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Abstract This is a survey, intended both for group theorists and model theorists,
concerning the structure of pseudofinite groups, that is, infinite models of the first-
order theory of finite groups. The focus is on concepts from stability theory and
generalisations in the context of pseudofinite groups, and on the information this
might provide for finite group theory.
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1 Introduction

This article is mainly a survey, based on notes for a lecture course at the ‘Mod-
els and Groups 5’ meeting in Istanbul October 8–10 2015, but closely related to
material on pseudofinite structures which I discussed in the ‘IPM conference on set
theory and model theory’, Tehran, October 12–16 2015. The focus below is mainly on
pseudofinite groups which are simple in the group-theoretic sense, on the content for
pseudofinite groups of model-theoretic tameness conditions generalising stability, and
on the implications for finite group theory. The paper is intended for both logicians
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160 D. Macpherson

and group theorists, so contains considerably more model-theoretic background than
is standard for an article in a logic journal.

Convention: We let Lgp := (·, −1, 1) be the first-order language of groups. Unless
otherwise mentioned, any first-order language L is assumed to be countable.

Definition 1.1 A pseudofinite group is an infinite group which satisfies every first-
order sentence of Lgp that is true of all finite groups.

Not every infinite group is pseudofinite. For example, the sentence (for abelian
groups, so written additively) expressing ‘if the map x �→ 2x is injective then it
is surjective’ is true in all finite groups but false in (Z,+), and so the latter is not
pseudofinite. Likewise (considering the map x �→ px), the group of p-adic integers
(Zp,+) is not pseudofinite. Since centralisers of non-identity elements in free groups
are definable and isomorphic to (Z,+), free groups are not pseudofinite. Answering a
question asked in Istanbul by G. Levitt, we show in Theorem 6.4 that there is a group
(namely the full symmetric group on a countably infinite set) which does not embed
in any pseudofinite group, though we have since found that this follows immediately
from a result in [27].

Remark 1.2 A group G is pseudofinite if and only if it is elementarily equivalent to a
non-principal ultraproduct (see Sect. 2) of distinct finite groups.

In fact, the above definition, and this remark, make sense with ‘group’ replaced by
‘field’, ‘ring’, ‘graph’, L-structure, etc. In this paper, we also talk of pseudofinite rings
and fields.

The structure of this article is as follows. Section 2 contains an overview of basic
background, around ultraproducts, pseudofinite fields, and basic concepts from gen-
eralised stability theory. In Sect. 3, we discuss three major theorems of John Wilson
about finite and pseudofinite groups: the description of simple pseudofinite groups; the
finite axiomatisability, among finite groups, of soluble groups; and the uniform defin-
ability of the soluble radical of a finite group. In Sect. 4 we consider which pseudofinite
groups have a first-order theory which is stable, or simple or NIP, or NTP2—this last
appears to be new, though straightforward. In Sect. 4 we also discuss the notion of
asymptotic class of finite structures, introduced by Elwes, myself and Steinhorn, and
consider this in the context of groups. In Sect. 5 we discuss pseudofinite permutation
groups, especially material from [48]. We take the opportunity here to correct some
inaccuracies in [24,48]. Section 6 suggests some further directions.

2 Preliminaries

2.1 Ultraproducts

Fix a countable language L . Let {Mi : i ∈ ω} be a family of L-structures, and let U be
a non-principal ultrafilter on ω. (An ultrafilter on ω is a family of subsets of ω closed
under finite intersections and supersets, containing ω and omitting ∅, and maximal
subject to this; it is principal if it has the form {X ⊆ ω : a ∈ X} for some a ∈ ω, and
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Model theory of finite and pseudofinite groups 161

is non-principal otherwise.) Define M∗ := �Mi , the Cartesian product of the Mi . We
say that some property P holds almost everywhere or for almost all i if

{i : P holds for Mi } ∈ U .

For a = (ai )i∈ω and b = (bi )i∈ω, put a ∼ b if {i : ai = bi } ∈ U . Then ∼ is an
equivalence relation. Put M = M∗/ ∼. Define relations of L to hold of a tuple of
M if they hold in the i th coordinate (that is, in Mi ) for almost all i , and interpret
functions and constants in M similarly. This is well-defined, and the resulting M is
called the ultraproduct of the Mi with respect to U , and here denoted �i∈ωMi/U . The
ultraproduct M will be ω1-saturated: any type over any countable subset of M will be
realised in M . The key fact about ultraproducts is

Theorem 2.1 (Łos’s Theorem) In the above notation, for any sentence σ , M |	 σ if
and only if σ holds of Mi for almost all i .

For more on ultraproducts see [33, Section 9.5]. The following well-known obser-
vation makes a link to pseudofiniteness.

Proposition 2.2 A group (or just L-structure) is pseudofinite if and only if it is ele-
mentarily equivalent to an infinite ultraproduct of finite structures.

2.2 Pseudofinite fields

We summarise aspects of the beautiful structure theory of pseudofinite fields. This
originated with Ax in 1968, and is essential for understanding pseudofinite groups
which are simple as groups—see Theorem 3.1 below. For background on the model
theory of finite and pseudofinite fields see [15].

Theorem 2.3 [1] A field F is pseudofinite if and only if all of the following hold:

(i) F is perfect;
(ii) F is quasifinite (that is, inside a fixed algebraic closure, F has a unique extension

of each finite degree);
(iii) F is pseudo-algebraically closed (PAC), that is, every absolutely irreducible vari-

ety which is defined over F has an F-rational point.

It is easily seen that (i) and (ii) hold of all finite fields, and are first-order expressible
((ii) needs some work). (iii) is expressible by a conjunction of first-order sentences
(this is not completely obvious) each of which, by the Lang-Weil estimates, holds in
sufficiently large finite fields, and so each must hold of any pseudofinite field. The
striking fact is the converse, that any field satisfying all of these three conditions
satisfies every sentence true of all finite fields.

Ax also identified the complete theories of pseudofinite fields. If F is a field, then
Abs(F) denotes the intersection of F with the algebraic closure of its prime subfield.

