cauchy hypersurface and defines the relative right-handed charge

Qω1,ω2

R between two states

(14) Qω1,ω2

R :=

∫

Σ
Jω1,ω2(nΣ(x))dA(x).

3.4. Fock representations. If H is a Hilbert space the fermionic Fock space F(H) is defined
to be the Hilbert space direct sum

F(H) =

∞⊕

k=0

ΛkH.

As usual the vector 1 ∈ C = Λ0H ⊂ F(H) is denoted by Ω and is called the vacuum vector.
On this space we have the usual creation and annihilation operators

a†(v)h = v ∧ h,

a(v)h = ιvh.

Note that a†(v) is linear in v, whereas a(v) is antilinear in v.
Let P : K → K be an orthogonal projection such that

P + ΓPΓ = 1.
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This induces an orthogonal splitting K = H ⊕ ΓH where H = PK. We obtain a faithful
∗-representation π of A on the Fock space F(H) by setting

π(B(f)) := a†(Pf) + a(PΓf).

This representation is called the Fock representation. One checks that for such a representa-
tion the state

ω(·) = 〈Ω, · Ω〉

is a quasifree state and the Fock representation is canonically isomorphic to the GNS represen-
tation of ω. See [3] or [36] for a detailed discussion of CAR algebras and Fock representations.

3.5. Fock representations constructed near Σ. If Σ is a spacelike smooth Cauchy hy-
persurface then the restriction map

ρΣ : K = Sol( /∇
∗
R)⊕ Sol( /∇R) → KΣ := L2(Σ;S∗

LX ⊗ E∗)⊕ L2(Σ;SRX ⊗ E)

is an isomorphism of Hilbert spaces. We can therefore identify the Hilbert space K with
conjugation Γ with KΣ and conjugation Γ|Σ. Moreover, we can identify SRX|Σ with SΣ, the
spinor bundle of Σ. Using the isomorphism /nΣ : SLX|Σ → SRX|Σ we also get an identification

of SLX|Σ with SΣ. The Dirac operator /∇Σ on Σ anticommutes with /nΣ and is selfadjoint
with respect to the positive definite scalar product 〈/nΣ·, ·〉 on SΣ. This implies

(15) /∇Σv = − /∇
∗
Σv.

In particular, conjugation · maps /∇Σ-eigenspaces for positive eigenvalues to /∇
∗
Σ-eigenspaces

for negative eigenvalues and vice versa. We consider the spectral projectors

p≥( /∇Σ) := χ[0,∞)( /∇Σ) and p>( /∇Σ) := χ(0,∞)( /∇Σ) .

Similarly, we define p≤( /∇Σ), p<( /∇Σ), and the corresponding projectors for /∇
∗
Σ. Now

P := p≥( /∇
∗
Σ)⊕ p>( /∇Σ)

is an orthogonal projection on KΣ and (15) implies P + ΓPΓ = 1. Its Fock representation
will then be modeled on the one-particle Hilbert space

HΣ = H+
Σ ⊕H−

Σ

where

H+
Σ = p≥( /∇

∗
Σ)L

2(Σ;S∗Σ⊗ E∗),

H−
Σ = p>( /∇Σ)L

2(Σ;SΣ ⊗ E) = p<( /∇
∗
Σ)L

2(Σ;S∗Σ⊗ E∗) .

The space H+
Σ is the one-particle space for particles and H−

Σ is the one-particle space for
antiparticles. The Fock space then splits into a tensor product

F(HΣ) = F(H+
Σ)⊗̂F(H−

Σ).

As usual we denote by c and c† the creation and annihilation operators on F(H+
Σ) and by d

and d† the creation and annihilation operators on F(H−
Σ). Each of them acts on the entire

Fock space by extending it by the identity map on the other tensor factor. The representation
of A in this Fock representation is explicitly given by

πΣ(Ψ(u)) = c†
(
p≥( /∇

∗
Σ)ρΣGR,∗u

)
+ d

(
p>( /∇Σ)ρΣGRu

)
,

πΣ(Ψ(v)) = c
(
p≥( /∇

∗
Σ)ρΣGR,∗v

)
+ d†

(
p<( /∇Σ)ρΣGRv

)
.



