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A Functional Model for Quantum Mechanics:

Unbounded Operators

Abstract

We extend the recently developed Riesz-Clifford monogenic func-

tional calculus (based on Clifford analysis) for a set of unbounded non-

commuting operators. Connections with quantum mechanics are dis-

cussed.
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1 Introduction

The present paper continues the development of the functional calculus for

non-commuting operators started in [14], [17], [18], [19]. Our investigation,

as well as a huge part of functional analysis, is motivated by a search for

suitable models for quantum mechanics [29]. A very abstract formulation of

the quantization problem is exactly the construction of a functional calculus

for several non-commuting operators.

There exist already at least two models of functional calculus for several

operators. They are the holomorphic calculus of Taylor [31], [32] based on

several complex variable theory and the Weyl calculus generalized by An-

derson [2] for arbitrary finite set of self-adjoint operators. Only the last

one is able to handle with non-commuting operators. In spite of its indis-

putable advantages the Weyl calculus has an important shortcoming: it was

not connected with any algebraic property like an algebra homomorphism.

This lack greatly reduced the applicabilty of the generalized Weyl calculus in

quantum mechanics. The Riesz-Clifford functional calculus [19] could handle

an n-tuple of bounded self-adjoint non-commuting operators and has a prop-

erty of ×-algebra homomorphism. Connection between the Weyl and the

Riesz-Clifford calculi was found in [17], where functional calculi were labeled

with associated group representations.

However the technique of [19] could not yet support a wide range of

applications in quantum mechanics due to the boundedness restriction on

operators. Consideration of quantum field theory suggests that the following

particular model is important. Let the quantum mechanical system at hand

be described by means of the primary observables X1, X2, . . . , Xn−1, H
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(see Section 4 for details). Here the observables Xi behave like coordinates,

i.e., have unbounded spectrum, and H is the energy operator, which can be

semibounded (has a positive spectrum). Then quantization is the mapping

f(x1, . . . , xn−1, xn) → f(X1, . . . , Xn−1, H)

from functions defined on the upper half space to operators. We will see that

exactly this situation can be naturally described via Riesz-Clifford functional

calculus based on Clifford analysis.

The key ingredient of this approach is the use of Clifford analysis with

a related structure as a model for functional calculus. The explicit use of

Clifford analysis in such a role can be traced back at least to the paper [24]

of McIntosh and Pryde, where the case of mutually commuting operators

was considered. But even the earlier definition of the Taylor spectrum [31],

as it was pointed in [17], Lemma 3.2, already contains the Clifford algebras

in hidden form. Thus the use of Clifford analysis in operator theory already

has a long history and seems to be a reasonable approach (see also [28]).

Nevertheless, the results for non-commuting operators1 obtained in [17], [18],

[19] are mainly based on original ideas, namely the notion of ×-algebras [19]

and the covariance definition [17], [18] of the functional calculus.

The main objective of the present paper is to extend the Riesz-Clifford

functional calculus for unbounded operators. To this end we will follow to

the classical path, which leads from Section VII.3 to Section VII.9 of [10].

The underlying idea is to use the already constructed functional calculus for

bounded operators and reduce the unbounded case to the previous one by a

suitable transformation. For reasons which will be explained later on, here a

1We are also free from the limitation of [24] that number of operators should be even.
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suitable transformation means the Cayley transform of upper half space to

the unit ball in R
n [17], Remark 4.2. Our task is greatly simplified by because

much work connected with Moebius transformations was very recently done

in the context of Clifford analysis (see, for example, papers of Cnops [4]

and Ryan [26], [27]). But the specific features of the unbounded and non-

commutative case requires careful study (see discussion at the beginning of

Section 3).

In Section 2 of this work we give the main results about Clifford analysis,

Moebius transformation (especially the Cayley transform) and Riesz-Clifford

functional calculus [19] in a refined form. We have tried to find a reasonable

balance between self-consistency and modest length of preliminaries. Due to

the large amount of material involved we were often enforced to give only

references to original papers. In Section 3 we construct the Riesz-Clifford

functional calculus for unbounded operators from the bounded case with the

help of the Cayley transform. Some technical difficulties enforce us to modify

the approach of [10], § VII.9. We conclude the paper by Section 4 where we

discuss our results in connections with quantum mechanics. We make in this

Section also some remarks about connections between the Riesz-Clifford [19]

and monogenic [17], [18] functional calculi.