Theorem 2.4 [1] If F1, F2 are pseudofinite fields, then F1 ≡ F2 (that is, they are
elementarily equivalent) if and only if F1, F2 have the same characteristic and
Abs(F1) ∼=Abs(F2).
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162 D. Macpherson

This, with further information in [1], was used by Kiefe [42] to prove a uniform
partial quantifier elimination in finite fields, and hence for the theory of pseudofinite
fields: any formulaφ(x̄) in the language L rings of rings is equivalent, modulo the theory
of finite fields, to a boolean combination of formulas of the form ∃yg(x̄, y) = 0, where
g(X̄ ,Y ) ∈ Z[X̄ ,Y ]. This can be converted into a model completeness result after the
language is expanded by constants (see [14]). It is also known (see [35, Corollary
3.1]) that any complete theory of pseudofinite fields has elimination of imaginaries
over constants naming an elementary submodel.

2.3 Basics of stability theory and generalisations

We will consider in this paper stable theories of pseudofinite groups, the orthogonal
generalisations simple and NIP of stable, and their common generalisation NTP2.
Here, we briefly introduce these model-theoretic concepts. There are many sources
on stability theory—see for example [63], or [75] for stable groups. For background
on simple theories see [13,76], or [43], and for NIP theories see [69]. An excellent
source of general background is [70].

Below, given a complete theory T , we let M̄ denote a ‘sufficiently saturated’ model
of T , with all parameter sets taken inside M̄ . We may take ‘sufficiently saturated’
as meaning ‘2ℵ0 -saturated’, that is, that any type over any subset of M̄ of size less
than 2ℵ0 is realised in M̄ . We use symbols A, B,C to denote subsets of M̄ which are
‘small’, that is, of smaller cardinality than the degree of saturation. We sometimes
consider the extension M̄eq of M̄ by adding all quotients of ∅-definable equivalence
relations on all powers of M̄ , and its corresponding theory T eq in the language Leq;
for details see [33, Section 4.3] or [70, Section 8.4].

Definition 2.5 Let T be a complete theory. A formula φ(x̄, ȳ) is unstable (for T )
if there are āi ∈ M̄ |x | and b̄i ∈ M̄ |y| (for all i ∈ ω) such that for any i, j ∈ ω,
M̄ |	 φ(āi , b̄ j ) if and only if i < j .

The theory T is stable if no formula is unstable for T .

Several other conditions are equivalent to stability. For example, for A ⊂ M̄ let
Sn(A) be the set of all n-types over A. Then T is λ-stable (for λ an infinite cardinal)
if for all A ⊂ M̄ with |A| ≤ λ we have |S1(A)| ≤ λ, and T is stable if and only if it
is λ-stable for some infinite λ. Following a standard abuse of notation we shall write
ω-stable rather than ℵ0-stable.

A theory T is stable if and only if there is an ‘independence relation’ A |�C
B (read

‘A is independent from B over C’), where A, B,C are small subsets of M̄ satisfying
a number of natural axioms (suggested by linear independence in vector spaces, or
algebraic independence in fields) such as symmetry: A |�C

B ⇔ B |�C
A.
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One of these axioms of independence is

local character: for any ā and B there is countable B0 ⊂ B such that ā |� B0
B (here

we assume the underlying language is countable). Another is

extension property + stationarity: if A ⊂ B ⊂ M̄ and A is algebraically closed in the
sense of T eq, and ā ∈ M̄ , then there is ā′ ∈ M̄ such that tp(ā/A) = tp(ā′/A) and
ā′ |� A

B, and (stationarity) tp(ā′/B) is uniquely determined by this data.
In a stable theory, the independence is given by non-forking (not defined here).

Definition 2.6 A formula φ(x̄, ȳ) has the tree property (with respect to T ) if for some
k ∈ ω the following hold: there are āη ∈ M̄ |ȳ| for all η ∈ <ωω such that for any
η ∈ <ωω the set {φ(x̄, āηi ) : i ∈ ω} is k-inconsistent (that is, any intersection of size
k is inconsistent), and for any σ ∈ ωω, the set {φ(x̄, āη) : η restricts σ } is consistent.

The theory T is simple if no formula has the tree property.

There is a characterisation of simplicity like the above one for stability, via an inde-
pendence relation |� , with the ‘stationarity’ axiom weakened to the ‘independence
theorem’, also called ‘type amalgamation’. Simplicity is a proper generalisation of
stability. Within the class of simple theories is that of supersimple theories, charac-
terised among simple theories by a strengthening of the local character condition on
|� : a simple theory T is supersimple if and only if, given any ā and B, there is finite
(as distinct from just countable) B0 ⊆ B such that ā |� B0

B. For supersimple theories,
there is a notion of ordinal-valued rank on definable sets (or types), known as SU-rank,
which we do not here define. For groups it is often easy to work with. Finite groups
have SU-rank 0, and if G has supersimple theory of finite SU-rank and H ≤ G is
definable, then SU(G) = SU(H) + SU(G/H), where G/H denotes the interpretable
set of left cosets of H in G.

Definition 2.7 A formula φ(x̄, ȳ) has the independence property (for T ) if there are
āi ∈ M̄ |x̄ | for each i ∈ ω such that for any S ⊂ ω there is b̄S ∈ M̄ |ȳ| with, for each
i ∈ ω, M̄ |	 φ(āi , b̄S) if and only if i ∈ S.

A complete theory T has the independence property if some formula has the inde-
pendence property for T .We say T isNIP if it does not have the independence property.
NIP theories are also called dependent theories.

Example 2.8 Examples of ω-stable theories include algebraically closed fields, and
(hence), for an algebraically closed field K , the K -rational points of an algebraic group
defined over K . Separably closed fields which are not algebraically closed are stable
but not ω-stable. Abelian groups (and more generally, modules, in the usual language
of modules over a fixed ring) are stable, as are free groups.

Any o-minimal structure is NIP but not stable, as is Qp, any non-trivially val-
ued algebraically closed field (in a language defining the valuation), and many other
henselian valued fields.

Pseudofinite fields have the independence property so are not stable—see [22]. For
example, if F is a pseudofinite field of odd characteristic, and φ(x, y) is the formula
∃z(z2 = x − y), then φ has the independence property. However, pseudofinite fields
have simple theory. In fact, they are supersimple of SU-rank 1. The well-known theory
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ACFA (the model companion of the theory of fields equipped with an automorphism)
has all its completions supersimple, of SU-rank ω; such a field is algebraically closed,
and the fixed field of the automorphism is pseudofinite. Groups such as PSLn(F)

(where F is a pseudofinite field and n > 1) will have supersimple finite rank theory,
but are unstable because they interpret the underlying field F .