10 C. BÄR AND A. STROHMAIER

The notation
πΣ(B(f)) = a†(PρΣf) + a(PΓρΣf)

with the substitution f = G(u⊕ v) is however more compact.
It is well known (see for example [16, Sec. 4]) that the vacuum expectation value ωΣ with

respect to this representation is a Hadamard state, i.e. its two-point function is of Hadamard
form, if the metric on X and ∇E are of product type near Σ. This means that a neighborhood
of Σ can be identified with (−ε, ε)×Σ in such a way that Σ corresponds to {0}×Σ, that the
metric takes the form dt2 − gΣ where gΣ is independent of t and that ∇E is the pull-back of
its restriction to Σ under the projection (−ε, ε)× Σ → Σ.

X

Σ

Fig. 1. Manifold X with product structure near Σ

In this case this representation is thought of as the preferred vacuum representation of an
observer on Σ.

3.6. Integral kernels of spectral projectors. As before let ŜΣ be the unique operator
C∞
0 (X;S∗

RX ⊗E∗) → C∞(X;S∗
LX ⊗ E∗) such that

ωΣ(Ψ(v)Ψ(u)) =

∫

X
〈v, ŜΣu〉dV

and ŝΣ its integral kernel. Now let u ∈ L2(Σ;S∗
RX ⊗E∗). Then GR,∗(uδΣ) ∈ Sol( /∇

∗
R) so that

Ψ(u) = B(GR,∗(uδΣ)⊕ 0) is defined. Similarly, Ψ(v) is defined for v ∈ L2(Σ;SLX ⊗ E). We
compute

ωΣ(Ψ(v)Ψ(u)) = ωΣ(B(0⊕GR(vδΣ))B(GR,∗(uδΣ)⊕ 0))

= (Ω, πΣ(B(0⊕GR(vδΣ))B(GR,∗(uδΣ)⊕ 0))Ω)
F(HΣ)

=
(
πΣ(B(GR(vδΣ)⊕ 0))Ω, πΣ(B(GR,∗(uδΣ)⊕ 0))Ω

)
F(HΣ)

=
(
PρΣ(GR(vδΣ)⊕ 0) ∧ Ω, PρΣ(GR,∗(uδΣ)⊕ 0) ∧Ω

)
F(HΣ)

(8)
=

(
p≥( /∇

∗
Σ)(/nΣv), p≥( /∇

∗
Σ)(/n

∗
Σu)

)
H+

Σ

=
(
/n∗
Σv, p≥( /∇

∗
Σ)(/n

∗
Σu)

)
L2(Σ)

=

∫

Σ
〈v, p≥( /∇

∗
Σ)(/n

∗
Σu)〉dA .
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In other words, the integral kernel of the projector p≥( /∇
∗
Σ) coincides with ŝΣ(y, x)/n

∗
Σ(x),

restricted to (y, x) ∈ Σ× Σ.
More generally, let Σ1 and Σ2 be two spacelike smooth Cauchy hypersurfaces and let UΣ1,Σ2

the unitary evolution operator defined in (5). For u ∈ L2(Σ1;S
∗
RX ⊗E∗) we have by (8) that

GR,∗((/n
∗
Σ2
U−1
Σ1,Σ2

u)δΣ2) = GR,∗(/n
∗
Σ1
uδΣ1) and hence Ψ(/n∗

Σ2
U−1
Σ1,Σ2

/n∗
Σ1
u) = Ψ(u) and similarly

for Ψ. If v ∈ L2(Σ1;SLX ⊗E) we have on the one hand

ωΣ2(Ψ(v)Ψ(u)) =

∫

Σ1×Σ1

〈v(y), ŝΣ2(y, x)u(x)〉dA(x)dA(y)

and on the other hand

ωΣ2(Ψ(v)Ψ(u)) = ωΣ2(Ψ(/nΣ2
U−1
Σ1,Σ2

/nΣ1
v)Ψ(/n∗

Σ2
U−1
Σ1,Σ2

/n∗
Σ1
u))

=
(
/n∗
Σ2

/nΣ2
U−1
Σ1,Σ2

/nΣ1
v, p≥( /∇

∗
Σ2
)(/n∗

Σ2
/n∗
Σ2
U−1
Σ1,Σ2

/n∗
Σ1
u)
)
L2(Σ2)

=
(
U−1
Σ1,Σ2

/n∗
Σ1
v, p≥( /∇

∗
Σ2
)(U−1

Σ1,Σ2
/n∗
Σ1
u)
)
L2(Σ2)

=
(
/n∗
Σ1
v, UΣ1,Σ2p≥( /∇

∗
Σ2
)(U−1

Σ1,Σ2
/n∗
Σ1
u)
)
L2(Σ1)

=

∫

Σ1

〈
v, UΣ1,Σ2p≥( /∇

∗
Σ2
)U−1

Σ1,Σ2
/n∗
Σ1
u
〉
dA .