2 Definitions, Notations and Preliminary Re-

sults

In this Section we give a short overview of notions and results, which will be

used later on.
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2.1 Clifford Algebras and Clifford Analysis

We need some notations from [3], [9]. Let the euclidean vector space R
n

have the orthonormal basis e1, e2, . . . , en. The Clifford algebra Cl(n, 0) is

generated by the elements e0 = 1, e1, . . . , en with the usual vector operations

and the multiplication defined on the elements2 of the basis by the following

equalities:

e2j = −e0 (j = 1, . . . , n),

ejek + ekej = 0 (j, k = 1, . . . , n; j 6= k),

and then extended linearly to the whole space. An element of Cl(n, 0) can

be written as a linear combination with coefficients aα ∈ R of the monomials

eα = e
j1
1 e

j2
2 · · · ejnn :

a =
∑

α

aαeα =
∑

jk=0 or 1

aj1j2...jne
j1
1 e

j2
2 · · · ejnn . (1)

The main anti-involution (conjugation) ā of an element a is defined by the

rule:

ā =
∑

α

aαēα =
∑

jk=0 or 1

aj1j2...jn ē
jn
n ē

jn−1

n−1 · · · ēj11 , (2)

where ēj = −ej, ē0 = e0, 1 ≤ j ≤ n. A Clifford algebra valued function f of

the variables (x1, x2, . . . , xn), is called monogenic in an open domain Ω ⊂ R
n

if it satisfies the Dirac equation

Df =
n∑

j=1

ej
∂f

∂xj

= 0. (3)

2We are considering the only case of a negative definite bilinear form over R
n. The

technique for indefinite forms was developed recently and it certainly is very interesting

in connection with physical applications. We have also made a shift from the paravectors

formalism [19] to the vector one in the present paper. See the discussion in [4].
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The main results of Clifford analysis [3], [9] (Cauchy theorem, Cauchy

integral formula etc.) have a structure closer that of the complex analysis of

one variable than to standard complex analysis of several variables. However,

in Clifford analysis not all polynomials are monogenic functions. Instead one

has to consider the symmetric polynomials of the monomials having the form

~xj = (ejxn + enxj), 1 ≤ j ≤ n− 1. (4)

The role of monomials (“regular variables” [8]) is described for quaternionic

analysis in [30], for Clifford analysis in [23], for Fueter-Hurwitz analysis

in [20], and for solutions of the general Dirac type equation in [14], [15], [22].

We use the following facts and notation. Let H(Ω) denote the space of all

monogenic functions in the domain Ω and by P the space of all monogenic

polynomials. The space P has the linear subspaces Pj, 0 ≤ j < ∞ of

homogeneous polynomials degree j. We will show that P consist of symmetric

polynomials constructed from the monomials of the form (4) by symmetric

products [23]

a1 × a2 × · · · × ak =
1

k!

∑
aj1aj2 · · · ajk , (5)

where the sum is taken over all of permutations of (j1, j2, . . . , jk). Clifford

valued coefficients are written on the right-hand side.

Lemma 2.1 The linear subspace Pj has a basis consisting of symmetric

polynomials of the form

Vα(x) = (−1)|α|(enx1 + e1xn)α1 × (enx2 + e2xn)α2 × · · · × (enxn−1 + en−1xn)αn−1

= ~x1
α1 × ~x2

α2 × · · · × ~xn−1
αn−1 = ~xα. (6)
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Let

E(y − x) =
Γ(n+1

2
)

2π(n+1)/2

y − x

|y − x |n+1
(7)

be the Cauchy kernel [9], p. 146 and

dσ =
n∑

j=1

(−1)jejdx1 ∧ . . . ∧ [dxj] ∧ . . . ∧ dxn.