Suppose that G is a group definable in an NIP theory T , and let φ(x, ȳ) be any
formula. By the Baldwin-Saxl Theorem ([2], see also [75]), there is nφ ∈ ω such
that any finite intersection of φ-definable subgroups of G (i.e. a subgroup of form⋂t

i=1 φ(G, āi ), where the φ(G, āi ) are subgroups of G) is an intersection of at most
nφ of them. If in addition T is stable, then (essentially because T cannot have the
‘strict order property’), this ensures that G has the descending chain condition on
intersections of φ-definable subgroups of G—there is a fixed bound on the lengths
of such chains. In particular, we may apply this to the formula φ(x, y) expressing
xy = yx . If T is NIP then there is nφ such that for any finite F ⊂ G there is F0 ⊂ F
with |F0| ≤ nφ such that CG(F) = CG(F0), and if in addition T is stable then any
chain of centralisers has bounded length.

Finally, a complete theory T is TP2 (has the tree property of the 2nd kind) if there
are {b̄i j : i, j < ω} in M̄ |	 T and k < ω such that

(i) the set {φ(x̄, b̄i j ) : j < ω} is k-inconsistent for each i < ω, and
(ii) for all ξ ∈ ωω, the set {φ(x̄, b̄i,ξ(i)) : i ∈ ω} is consistent.

The theory T is NTP2 if it is not TP2.

It is known (see [19]) that in the above definition, we may take |x̄ | = 1. Any
simple or NIP theory is NTP2. Examples of structures whose theory is NTP2 but
not simple or NIP include: non-principal ultraproducts (over p) of fields Qp, and the
universal homogeneous ordered graph. For groups, we have the following useful result
of Chernikov, Kaplan, and Simon.

Proposition 2.9 [20] Let T be NTP2, let G be a definable group in M |	 T , and let
(Hi )i∈ω be uniformly definable normal subgroups of G. Let H := ⋂

i∈ω Hi , and put
H�= j := ⋂

i∈ω\{ j} Hi . Then there is some i∗ ∈ ω such that |H�=i∗ : H | is finite.

3 Three theorems of Wilson

We consider first simple groups which are pseudofinite. We warn the reader that in
this paper we consider both simple groups (groups with no proper non-trivial normal
subgroups) and simple theories (complete theories for which no formula has the tree
property), and that the word ‘simple’ may have both meanings in the same sentence.
For background on groups of Lie type, including twisted groups, see for example
Carter [12]. The groups of Lie type are determined by a Dynkin diagram, and a field,
and (for the twisted groups) a symmetry of the Dynkin diagram.

Theorem 3.1 (Wilson [78]) A pseudofinite group G is simple if and only if G is a
simple group of Lie type (possibly twisted) over a pseudofinite field.
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Model theory of finite and pseudofinite groups 165

Remark 3.2 1. In [78] the statement is just that G is elementarily equivalent to such
a group of Lie type; the assertion as given uses also work of Ryten [67] discussed in
Section 4.1.

2. Ugurlu [73] has shown that one can replace ‘simple’ by ‘definably simple of finite
centraliser dimension’. Here, a group is definably simple if it has no proper non-trivial
definable normal subgroups. We say that G has centraliser dimension k if k is the
largest natural number such that there is a sequence

G = CG(x0) > CG(x0, x1) > · · · > CG(x0, . . . , xk) = Z(G),

and G has finite centraliser dimension if G has centraliser dimension k for some
natural number k.

The proof of the direction⇐ of Theorem 3.1 follows from the fact that finite simple
groups of fixed Lie type τ are boundedly simple: there is d = d(τ ) ∈ ω such that if G
is such a group and g, h ∈ G with h �= 1, then g is a product of at most d conjugates
of h and h−1. It uses the following result of Point [66].

Theorem 3.3 (Point) Let {G(qi ) : i ∈ I } be a family of finite simple groups of the
same Lie type (possibly twisted), and let U be a non-principal ultrafilter on ω. Then

�i∈ωG(qi )/U ∼= G(�i∈ωFqi /U).

For ⇒, Wilson first reduces to the case G ≡ �i∈ωSi/U (a non-principal ultraprod-
uct of finite simple groups Si ). This uses a very nice observation of Felgner, that there
is an Lgp-sentence σ which holds of every non-abelian simple group, and with the
property that any finite group G satisfying σ has non-abelian simple socle (the group
generated by the minimal normal subgroups of G). The sentence σ has form

∀x∀y[(x �= 1 ∧ CG(x, y) �= 1) →
⋂

g∈G
(CG(x, y)CG(CG(x, y)))g = 1].

Wilson then analyses the possibilities for the Si . It is easily seen that H =
�n≥5 Alt(n)/U is not simple, since finite alternating groups contain 3-cycles, and
elements of increasingly large support, when written as products of 3-cycles, require
increasingly many 3-cycles. The problem is that, naively, H might have an elementary
substructurewhich is a simple group. To eliminate such possibilities, it suffices to show
that, uniformly in n, Alt(n) has an ∅-definable conjugacy-invariant family of elements
of small support, and also such a family of increasingly large support, and elements of
the latter cannot be written as a uniformly bounded product of elements of the former.
Similar arguments work for groups elementarily equivalent to an ultraproduct of finite
simple groups of increasingly large Lie rank—that is, ultraproducts of groups Gi of
Lie type such that for each n, for almost all i the group Gi has Lie rank at least n.

We add a word about the twisted groups of Lie type. The groups of Lie type each
correspond to a Dynkin diagram. For twisted groups, such as 2E6(q), 2F4(q), etc., the
Dynkin diagram has a symmetry which yields a ‘graph automorphism’ of the corre-
sponding untwisted group, essentially an automorphismwhich arises by permuting the
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root groups. One takes a product σ of a graph automorphism and an appropriate ‘field
automorphism’ (arising from a power of the Frobenius). Then, roughly speaking, the
corresponding twisted group consists of the fixed points of σ acting on the untwisted
group (this description is not accurate—see [12, Chapter 13] for details.)

Next, we consider soluble groups.