Hence the integral kernel of UΣ1,Σ2◦p≥( /∇
∗
Σ2
)◦U−1

Σ1,Σ2
coincides with ŝΣ2(y, x)/n

∗
Σ1
(x), restricted

to (y, x) ∈ Σ1 × Σ1.

3.7. Relative charge between Fock states associated to Cauchy hypersurfaces. Now
we consider the following situation: let Σ1 and Σ2 be two spacelike smooth Cauchy hypersur-
faces with Σ1 lying in the past of Σ2. We assume that the metric of X and the connection
∇E of E have product structure near both hypersurfaces. We compute the relative charge
for the Fock states ωΣ1 and ωΣ2 :

Q
ωΣ1

,ωΣ2
R =

∫

Σ1

JωΣ2
,ωΣ1 (nΣ1) dA

=

∫

Σ1

tr
(
/n∗
Σ1
(ŝΣ1(x, x)− ŝΣ2(x, x))

)
dA(x)

=

∫

Σ1

tr
(
(ŝΣ1(x, x)− ŝΣ2(x, x))/n

∗
Σ1

)
dA(x)

= Tr
(
p≥( /∇

∗
Σ1
)− UΣ1,Σ2p≥( /∇

∗
Σ2
)U−1

Σ1,Σ2

)
.

It was shown in [7, Thm. 6.5] that the operator p≥( /∇
∗
Σ1
)−UΣ1,Σ2p≥( /∇

∗
Σ2
)U−1

Σ1,Σ2
has a smooth

integral kernel. In particular, the operator is of trace class. It now follows from [4, Thm. 4.1]
that the trace is an integer and equals an index, namely putting U = UΣ1,Σ2 and pj = p≥( /∇

∗
Σj
),

Q
ωΣ1

,ωΣ2
R = ind

[
Up2U

−1p1 : p1L
2(Σ1) → Up2U

−1L2(Σ1)
]

= ind
[
p2U

−1p1 : p1L
2(Σ1) → p2U

−1L2(Σ1)
]
.

By Theorem 4.1 and the concluding remark in [7] this index is given by

Q
ωΣ1

,ωΣ2
R = −

∫

M
Â ∧ ch(∇E) +

h( /∇Σ1
) + h( /∇Σ2

) + η( /∇Σ1
)− η( /∇Σ2

)

2
− h( /∇Σ2

)(16)
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= −

∫

M
Â ∧ ch(∇E) +

h( /∇Σ1
)− h( /∇Σ2

) + η( /∇Σ1
)− η( /∇Σ2

)

2
.(17)

Here M is the region between Σ1 and Σ2, i.e. M = J+(Σ1) ∩ J−(Σ2) where J+ and J−

denote the causal future and past, respectively. By Â we denote the Â-form computed from
the curvature of X and ch(∇E) is the Chern-character form for the curvature of ∇E , see [9,

Sec. 4.1]. Hence Â contains the contribution of gravitation to the relative charge and ch(∇E)
that of the external field.

Moreover, η( /∇Σ) denotes the η-invariant of the Dirac operator on the Cauchy hypersurface
Σ and h( /∇Σ) the dimension of its kernel. The additional term −h( /∇Σ2

) in (16) is caused by
a different convention for the spectral projectors in [7] concerning the eigenvalue 0. There is
no trangression boundary term because of the product-structure assumption near Σ1 and Σ2.

3.8. Summary and examples. We summarize the results we have obtained.

Theorem 3.1. Let X be an even-dimensional globally hyperbolic Lorentzian spin manifold,

let Σ1,Σ2 ⊂ X be two spacelike smooth Cauchy hypersurfaces with Σ1 lying in the past of Σ2.

We put M := J+(Σ1) ∩ J−(Σ2).
Let E → X be a Hermitian vector bundle with compatible connection ∇E. We assume that

the metric of X and ∇E have product structure near Σ1 and Σ2.