= ~nds

be the differential form of the “oriented surface element” ds [9], p. 144,

where ~n is the unit normal vector orthogonal to the surface. Then for any

f(x) ∈ H(Ω) we have the Cauchy integral formula [9], p. 147

∫

∂Ω

E(x− y) dσy f(y) =





f(x), x ∈ Ω

0, x 6∈ Ω̄
. (8)

We should point out the universality (with respect to domains) of both the

Cauchy kernel E(y − x) and the Cauchy formula in Clifford analysis, in

contrast to the case of several complex variables.

If we define as in [3], § 18.6 and [9], Chap. II, Definition 1.5.5

W (a)
α (x) = (−1)|α|∂αE(x− a), (9)

then, for |x |<|y | we obtain [9], Chap. II, (1.16)

E(y − x) =
∞∑

j=0


∑

|α|=j

Vα(x)Wα(y)


 . (10)

2.2 The Möbius (Conformal) Group

We will give a very short account here. For details the reader should consult

the original papers [1], [4], [26], [27].
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We have two anti-involutions − and ∗ in Cl(n, 0) defined on vectors by

x̄ = −x and x∗ = x. It is easy to see that xy = yx = 1 for any x ∈ R
n and

y = x̄ ‖x‖−2, which is the Kelvin inverse of x. Finite products of vectors

are invertible in Cl(n, 0) and form the Clifford group Γn. Elements a ∈ Γn

such that aā = ±1 form the Pin(n) group—the double cover of the group of

orthogonal rotations O(n).

Let (a, b, c, d) be a quadruple of elements of Γn ∪{0} with the properties:

1. (ad∗ − bc∗) ∈ R \ 0;

2. ab∗, cd∗, c∗a, d∗b are vectors.

Then Vahlen [1], [4], [27] 2 × 2-matrixes


 a b

c d


 form a semisimple [12],

§ 6.2 group V (n) under the usual matrix multiplication. It has a representa-

tion πRn by transformations of Rn ∪ {∞} given by:

πRn


 a b

c d


 : x 7→ (ax + b)(cx + d)−1, (11)

which form the Möbius (or conformal [33], Chap. 10) group of R
n. The

analogy with fractional-linear transformations of the complex line C is useful

as well as representations of shifts x 7→ x + y, orthogonal rotations x 7→

k(a)x, dilatations x 7→ λx, and the Kelvin inverse x 7→ x−1 by the matrixes
 1 y

0 1


,


 a 0

0 a∗−1


,


 λ1/2 0

0 λ−1/2


,


 0 −1

1 0


 correspondingly.

2.3 Riesz-Clifford Calculus

We will start from the definition of the ×-algebra, which we give in an easier

form than in [19].
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Definition 2.2 Let A be a (topological) algebra with the operations of addi-

tion +A and multiplication ·A, generated by a finite set of elements a1, . . . , ak.

Define a new operation ×A of symmetric multiplication associated with them

as follows. Let

A = aα1

1 × aα2

2 × · · · × a
αk

k , (12)

B = a
β1

1 × a
β2

2 × · · · × a
βk

k .

Then

A× B = a
α1+β1

1 × a
α2+β2

2 × · · · × a
αk+βk

k . (13)

Let A× be the closure in A of elements of the form (12); then this operation

is continuously extended to A×. The resulting set will be called an ×-algebra

(corresponding to the algebra A). Let A× and B× be two ×-algebras. We say

that φ : A× → B× is an ×-homomorphism of two ×-algebras if the following

holds

1. φ(aj) = bj, 1 ≤ j ≤ k, where a1, . . . , ak and b1, . . . , bk are generators of

A and B correspondingly.

2. φ(λa1 + a2) = λφ(a1) + φ(a2) for any a1, a2 ∈ A and λ ∈ C.

3. φ(a1 × · · · × an) = φ(a1) × · · · × φ(an) for any set a1, . . . , an of (not

necessarily distinct) generators of A.

Note that a ×-algebra with the binary operation × becomes an associa-

tive algebra, which is commutative or non-commutative depending of the

nature of the scalars in it. The definition of ×-algebra could be seen on

the first glance as a cumbersome one, nevertheless it should be noted that
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such different mathematical constructions as the Weyl quantization [2] and

Cauchy-Kovalevskaya extension [3], [9] are both examples of ×-algebras. For

a justification of the product (13) see [16] or Section 4.