Theorem 3.4 (Wilson [79]) There is an Lgp-sentence σ such that if G is a finite
group, then G |	 σ if and only if G is soluble.

The sentence σ asserts that there is no non-identity element g which is a product of
56 commutators [x, y] where each of x, y is a conjugate of g.

Regarding the proof of Theorem 3.4 for the given σ , for the direction ⇐, it is clear
that any soluble group satisfies this sentence σ—in fact, it satisfies the corresponding
sentence with 56 replaced by any natural number. For suppose that G is a group
satisfying the negation of the above sentence σ , witnessed by g ∈ G. Let N = 〈g〉G ,
the smallest normal subgroup of G containing g. Then g lies in the derived subgroup
N ′ of N , and hence N ′ = N , so N is perfect and so not soluble, and hence G is not
soluble. For the direction ⇒, Wilson uses Thompson’s classification in [71] of the
minimal finite simple groups, that is, the minimal finite groups which are not soluble.

Note that it is not true that a pseudofinite group is soluble if and only if it satisfies
σ . For if G is an ultraproduct of a family of finite groups of increasingly large derived
length then these groups satisfy σ so by Łos’s theorem G |	 σ , but clearly G is not
soluble.

Recall that the (soluble) radical R(G) of a group G is the subgroup generated by
the soluble normal subgroups of G. Always R(G) �G, and if G is finite then R(G) is
soluble.

Theorem 3.5 (Wilson [80]) There is an Lgp-formula ψ(x) such that if G is a finite
group then ψ(G) = R(G).

The following questions appear to be open.

Question 3.6 1. Is there an Lgp-sentence τ such that a finite group is nilpotent if and
only if it satisfies τ?

2. Is there an Lgp formula χ(x) which uniformly in finite groups defines the Fitting
subgroup Fitt(G) of a finite group G (the largest nilpotent normal subgroup of G)?

3. Is there an Lgp formula ρ(x)which uniformly in finite groups defines the Frattini
subgroup of a finite groupG (the intersection of the maximal proper subgroups of G)?

4 Stability and generalisations, simple pseudofinite groups

4.1 Simple pseudofinite groups

Recall that a difference field is a field equippedwith an automorphism, that is a structure
of the form (F, σ ) where F is a field and σ ∈ Aut(F). We view it as a structure in the
language of rings augmented by a unary function symbol interpreted by σ . The theory
ACFA mentioned earlier is an important model complete theory of difference fields.
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It follows fairly rapidly from the constructions of the groups ofLie type, as described
for example in [12], that the finite groups of Lie type are uniformly definable in the cor-
responding finite fields, or, in the cases of Suzuki and Ree groups, in the corresponding
difference fields. For the Suzuki and Ree groups this is noted in [36]. In fact, we have
the following. We say here that a class C of finite structures is uniformly definable
(interpretable) in a class D if there are cofinite C′ ⊆ C and D′ ⊆ D and a bijection
f : D′ → C′ such that for eachM ∈ D′, f (M) is definable (respectively, interpretable)
uniformly in M , i.e. always using the same formulas, but possibly allowing param-
eters. There is a corresponding notion of uniform parameter bi-interpretability—for
details see [67].

Theorem 4.1 (Ryten [67, Chapter 5]) (i) Any family of finite simple groups of any
fixed Lie type (other than Suzuki and Ree groups) is uniformly bi-interpretable (over
parameters) with the corresponding family of finite fields.

(ii) The Ree groups 2F4(22k+1) and the Suzuki groups 2B2(22k+1) are uniformly bi-
interpretable over parameters with the difference fields (F22k+1 , x �→ x2

k
), and the Ree

groups 2G2(32k+1) are uniformly bi-interpretable over parameters with (F32k+1 , x �→
x3

k
).

Care is needed with the twisted groups. For example the unitary group PSUn(q),
which lives naturally as a subgroup of PSLn(q2), is bi-interpretable (uniformly in
q) with the field Fq . It is a consequence of the main theorem of [14] that Fq is not
uniformly definable (even with parameters) in Fq2 . It follows that the groups PSUn(q)

are not uniformly interpretable with parameters in the fields Fq2 .
Extending remarks in Example 2.8, we have

Theorem 4.2 (1) (Easy consequence of [14].) Any pseudofinite field has supersimple
rank 1 theory.

(2) (From [36], resting on earlier work of Chatzidakis, Hrushovski and Peterzil (see
[16] and [17]). Let p be a prime, and let m, n ∈ ω with m ≥ 1, n > 1, and (m, n) = 1.
Let Cm,n,p be the class of finite difference fields of form (Fpkn+m ,Frobk) where k ∈ ω.
Then any non-principal ultraproduct of Cm,n,p has supersimple rank 1 theory.

In viewofTheorem4.1 (ii), this has particular interest for us in the cases (m, n, p) =
(1, 2, 2) and (m, n, p) = (1, 2, 3). It yields the following.

Corollary 4.3 (Hrushovski) Any simple pseudofinite group G has supersimple finite
rank theory.

Proof By Theorem 3.1, G is a Chevalley group (possibly twisted) over a pseudofinite
field. It follows from Theorem 4.1 that such a group is elementarily equivalent to one
interpretable in a pseudofinite field or an ultraproduct of a class C1,2,2 or C1,2,3. By
Theorem 4.2 such ultraproducts are supersimple of SU rank 1, and the result follows.

Remark 4.4 Theorem 4.1 was recently used by Nies and Tent [61] to show that
(1) finite simple groups are log-compressible, i.e., if G is a finite simple group,

there is a first-order sentence φ in the language Lgp, with unique model G, such that
φ has length O(log|G|), and more generally

(2) for any finite group G there is such a sentence φ of length O((log|G|)3).
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168 D. Macpherson

Remark 4.5 1. The theory of any non-principal ultraproduct�n∈NAltn /U is undecid-
able. The same holds for any non-principal ultraproduct �n∈NPSLn(q)/U . It seems
hard to find a good reference, but see e.g. Section 6.3 of [11], or (originally) Ershov
[26].