Then the relative right-handed charge Q
ωΣ1

,ωΣ2
R as defined in (14) for the Fock states ωΣj

and the Dirac operator twisted with E is given by

(18) Q
ωΣ1

,ωΣ2
R = −

∫

M
Â ∧ ch(∇E) +

h( /∇Σ1
)− h( /∇Σ2

) + η( /∇Σ1
)− η( /∇Σ2

)

2
.

Interchanging left-handed and right-handed spinors in the whole discussion we can also
define the relative left-handed charge Q

ωΣ1
,ωΣ2

L . The projector defining the Fock representation

is now given by P = p>( /∇
∗
Σ)⊕ p≥( /∇Σ). Then a discussion analogous to the above yields

(19) Q
ωΣ1

,ωΣ2
L =

∫

M
Â ∧ ch(∇E) +

−h( /∇Σ1
) + h( /∇Σ2

)− η( /∇Σ1
) + η( /∇Σ2

)

2
.

The exchange of chirality is equivalent to reversing the orientation of X. This explains the
opposite sign for the contribution given by the integral. The induced orientations on Σ1

and Σ2 will also be reversed which results in a replacement of /∇Σj
by − /∇Σj

. Hence the
η-invariants get the opposite sign. The different convention concerning the eigenvalue 0 in
the definition of the projection P is responsible for the opposite signs in the h-terms.

If we call QωΣ1
,ωΣ2 := Q

ωΣ1
,ωΣ2

R + Q
ωΣ1

,ωΣ2
L the relative total charge and Q

ωΣ1
,ωΣ2

chir :=

Q
ωΣ1

,ωΣ2
R −Q

ωΣ1
,ωΣ2

L the relative chiral charge then (18) and (19) imply

QωΣ1
,ωΣ2 = 0 ,

Q
ωΣ1

,ωΣ2
chir = −2

∫

M
Â ∧ ch(∇E) + h( /∇Σ1

)− h( /∇Σ2
) + η( /∇Σ1

)− η( /∇Σ2
) .

That is to say that the total charge is preserved in quantum field theory while the chiral

charge is not. The chiral anomaly depends on the space-time curvature via Â, on the external
field via ch(∇E), and on spectral properties of the spatial Dirac operators via the h- and
η-terms.



A GEOMETRIC FORMULA FOR THE CHIRAL ANOMALY 13

Example 3.2. The following example is well known but shows that the contributions of
the η-invariant are essential to give a correct integer valued total charge. Let X = R × S1

equipped with the metric dt2 − dθ2 where θ denotes the standard coordinate on the circle
S1 = R/LZ of length L. We twist with the topologically trivial complex line bundle E (indeed
all complex line bundles on X are topologically trivial) and the connection ∇E = ∂+iA where
the electro-magnetic potential A is of the form A = A1(t)dθ. The (real) curvature form of ∇E

is given by F = dA = Ȧ1dt∧dθ. This describes an electric field with no magnetic component.
The surface X with the given metric has vanishing curvature. But even if it had nontriv-

ial curvature it would not enter the formula for the relative charge because Â has nonzero

contributions only in dimensions divisible by 4. Thus Â = 1. In two dimensions the Chern

character form is simply given by ch(∇E) = 1
2πF = Ȧ1

2π dt ∧ dθ.

For t1 < t2 and Σj = {tj} × S1 we have M = [t1, t2]× S1 and the integral is given by

∫

M
Â ∧ ch(∇E) =

∫ t2

t1

∫

S1

Ȧ1

2π
dθ dt =

L

2π
(A1(t2)−A1(t1)) .

Now S1 (and hence X) has two inequivalent spin structures, the trivial and the nontrivial

spin structure. Spinors with respect to the trivial spin structure correspond to complex-valued
functions. Spinors on S1 with respect to the nontrivial spin structure correspond to functions
u on R which are antiperiodic with period L, i.e. u(θ + L) = −u(θ). The twisted Dirac
operator on Σ = {t}×S1 takes the form /∇Σ = i∂θ−A1(t). Its eigenvalues have multiplicity 1
and are given by

2π

L
k −A1(t)

for the trivial spin structure and

2π

L

(
k +

1

2

)
−A1(t)

for the nontrivial spin structure where k ∈ Z. A little computation using Hurwitz ζ-functions
shows for the trivial spin structure

2 ·
L

2π
A1(t) + h( /∇Σ) + η( /∇Σ) = 2

⌊
L

2π
A1(t)

⌋
+ 1

and hence

Q
ωΣ1

,ωΣ2
chir = 2

⌊
L

2π
A1(t1)

⌋
− 2

⌊
L

2π
A1(t2)

⌋
.