By the definition of the symmetric product one can obviously deduce

Lemma 2.3 Any homomorphism of two algebras is a ×-homomorphism of

the corresponding ×-algebras.

The converse, of course, is not true (see Example 3.5 of the Weyl quanti-

zation in [19]), so the ×-homomorphism is weaker property than algebra

homomorphism.

Fix an (n− 1)-tuple of bounded self-adjoint operators T = (T1, . . . , Tn−1)

on the Hilbert space H. The following is a definition of the Riesz-Clifford

monogenic calculus.

Definition 2.4 We say that an (n − 1)-tuple of operators T ∈ A has a

monogenic functional calculus (A,Φ) based on R
n whenever the following

conditions hold: A is a topological vector space of monogenic functions from

Ω ⊂ R
n to Cl(n, 0), with addition defined pointwise and (symmetric) ×-

multiplication, and Φ : A → A is a continuous ×-homomorphism such that

Φ : ~xj(= ejx1 + e1xj) 7→ Tj, 1 ≤ j ≤ n− 1 (14)

There, to extend calculus from commuting operators to non-commuting we

ones we relax the requirement from homomorphism to ×-homomorphism.

Theorem 2.5 (Uniqueness) For a given simply-connected domain Ω and

an (n − 1)-tuple of operators T , there exists no more than one monogenic

functional calculus.
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Theorem 2.6 For any (n − 1)-tuple T of bounded self-adjoint operators

there exist a monogenic calculus on R
n.

To construct an integral formula for the monogenic calculus we should

define the Cauchy kernel of the operators Tj. It may be done as follows

Definition 2.7 Let (cf. (10))

E(y, T ) =
∞∑

j=0


∑

|α|=j

Vα(T )Wα(y)


 (15)

where

Vα(T ) = T α1

1 × · · · × T
αn−1

n−1 ; (16)

i.e., we have formally substituted in (6) for (~x1, . . . , ~xn−1) the (n − 1)-tuple

of operators (T1, . . . , Tn−1).

We have [17]

Lemma 2.8 Let |T |= limj→∞ supσ ‖Tσ(1) · · ·Tσ(j) ‖
1/j, 1 ≤ σ(i) ≤ n− 1 be

the Rota joint spectral radius [25]. Then for fixed | y |>| T |, equation (15)

defines a bounded operator in A.

Definition 2.9 The maximal open subset RC(T ) of R
n such that for any

y ∈ RC(T ) the series in (15) converges in the uniform operator topology to a

bounded operator on H̃ will be called the (Cauchy) resolvent set of T . The

complement of RC(T ) in R
n will be called the (Cauchy) spectral set of T and

denoted by σC(T ).

From Lemma 2.8 it follows that RC(T ) is always non-empty and σC(T ) is

bounded; from Definition 2.9 one can see that σC(T ) is closed. Moreover,
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it is easy to see that from Liouville’s theorem ([24], Theorem 5.5) it follows

that σC(T ) is non-empty, thus

Lemma 2.10 The Cauchy spectral set σC(T ) is compact.

Recall formula [9], Chap. II, Lemma 1.5.7(i):
∫

∂B(0,r)

Wβ(y) dσ Vα(y) = δαβ. (17)

It is easily follows from it that

Lemma 2.11 Let r >|T | and let Ω be the ball B(0, r) ∈ R
n. Then for any

symmetric polynomial P (~x) we have

P (T ) =

∫

∂Ω

E(y, T ) dσy P (y) (18)

where P (T ) is the symmetric polynomial of the (n− 1)-tuple T .