2. For any fixed n, the theory of all groups G such that for some prime power q,
PSLn(q) ≤ G ≤ P�Ln(q) is undecidable, and model-theoretically very wild. Here
P�Ln(q) is the extension of PGLn(q) obtained by adding ‘field automorphisms’ of
PGLn(q). The reason, combined with interpretability of the underlying fields in the
groups, is that the fixed field of a field automorphism is an arbitrary subfield of Fq and
the theory of pairs of finite fields is undecidable. This is essentially because, given a
pair of finite fields Fq1 < Fq2 where q2 is sufficiently much larger than q1, we can
uniformly define all subsets S of the smaller field Fq1 : there is a ∈ Fq2 such that for
x ∈ Fq1 , x − a is a square of Fq2 if and only if a ∈ S.

4.2 Generalised stability for pseudofinite groups

We aim here to give structural results for pseudofinite groups with stable, or more
generally simple, or NIP, or NTP2, theory.

Theorem 4.6 [55] (1) Let C be a class of finite groups such that all ultraproducts of
members of C are NIP. Then there is d ∈ ω such that |G : R(G)| ≤ d for each G ∈ C.

(2) If G is a pseudofinite NIP group with a fixed finite bound on the lengths of
centraliser chains then G has an ∅-definable soluble normal subgroup of finite index.

(3) Any pseudofinite group with stable theory has an ∅-definable soluble normal
subgroup of finite index.

Remark 4.7 1. In (2), the conclusion is false without some assumption like that on
centralisers. Indeed, we give an example (cf. Theorem 4.6(2)) of an NIP pseudofinite
group which is not soluble-by-finite. First, it is well-known that the p-adic field Qp,
viewed as a structure in the usual language of rings, has NIP theory (see e.g. [5]),
and that the full valuation structure (the value group (Z,<,+) and the value map
v : Qp → Z ∪ {∞}) is interpretable—for the latter see e.g. the end of Section 2.3 of
[74]. Let G = SL2(Zp), and for each k > 0 let Gk be the open normal subgroup of
G of form

Gk :=
{(

1 + a b
c 1 + d

)

: a, b, c, d ∈ pkZp

}

,

a congruence subgroup ofG. It is easy to see thatG is definable inQp , and furthermore
the groupsGk are uniformly definable as k varies; herewe use that k ranges through the
positive part of the value group, and that the condition a, b, c, d ∈ pkZp corresponds
to the condition Min{v(a), v(b), v(c), v(d)} ≥ k, so we may use k, or a field element
of value k, as a parameter. Thus the quotients G/Gk are uniformly interpretable finite
groups. Let U be a non-principal ultrafilter on ω, and put

G∗ := �k∈ω(G/Gk)/U .
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Then G∗ is an NIP pseudofinite group. By compactness and ω1-saturation of ultra-
products, it has a normal subgroup N such that G∗/N ∼= G. In particular, G∗ is not
soluble-by-finite.

2. Part (3) provides another route to the observation in the introduction that free
groups are not pseudofinite. For by Sela’s work they are known to be stable, and in
the free non-abelian case they are clearly not soluble-by-finite.

The proof of Theorem 4.6 makes essential use of Theorem 3.5.

Sketch Proof of Theorem 4.6 (1) Let G ∈ C. Let ψ(x) be as in Theorem 3.5. For
G ∈ C let Ḡ = G/R(G), and put S := Soc(Ḡ) (the direct product of the minimal
normal subgroups). Then S = T1×· · ·×Tk , where the Ti are non-abelian finite simple
groups. Observe that R(G) is uniformly definable by Theorem 3.5, so Ḡ is uniformly
interpretable in G.

Claim 1. There is a bound on k as G ranges through C. Indeed, for each i pick
xi ∈ Ti\Z(Ti ) and yi ∈ Ti with [xi , yi ] �= 1. For w ⊂ {1, . . . , k} put zw = � j /∈w y j .
Then [x j , zw] = 1 ⇔ j ∈ w. Hence, the NIP assumption forces a bound on k.

Claim 2. There is a bound on the Lie rank of any Ti (or on t if Ti = Altt ). This is
proved essentially as inClaim1, as otherwise some Ti contains increasingly large direct
powers of PSL2 or of Alt4, and the formula of Claim 1 again has the independence
property—note that it is quantifier-free.

Claim 3. The Ti have bounded size. If this was false, then groups G ∈ C would
contain arbitrarily large finite simple groups of fixed Lie rank (by Claims 1 and 2 and
the classification of finite simple groups) so some ultraproduct of the Ti would be a
simple pseudofinite group, and (e.g. by Theorem 4.1) would interpret a pseudofinite
field. But as noted inExample 2.8, pseudofinite fields do not haveNIP theory.However,
this contradicts the assumption in (1), as the groups Ti are themselves uniformly
definable—the latter is proved under aweaker assumption in the proof of Theorem4.15
below; it also follows easily from the fact that ultraproducts of finite simple groups of
fixed Lie type are simple, so there is e such that given non-identity g, h ∈ Ti , h is a
product of at most e conjugates of g and g−1.

By Claim 3, |S| is bounded, and it follows easily that |G : R(G)| is bounded.
(2) We may suppose that G = �Gi/U (an ultraproduct of finite groups), where

each non-principal ultraproduct of the Gi is elementarily equivalent to G. Thus by (1)
there is a finite bound on |Gi : R(Gi )|. By the assumption in (2), there is some e ∈ ω

such that every centraliser chain in G has length at most e, and hence the same holds
for any Gi . By a result of Kukhro [41], there is a function f such that each group
R(Gi ) has derived length at most f (e). Since being soluble of bounded derived length
is first-order expressible, it follows that the group {x ∈ G : G |	 ψ(x)} is a soluble
normal subgroup of G of finite index.

(3) This follows immediately from (2), as any stable group is NIP, and, by the
remarks after Example 2.8, has a fixed finite bound on descending chains of centralis-
ers. For a different proof see [54].

Example 4.8 [54, Section 5]
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(1) There is an ω-stable pseudofinite group G which is not nilpotent-by-finite. It has
form (C,+) � � for some infinite but ‘small’ � ≤ (C∗, ·). This is a conglomer-
ation of work of Chapuis, Simonetta, Khelif, and Zilber. The group has infinite
Morley rank—for Khelif has shown that any pseudofinite group of finite Morley
rank is abelian-by-finite.