For the nontrivial spin structure we obtain

Q
ωΣ1

,ωΣ2
chir = 2

⌊
L

2π
A1(t1)−

1

2

⌋
− 2

⌊
L

2π
A1(t2)−

1

2

⌋
.

Example 3.3. Let X = R × S4k−1 with a metric of the form dt2 − gt where gt is a one-
parameter family of Riemannian metrics on S4k−1. The manifold X has a unique spin struc-
ture. This time we let E be the trivial line bundle with trivial connection ∇E so that there
is no external field.

We considerM = [t1, t2]×S4k−1. It is shown in [7, Sec. 5] that the family gt and the Cauchy
hypersurfaces Σj = {tj}×S4k−1 can be chosen in such a way that h( /∇Σ1

) = h( /∇Σ2
) = 0 and
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∫
M Â +

η( /∇Σ2
)−η( /∇Σ1

)

2 = (−1)k−1
(2k
k

)
. Hence

Q
ωΣ1

,ωΣ2
chir = (−1)k2

(
2k

k

)
.

In this case the space-time metric, i.e. gravity, is causing the nontriviality of the chiral anom-
aly. In dimension 4 (k = 1) this example was already discussed in [22].

Example 3.4. Next we consider Bianchi-Type-I space-times. Here X = R×R
3/Γ where Γ is

a lattice in R
3. Denoting the coordinate of the R-factor by t and the standard coordinates of

R
3 by x1, x2, x3 the metric of X takes the form dt2 − a21(t)(dx

1)2 − a22(t)(dx
2)2 − a23(t)(dx

3)2

where ai : R → R are smooth positive functions. Hence, for fixed t, the Cauchy hypersurface
{t} × R

3/Γ is a flat torus.

The Â-integrand can be computed to vanish identically on X, Â ≡ 0. The manifold X
has 8 different spin structures. The Dirac spectrum of a flat torus is symmetric about 0 for
every choice of spin spin structure so that all η-invariants vanish. Moreover, the kernel of the
Dirac operator on a flat torus is 1-dimensional for one of the spin structures and trivial for
the others. Thus the h( /∇Σj

)-contributions in the formulas for the chiral anomaly cancel in
all cases. We conclude that for Bianchi-Type-I space-times the chiral anomaly vanishes,

Q
ωΣ1

,ωΣ2
R = Q

ωΣ1
,ωΣ2

L = Q
ωΣ1

,ωΣ2
chir = 0.

Example 3.5. Finally we consider Bianchi-Type-II space-times. The torus in a Bianchi-Type-
I space-time is replaced by a 3-dimensional Heisenberg manifold, i.e., X = R×(He(Z)\He(R))

where He(R) and He(Z) denotes the Heisenberg group of matrices of the form



1 x z
0 1 y
0 0 1




with real or integral entries, respectively. Clearly, He(R) is diffeomorphic to R
3 but the

quotient Σ := He(Z)\He(R) is a compact 3-manifold non-diffeomorphic to a torus. It has
four different spin structures. For positive numbers a and b we obtain a left-invariant metric
on He(R) by

ga,b =

(
b2y2

4
+ a2

)
dx2 +

(
b2x2

4
+ a2

)
dy2 + b2dz2 −

b2xy

2
dxdy + b2ydxdz − b2xdydz .

By left-invariance the metric descends to a Riemannian metric on the quotient Σ.
Now we let a, b : R → R be smooth positive functions and we equip X with the metric

dt2 − ga(t),b(t). A tedious but straightforward computation yields

Â =
(a2bȧ2 − a3bä− a3ȧḃ+ a4b̈− b3)(bȧ− aḃ)

48π2a5
dt ∧ dx ∧ dy ∧ dz .