Lemma 2.12 For any domain Ω, which does not contain σC(T ), and any

f ∈ H(Ω), we have ∫

∂Ω

E(y, T ) dσy f(y) = 0 (19)

Due to this Lemma we can replace the domain B(0, r) at Lemma 2.11 with

an arbitrary domain Ω containing the spectral set σC(T ). An application of

Lemma 2.11 gives the main

Theorem 2.13 Let T = (T1, . . . , Tn−1) be an (n− 1)-tuple of bounded self-

adjoint operators. Let the domain Ω with piecewise smooth boundary have

a connected complement and suppose the spectral set σC(T ) lies inside a

domain Ω. Then the mapping

Φ : f(x) 7→ f(T ) =

∫

∂Ω

E(y, T ) dσy f(y) (20)

defines a monogenic calculus for T .
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3 Functional Calculus Semibounded Opera-

tors

We recall some considerations of [10], § VII.9. One can observe that for an

operator T with a non-empty resolvent set R(T ) and arbitrary a ∈ R(T ), the

operator A = (T − aI)−1 is bounded (by the very definition of a resolvent

set). Having a functional calculus for the bounded operator A as a given, we

can define the functional calculus for operator T by the formula

f(T ) = φ(A), where φ(z) = f(z−1 + a).

This scheme was successfully applied in [27] to extend results of [24] for a

commuting n-tuple of operators Tj to unbounded case. It was possible mainly

because for commuting operators Tj the “Möbius transformation”

(aT + b)(cT + d)−1 = P1e1 + · · · + Pnen, where T = T1e1 + · · · + Tnen

again produces an n-tuple of commuting operators Pj (let us say, it maps

vector-operators again to vector-operators) and thus the classical scheme

could be produced without modifications.

This is no longer true for an arbitrary n-tuple of non-commuting operators

as it could be easily seen. Thus one should look for a way to avoid this

obstacle. For example, one can try to map by means of the Cayley transform

functions over the sphere to unbounded domains instead of operators to

bounded case. Here we again meet some difficulties generated by the multi-

dimensional and non-commutative nature of Clifford analysis, however they

could be overcome by an adequate modification of our definitions. So we will

proceed in this way.
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To illustrate our method we again firstly consider the case of classic

functional calculus of an operator. Working in the commutative setting

of one or several complex variables one enjoys the following freedom: for

a given function f(z) in domain Ω and an arbitrary holomorphic mapping

φ : Ω′ → Ω and an arbitrary holomorphic function g(z) on Ω′, the func-

tion f ′(z) = g(z)f(φ(z)) is again holomorphic in Ω′. However such types

of mappings are mappings of holomorphic functions as linear spaces, not as

functional algebras unless g(z) ≡ 1. Thus even in the one-variable case if

we forced to set g(z) not identically equal to 1 (to preserve some additional

structure) we will lose the algebraic structure.

Example 3.1 (see [21], Chap. IX) We want to construct a holomorphic

mapping, which will be an intertwining operator between two discreet series

representations with a lowest weight m ≥ 2 in the unit disc D and upper half

plane H
+. Having the Cayley transform

w =
z − i

z + i
, z = −i

w + 1

w − 1
, z ∈ H, w ∈ D

one can define desired transformation on functions f(w) on unit disc by the

formula:

f(w) 7→ f

(
z − i

z + i

)
(z − i)−m.

In particular,

wk 7→

(
z − i

z + i

)k

(z − i)−m.

From the Cauchy kernel decomposition on the unit disc,

f(w) =
1

2πi

∫

S1

f(t)
dt

w − t
=

1

2πi

∫

S1

f(t)
∞∑

k=0

wk

tk+1
dt.
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By means of the Cayley transform we can obtain a decomposition

f ′(z) = f

(
z − i

z + i

)
(z − i)−m =

1

2πi

1

(z − i)m

∫

Γ

∞∑

k=0

(
z − i

z + i

)k
1

tk+1
f(t)dt.

(21)

Here we could already observe that the described transformation destroys the

simple algebraic relations gk(w)gl(w) = gk+l(w) between function gk(w) =

wk.

The situation in Clifford analysis is very similar (we repeatedly use here

various results of [4], [27] without specific references). Having a Möbius

transformation g =


 a b

c d


 of the Euclidian space R

n we have almost no

choice for constructing transformations of the space of monogenic functions

unless

[ĝf ](x) =
(cx + d)∗

‖cx + d‖n
f

(
ax + b

cx + d

)
. (22)

We will fix now3 g to be the Cayley transform4 g =


 en 1

1 en


 of the

upper half space H
+ to the unit ball B. Its inverse is g = 1

2


 −en 1

1 −en


.