(2) The ‘Mekler construction’ gives, for any odd prime p, examples of pseudofinite
ω-stable groups which are nilpotent of class 2 and exponent p but not abelian-
by-finite; see [54, Example 5.1]. (The argument at the end of [54, Example 5.1],
referring to ‘support’, is garbled, but is easily corrected, as pointed out by Nadja
Hempel.) For theMekler construction, see [33] or [57]. The idea is to code graphs
into nilpotent class 2 groups. Fix an odd prime p and given a graph � with vertex
set V , let G(�) be the group which is free nilpotent (on the generating set V )
subject to being of nilpotency class 2 and exponent p, and subject to the relations
[u, v] = 1 whenever vertices u, v are adjacent in �. Under reasonable conditions
on � (that it is a ‘nice graph’), properties such as stable and simple are transferred
from � to G(�) even though G(�) is not interpretable in � (for simplicity, see
[4, Theorem 5.1]). Chernikov (personal communication) has shown that if � is
NIP then G(�) is NIP, and it would be interesting to investigate which other
model-theoretic conditions are preserved by the construction.

Next, we discuss pseudofinite groups with simple theory. Here, note that the
examples (even supersimple of finite rank) include simple groups of Lie type over
pseudofinite fields (by Corollary 4.3) and also, for odd primes p, infinite extraspecial
p-groups of exponent p, that is, groups G of exponent p such that G ′ = Z(G) =
�(G) ∼= Cp, where �(G) is the Frattini subgroup of G. Extraspecial p-groups have
SU rank 1, and are finite-by-abelian but not abelian-by-finite. Extraspecial p-groups
are pseudofinite—in fact they are smoothly approximable in the sense of [18], so sat-
isfy any sentence true of cofinitely many finite extraspecial p-groups of exponent p.
They have infinite descending chains of centralisers, and do not have a smallest finite
index definable subgroup. For more detail see the Appendix of Milliet [59], or [53,
Proposition 3.11].

The following result shows that ultraproducts of finite extraspecial groups do not
have simple theory unless at least one of the prime and the rank (of the elementary
abelian group G/Z(G)) is bounded.

Proposition 4.9 For each p, n ∈ N
>0 with p prime, let G p,n be the extraspecial

p-group of order p2n+1, and let Ube an ultrafilter on the set of pairs (p, n) such that
for each d ∈ N there is U ∈ U such that for all (p, n) ∈ U we have p > d and n > d.
Let G := �p,nG p,n/U . Then Th(G) is not NTP2, so in particular is not simple.

Sketch Proof. Let Z := Z(G) and V = G/Z(G), an infinite abelian group. The
commutator map defines a non-degenerate bilinear map β : V × V → Z given by
β(uZ , vZ) = u−1v−1uv. Since this is definable in G, and since Z is the additive
reduct of a pseudofinite field K , it follows from Granger [30, Proposition 7.2.2] that
K is interpretable in G, as is the infinite-dimensional vector space structure of V over
K , and we may view β as a definable symplectic bilinear form on V .

It is easily seen that such a structure has TP2 theory. Indeed, let {ei : i ∈ ω} be
an infinite linearly independent subset of V with β(ei , e j ) = 0 for all i, j ∈ ω, and
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let {ai : i ∈ ω} ⊂ K . Then the formula β(v, x) = y is TP2. Indeed, for any i , the
formulas {β(v, ei ) = a j : j ∈ ω} are 2-inconsistent, but for any f : ω → ω the set
of formulas {β(v, ei ) = a f (i)} is consistent. (It was already noted in [30, Proposition
7.4.1] that such structures are not simple, and TP2 was also known.)

Consider a class C of finite groups with all ultraproducts of C having simple theory.
For G ∈ C, by Theorem 3.5 R(G) is uniformly ∅-definable, and Soc(G/R(G)) is a
product of boundedly many non-abelian finite simple groups of bounded Lie rank, by
variants of the proofs of Claims 1 and 2 above; see also Theorem 4.15 below.

Question 4.10 In this setting (a class C of finite groups such that all ultraproducts
have simple theory), must R(G) have bounded derived length, as G ranges through C?

If we here strengthen simplicity to supersimplicity, then the answer is positive.

Proposition 4.11 Let C be a class of finite groups such that all ultraproducts of C
have supersimple theory. Then there is d ∈ N such that R(G) has derived length at
most d for all G ∈ C.

The proof uses the following results ofMilliet, which significantly strengthen earlier
results in [24].

Theorem 4.12 [58] If G is a pseudofinite group with supersimple theory, then R(G)

is definable and soluble (and likewise, if we assume G has finite SU-rank, then the
Fitting subgroup Fitt(G) is definable and nilpotent).

Proof of Proposition 4.11 By Theorem 3.5 we may replace the groups in C by their
soluble radicals, so may suppose that they are all soluble. Suppose for a contradiction
that for every i ∈ N there is Gi ∈ C with derived length at least i . Let U be a non-
principal ultrafiliter onN, and putG∗ := �Gi/U . ThenG∗ has supersimple theory, so
to obtain a contradiction it suffices by Theorem 4.12 to find soluble normal subgroups
of G∗ of arbitrarily large derived length. This, however, is straightforward. For each
i , suppose Gi has derived length ni , so G

(ni )
i = 1. For each r < ni , let G

(ni−r)
i denote

the (ni − r)th term of the derived series of G (so a group of derived length r ), and
let G(ni−r)

i := 1 if r > ni . Then �i G
(ni−r)
i /U is a soluble normal subgroup of G∗ of

derived length r , giving the required contradiction.

Thus, ifG is pseudofinite with supersimple theory thenG has soluble radical R(G),
and if S = Soc(G/R(G)), then S = T1 × · · · × Tk where the Ti are non-abelian finite
or pseudofinite simple groups. If S̄ denotes the preimage of S in G then G/S̄ embeds
in Aut(T1 × · · · × Tk).

The next result gives some information on pseudofinite groups with supersimple
theory of small SU-rank. Note the currently essential use of the classification of finite
simple groups (CFSG) in (3)—it would be interesting to remove this.

Theorem 4.13 Let G be a pseudofinite group with supersimple theory, and assume
that T eq eliminates the quantifier ∃∞, where T = Th(G).

(1) [25] If SU (G) = 1 then G has a finite index definable characteristic subgroup N
such that N ′ is a finite subgroup of Z(N ) (so G is (finite-by-abelian)-by-finite).
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(2) [24] If SU (G) = 2 then G is soluble-by-finite.
(3) [24] (CFSG) If G is a simple group and SU (G) = 3 then G ∼= PSL2(K ) for

some pseudofinite field K .