Integration over M = [t1, t2]× Σ yields

∫

M
Â = −

b4 − 2a2b2ȧ2 + 4a3ȧbḃ− 2a4ḃ2

192π2a4

∣∣∣∣∣

t2

t=t1

Assuming product structure near t1 and t2 as required in Theorem 3.1, the derivatives of a
and b vanish at t1 and at t2 so that we are left with

∫

M
Â =

1

192π2

(
b4(t1)

a4(t1)
−

b4(t2)

a4(t2)

)
.
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The η-invariant of the Dirac operator on Σt is computed in [25, Thm. 11] (with A = a2/b2,
r = v1 = w2 = mv = 1 and v2 = w1 = mw = 0 in their notation):

η( /∇Σt
) =

b4(t)

96π2a4(t)
−N(t)

where N(t) is an explicitly given integer depending on a(t)/b(t) and the spin structure. From
the explicit formula (44) in [25] one sees that for every choice of spin structure N(t) → ∞ if
b(t)/a(t) → ∞ and N(t) → 0 if b(t)/a(t) → 0. Therefore the functions a(t) and b(t) can be
chosen such that N(t2)−N(t1) is arbitrarily large. Moreover, for generic choice of a(tj)/b(tj)
we have h( /∇Σj

) = 0. Then

Q
ωΣ1

,ωΣ2
chir = −2

∫

M
Â + h( /∇Σ1

)− h( /∇Σ2
) + η( /∇Σ1

)− η( /∇Σ2
) = N(t2)−N(t1)

can take arbitrarily large positive but also arbitrarily small negative values for suitable choices
of the functions a(t) and b(t).

4. Conclusion and outlook

Given two Hadamard states on the field algebra for the Dirac equation, we defined a relative
current which can be thought of as the expectation value (with respect to one state) of the
normally ordered current operator where normal ordering has been done with respect to the
other state. In contrast to currents associated with one state, these relative currents can be
defined unambigously without any need for regularization. Integration of the relative current
over a Cauchy hypersurface yields the relative charge. In case the two states are vacuum
states of observers moving along two distinguished timelike Killing fields, we expressed the
relative charge in terms of an integral into which the gravitational field and the gauge field
enter plus a boundary contribution essentially given by the η-invariant. The crucial tool was
a novel index theorem for hyperbolic Dirac operators which makes it possible to avoid any
Wick rotation thus making the whole derivation mathematically rigorous.

Of course, the assumption on the space-time to be spatially compact is something that one
would like to get rid of in order to better understand the local properties of anomalies and
in order to be able to treat more models from general relativity. Technically, this assumption
ensures that the relative charge is finite and can be expressed as an index. However, the
relative current is locally defined and does make sense also on more general space-times. A
local index theorem should be able to compute the local current generated by the external
field. In case of noncompact Cauchy hypersurfaces which have compact quotients there is
also the possibility to employ the concepts of L2-indices, L2-traces, and L2-dimensions as
introduced by von Neumann.

Appendix A. The canonical trace on the algebra of smoothing operators

with compact support in one variable

Let X be a manifold with a positive volume density dV. Suppose that E is a complex
vector bundle over X. Then any smooth section a of the bundle E ⊠ E∗ will determine an
operator A : C∞

0 (X;E) → C∞(X;E) via

(Au)(x) =

∫

M
a(x, y)u(y) dV(y).
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If the integral kernel a has support contained in a set of the form K ×X, where K ⊂ X is
compact we say that a is compactly supported in the first variable. The set of operators with
integral kernel that is compactly supported in the first variable shall be denoted by Ψ−∞

0 .
Note that this set forms an algebra and these operators map C∞

0 (X;E) to C∞
0 (X;E). A

canonical trace can be defined on this algebra by

Tr(A) :=

∫

X
tr a(x, x) dV(x).

This trace cannot be directly interpreted as an L2-trace because an operator in Ψ−∞
0 need not

necessarily be L2-bounded. However, given a compact exhaustion Kn of X and a sequence
of compactly supported smooth functions χn with χn(x) = 1 for all x ∈ Kn, we have

Tr(A) = lim
n→∞

TrL2(Aχn).

The operator Aχn has smooth integral kernel a(x, y)χn(y) which is compactly supported in
both variables. Hence it is trace class by Mercer’s theorem. For A,B ∈ Ψ−∞

0 the trace
property Tr(AB) = Tr(BA) follows immediately from Fubini’s theorem.

Now let P be a differential operator acting on sections of E. If A ∈ Ψ−∞
0 then PA,AP ∈

Ψ−∞
0 because they have integral kernels (P ⊗ 1E∗)a and (1E ⊗ P ∗)a, respectively. The trace

property Tr(PA) = Tr(AP ) also holds even though P /∈ Ψ−∞
0 . This can easily be checked

using integration by parts and the fact that in local coordinates

∂

∂xi
a(x, x) =

∂

∂xi
a(x, y)|y=x +

∂

∂yi
a(x, y)|y=x.
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