Analogously to (21) we could see (compare with integral form for the adjoint

function in [3], § 13.3)

[ĝf ](x) =

∫

Sn−1

∞∑

j=0


∑

|α|=j

x + en

|x + en |n
Vα

(
enx + 1

x + en

)
Wα(y)


 dσyf(y), (23)

3Another interesting unbounded case, the exterior of a ball, could be treated analo-

gously to upper half space.
4We use the Cnops convention [4] under which a

b
for a, b ∈ Cl(n, 0) is always under-

stood as ab−1.
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where x ∈ H
+ and y ∈ B. From here one could see that functions V ′

α(x) =

x+en
|x+en|n

Vα

(
enx+1
x+en

)
are an appropriate substitution in the upper half space for

functions Vα(y) in the unit ball just as
(
z−i
z+i

)k
(z − i)−m is for wk in the one

dimensional case.

Now we arrive at the above mentioned difficulty: the described transfor-

mation destroys the structure of the ×-algebra. The solution could be carried

out by the following simple result, which is closely connected to many sym-

bolical calculi as was pointed by Howe [11].

Lemma 3.2 Let A be an associative algebra with binary operation · and

t ∈ A. Then A with the binary operation a ◦t b = a · t · b is again an

associative algebra. Moreover the mapping lt : a → at and rt : a → ta are

both algebras homomorphisms (A, ◦t) → (A, ·):

lt(a ◦t b) = lt(a) · lt(b), rt(a ◦t b) = rt(a) · rt(b).

We easily conclude

Corollary 3.3 Let A be an associative algebra with binary operation · and

t ∈ A. Then there is an associated structure of ×-algebra with × = ×t

product defined as symmetrical product in A with respect to the modified

multiplication ◦t.

Proof. Lemma 3.2 could be checked by the streightforward substitution.

Then the corrolary immediatly foolows from Lemma 2.3. �

In our case one could select t = (x− en) |x− en |
n−2 and elements

aj(x) = ĝ(enyj + ejyn) =
x + en

|x + en |n
2enxj + ej(x

2 + 1)

(x + en)2
(24)
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as generators of a modified ×-algebra. It easy to see, particularly that

V ′
α ×t V

′
β = V ′

α+β.

Now we could give a definition:

Definition 3.4 For a set of (unbounded) operators T the functional calculus

(A,Φ) on H
+ should satisfy to the following conditions: A is a ×-algebra

generated by aj(x) of monogenic functions from H
+ to Cl(n, 0), with addition

defined pointwise and (symmetric) ×t-multiplication, and Φ : A → A is a

continuous ×-homomorphism such that

Φ : aj 7→ Tj, 1 ≤ j ≤ n− 1 (25)

Because such a definition again does not lead to any uncertainty, we have

Theorem 3.5 (Uniqueness) For an n−1-tuple of operators T , there exists

no more than one monogenic functional calculus on H
+.

An integral formula for the monogenic calculus on H
+ is obtained by

means of the Cayley transform, so is the Cauchy kernel of the operators Tj.

Definition 3.6 Let (cf. (21))

E ′(y, T ) =
∞∑

j=0


∑

|α|=j

Vα(T )Wα

(
eny + 1

y + en

)
−y − en

|y + en |n


 (26)

where

Vα(T ) = T α1

1 × · · · × T
αn−1

n−1 ; (27)

and y ∈ R
n \H+.
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Definition 3.7 We will say that an (n − 1)-tuple T of operators are semi-

bounded if equation (26) defines a bounded operator in A for all y such that

yn ≤ 0.

We now present the main theorem about unbounded functional calculus.

Theorem 3.8 Let T = (T1, . . . , Tn−1) be an (n − 1)-tuple of semibounded

self-adjoint operators. Then the mapping

Φ : f(x) 7→ f(T ) =

∫

Rn−1

E ′(y, T ) dσy f(y) (28)

defines a monogenic calculus for T in H
+.