Certain generalisations of these results to ‘super-rosy’ groups have recently been
proved by Wagner [77]. Parts (1) and (2) above are proved without the classification
of finite simple groups. It should also be possible to remove the assumption on the
quantifier ∃∞ here and also in Theorem 5.2 below. This assumption was natural in the
context of [24] where the central context was that of groups with measurable theory,
for which the assumption holds.

We turn now to the NTP2 condition in the context of finite and pseudofinite groups.
Here, we use the following consequence of the NTP2 condition.

Lemma 4.14 [56, Lemma 4.3] Let G be an ∅-definable group in a structure with
NTP2 theory, and ψ(x, ȳ) a formula implying x ∈ G. Then there is k = kψ ∈ N such
that the following holds. Suppose that H is a subgroup of G, π : H −→ �i∈J Ti is
an epimorphism to the Cartesian product of the groups Ti , and π j : H −→ Tj is
for each j ∈ J the composition of π with the canonical projection �i∈J Ti → Tj .
Suppose also that for each j ∈ J , there is a subgroup R̄ j ≤ G and group R j < Tj

with R̄ j ∩ H = π−1
j (R j ), such that finite intersections of the groups R̄ j are uniformly

definable by instances of ψ(x, ȳ). Then |J | ≤ k.

In the theorem below and its proof, we view Altn as having Lie rank n.

Theorem 4.15 Let C be a class of finite groups all of whose ultraproducts are NTP2.
Then there is d ∈ N such that the following hold, where G ∈ C and R(G) is the soluble
radical of G, with π : G → G/R(G) the natural map, and S := Soc(G/R(G)): the
group S is a direct product T1 × · · · × Tr of at most d non-abelian simple groups Ti
which are of order at most d or of Lie rank (possibly twisted) at most d, and R(G)

and the groups π−1(Ti ) are uniformly definable, using finitely many formulas φ(x, ȳ)
as G ranges through C.
Proof Using Wilson’s Theorem 3.5, we may suppose that R(G) = 1 for G ∈ C.
Claim 1. S is a direct product of a bounded number of simple groups.

Proof of Claim 1 Suppose that for each e ∈ N there is G ∈ C such that S = T1 ×
· · · × Tm for m ≥ e, where the Ti are non-abelian simple groups. By [47, Corollary
1.5] (together with the Feit-Thompson Theorem) there is a constant c that that if G
is a finite non-abelian simple group then every element of G is a product of exactly c
conjugate involutions. In particular, there is g = (g1, . . . , gm) ∈ S, where each gi has
order 2, such that every element of S is a product of c conjugates of g. Since S � G it
follows that S is uniformly definable in G.

Now, with g as above and I ⊆ {1, . . . ,m} let g(I )
j = g j if j ∈ I , and g(I )

j =
1 otherwise. Put g(I ) := (g(I )

1 , . . . , g(I )
m ). Let πI be the projection of S onto the

coordinates indexed by {1, . . . ,m}\I , and SI := Ker(πI ). Then the elements of SI
are exactly the products of at most c conjugates in S of g(I ), so as S is definable
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(uniformly as G varies) so are the S(I ). We may now apply the finitary version of
Lemma 4.14, putting H = S and R̄i := π−1

{i} for each i = {1, . . . ,m}, to conclude
that some ultraproduct of C has TP2 theory.

Given Claim 1, write S = T1 × · · · × Tr , where r ≤ d and the Ti are non-abelian
simple. It remains to prove

Claim 2. There is a bound on the Lie rank of the Ti .

Proof of Claim 2 Since the Ti are uniformly definable, it suffices to show that any
infinite ultraproduct of finite simple groups of increasingly large Lie rank has TP2
theory. We give a proof for alternating groups—the proof for classical groups of Lie
type is very similar and is only sketched here. So let U be an ultrafilter on N and
H := �n∈N Altn /U . We view Altn as acting on [n] := {1, . . . , n}. It is well-known
that the permutation group (Altn, [n]) is uniformly definable in the abstract group
Altn . Likewise, any J ⊂ [n], is uniformly (in n, J ) parameter-definable in Altn as a
set of form Fix(g) for appropriate g. Hence, subgroups of Altn of form (Altn)(J ) :=
{g ∈ Altn : g|J = id|J } are uniformly definable. Now for increasingly large m and
n >> m, pick disjoint subsets J1, . . . , Jm, K11, . . . , K1m, . . . , Km1, . . . , Kmm of [n]
of size m. For each i, j ∈ {1, . . . ,m} pick ai j ∈ Altn with J

ai j
i = Ki j . Also let

ψ(x, b̄i ) be a formula defining (Altn)(Ji ). Let φ(x, b̄i ai j ) be the formula expressing
that x lies in the coset (Altn)(Ji )ai j . Then for each i the formulas φ(x, b̄i ai j ) are 2-
inconsistent, and, essentially because of the disjointness of the Ji and Ki j , for any
f : {1, . . . ,m} → {1, . . . ,m}, the set φ(x, b̄i ai, f (i)) : 1 ≤ i ≤ m} is consistent. It
follows by compactness that C has a TP2 ultraproduct, a contradiction.

For the proof of Claim 2 when H is an ultraproduct of classical groups there
are several arguments, and we omit some details. Suppose for example that H is an
ultraproduct of groups of the form PSLni (qi ) where ni → ∞. By the argument in [3,
Proposition 3.11], there is a uniformly definable set C of pairs (g, g′) of transvections
in PSLn(q) such that each pair determines a point of projective space, and a uniformly
definable equivalence relation E onC such that (g, g′)E(h, h′) if and only if (g, g′) and
(h, h′) determine the same projective point. We may thus identify the corresponding
projective space with C/E , with G acting on it by conjugation. The argument then
continues as in the last paragraph. For the symplectic, orthogonal, and unitary groups
similar results in [3] can be applied.

Remark 4.16 1. It follows from Theorem 4.15 that if G is a pseudofinite group with
NTP2 theory then G has an ∅-definable normal subgroup R such that if Ḡ := G/R,
then Ḡ has a definable normal subgroup S (the group generated by the definable
minimal normal subgroups of Ḡ) which is a direct product of finitely many definable
finite or pseudofinite simple groups. We do not know if R must be soluble if G has
simple theory—cf. Question 4.10. Note by Remark 4.7 (1) that in general R need not
be soluble, even assuming that G has NIP theory.