Proof. The theorem follows from Theorem 2.13 with an application of the

Cayley transform. Corollary 3.3 for the particular case of generators (24)

garantees that the calculus given by formula (28) will satisfy to the ×t-

homomorphism condition of Definition 3.4. �

4 Riesz-Clifford Calculus and Quantum Me-

chanics

It seems that non-commutativity is not only the distinguished feature of

quantum theory but also an important motive of the contemporary math-

ematics. The search of adequate non-commutative counterparts for classic

(commutative) objects is the goal of many important papers and it obviously

inspired by physics’ demands (see for example [5]). Even more, it is physics

which tells us in many important cases, which (from many alternatives) is

the “proper” non-commutative twin to a classic notion.
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It was noted in [19] that symmetric product (5) has the precise mean-

ing of a quantum simultaneous measurement several non-commuting observ-

ables. Moreover, the Jordan symmetrical product (see for example [13], § 1.2)

A ◦ B = 1
2
(AB + BA) =

(
A+B
2

)2
−

(
A−B
2

)2
should be considered not as a

binary operation subject to generate (non-associative) algebra, but as par-

ticular case of the symmetric product (5) with only two multipliers. To be

short, the simultaneous (from macroscopic point of view) measurement of

several observables means equal probabilities of measurements in all possible

succeeding orders.

In this vein we would like to give a quantum interpretation5 of the binary

product invented in (13). From a point of view of operator theory this

product hardly makes sense because it is not connected with usual operator

composition. Thus some justification of it should be useful.

It is often argued in different approaches to quantum field theory, that

only a small number of primary observables could be measured directly.

For example, in axiomatic local quantum field theory they are (for a single

particle) four projections ∆xj, 0 ≤ j ≤ 3 of space-time interval ∆x in a fixed

reference system. All other observables, even if they are measured by a single

(but complicated!) device, are composite ones.

For all such approaches the following model will be an adequate one. We

have a (small) finite set xj, 1 ≤ j ≤ n of directly measured (primary) ob-

servables of a system S. Let the device A measures the observables a of the

system S. Because linearity in quantum mechanics is commonly accepted,

we could assume without lost of generality that a is just a product of several

5This is a part of detailed quantum mechanical interpretation from [16].
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xj (without a summation). Under the above assumption about the primary

nature of xj this means that the device A consists (maybe in a non-trivial

way) of several subdevices for simultaneous measurements of xj and form-

ing their product. By the property [19] of “simultaneous” measurements in

quantum mechanics this product could be only the symmetric product (5).

Thus we arrive at the expression

a = xα1

1 × xα2

2 × · · · × xαn

n

for the observable a and some αj. Considering another device B for an

observable b we could conclude analogously

b = x
β1

1 × x
β2

2 × · · · × xβn

n .

Let us now put devices A and B together to measure simultaneous by a

“product” of observables a and b. Which kind of product it will be? If the

devices A and B really constitute an entity for simultaneous measurements,

then all their subdevices for measurement of primary observables xj should

again produce for us the symmetric product:

b = x
α1+β1

1 × x
α2+β2

2 × · · · × xαn+βn

n .

This is exactly the formula (13) from the definition of ×-algebras. Thus

×-product (13) corresponds to the result of measurement of the product two

observables a and b of a system S with fixed set of primary measurable ob-

servables xj.

Upper half space as a domain for the spectrum naturally arises, for ex-

ample, in the following problem. Let a physical system be described by some

set of non-commuting coordinates (selfadjoint operators) Q1, P1, Q2, P2, . . . ,
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Qn, Pn and a Hamiltonian H. For physical reasons it is naturally assume

that the Hamiltonian H is positively defined and thus the joint spectrum of

the given (2n + 1)-tuples of operators is localized in the upper half space.

Then reasonable observables of the system in hand should be a function of

the given operators. Note also, that a functional calculus based on several

complex variables theory could not achieve this goal: the upper half space

(as well as the exterior of any ball) is not a domain of holomorphy!

Finally we make some remarks about definition of monogenic functional

calculus on the base of its conformal covariance [17], [18]. The connection

between functional calculi and group covariance was already known for some

of them, but only as a property; see, for example, [6], [7]. To put it as a

definition seems to be useful. This approach allows particularly to prove

the spectral mapping theorem [17], Theorem 3.19, thus it has close links

with the structure of operator algebra, unless a ×-homomorphism and ×-

product. Covariance with respect to conformal group is also important in

physical application [16].
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