2. An example of a class of finite groups with all ultraproducts NTP2 (but not
all simple or NIP) is the class of all groups SL2(Z/pnZ), where Z/pnZ is a prime
power residue ring. The reason, as in Remark 4.7 (1), is that such groups are uniformly
interpretable in the class of ringsZp where p ranges over primes, and by [19, Example
7.7], any ultraproduct of such rings has NTP2 theory.
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4.3 Applications of generalised stability

Wediscuss severalways inwhich themodel theory of pseudofinite groups has potential
applications in finite group theory, or at least provides a model-theoretic viewpoint.
There is overlap with Section 4 of [55] and Section 6 of [28].

1. Indecomposability. First, we mention a version of the well-known ‘Zilber Inde-
composability Theorem’ for groups of finite Morley rank, itself a generalisation of a
classical result on algebraic groups. The result is due to Wagner [76, 4.5.6], and the
formulation below is in [25, Remark 2.5].

Theorem 4.17 (Indecomposability Theorem) Let G be a group interpretable in a
supersimple finite SU-rank theory, and let {Xi : i ∈ I } be a collection of definable
subsets of G. Then there exists a definable subgroup H of G such that:

(i) H ≤ 〈Xi : i ∈ I 〉, and there are n ∈ N, ε1, . . . , εn ∈ {−1, 1}, and i1, . . . , in ∈ I ,
such that H ≤ X ε1

i1
. . . X εn

in
.

(ii) Xi/H is finite for each i ∈ I .

If the collection of Xi is setwise invariant under some group � of definable automor-
phisms of G, then H may be chosen to be �-invariant.

Theorem 4.18 [55, Theorem 4.2] Let Cτ be the family of finite simple groups of
fixed Lie type τ (possibly twisted), and let φ(x, ȳ) be an Lgp-formula. Then there is
d = d(φ, τ ) such that if G ∈ Cτ , ā ∈ G|ȳ|, and X = φ(G, ā) satisfies |X | > d, then
G is a product of at most d conjugates of X ∪ X−1.

There are analogues ofTheorem4.17 already in [37], for groups uniformly definable
in finite fields—see e.g. [37, Proposition 1.13].Various consequences are given there—
for example, in Proposition 4.3, a new proof of a result of Nori on subgroups ofGLn(p)
generated by elements of order p. A further application of such results is given by
Lubotzky in [50], in a proof of a result announced in [39]. Recall that, for 0 < ε ∈ R,
a finite k-regular graph � with vertex set V is called an ε-expander if for every A ⊂ V
with |A| ≤ 1

2 |V | we have |∂A| ≥ ε|A|, where ∂A is the set of vertices outside A
with a neighbour in A. Suzuki groups have also been shown to satisfy the theorem
below—see [10].

Theorem 4.19 [39] There is k ∈ N and 0 < ε ∈ R such that if G is a finite simple
group (not a Suzuki group), then G has a set of k generators for which the Cayley
graph Cay(G, S) is an ε-expander.

In the approach to this theorem in [50], a key step is the following result. As
explained in [50], it follows almost immediately from [37], or from Theorem 4.17.

Theorem 4.20 [50, Theorem 4.1] There is a function f : N → N such that if G is a
finite simple group of Lie type of rank r , but not of Suzuki type, then G is a product of
f (r) copies of SL2.

2. Asymptotic classes.
The following notion was introduced by Elwes in [23], extending a 1-dimensional
version explored in [53].
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Definition 4.21 Let C be a class of finite L-structures. Then C is an N-dimensional
asymptotic class if the following hold.

(i) For every L-formula φ(x̄, ȳ)where l(x̄) = n and l(ȳ) = m, there is a finite set of
pairs D ⊆ ({0, . . . , Nn}×R

>0)∪{(0, 0)} and for each (d, μ) ∈ D a collection�(d,μ)

of pairs of the form (M, ā) where M ∈ C and ā ∈ Mm , so that {�(d,μ) : (d, μ) ∈ D}
is a partition of {(M, ā) : M ∈ C, ā ∈ Mm}, and

∣
∣|φ(Mn, ā)| − μ|M | d

N
∣
∣ = o(|M | d

N )

as |M | → ∞ and (M, ā) ∈ �(d,μ).
(ii) Each �(d,μ) is ∅-definable, that is to say {ā ∈ Mm : (M, ā) ∈ �(d,μ)} is

uniformly ∅-definable across C.
The class of all finite fields is, by the main theorem of [14], a 1-dimensional asymp-

totic class in the sense of [53]. Likewise, by [67, Theorem 3.5.8] the classes C1,2,2 and
C1,2,3 of difference fields of form (F22k+1 , x �→ x2

k
) and (F32k+1 , x �→ x3

k
) respec-

tively are 1-dimensional asymptotic classes. Elwes showed that if C and C′ are families
of finite structures and f : C → C′ is a bijection such that for each M ∈ C, M and
f (M) are uniformly parameter-free bi-interpretable, then C is an asymptotic class if
and only if C′ is. With some additional work (because of use of parameters to interpret
the fields in the groups), this yields

Theorem 4.22 [67] Let Cτ be the class of all finite simple groups of fixed Lie type τ .
Then Cτ is an N-dimensional asymptotic class for some N (and the values of μ in the
definition are rational).

It is shown in [53] that if M is an ultraproduct of an N -dimensional asymptotic
class then Th(M) is supersimple of rank at most N . Furthermore, it is possible, using
the definability clause (ii) in Definition 4.21, consistently to assign a pair (d, μ) to
every definable set so that certain basic counting axioms are satisfied in M ; we say
that Th(M) is measurable. It follows from Theorem 4.22 and 3.1 that any simple
pseudofinite group has measurable theory in this sense. Measurability for groups is
discussed further in [40] (where measurable abelian groups are classified and shown
to be pseudofinite) and in [25,53] and [24], but not explored here.

We know that classes Cτ of finite simple groups of fixed Lie type are uniformly
definable in finite (difference) fields. In fact, much more is definable. The asymptotic
information in Theorem 4.22 should have applications through the following result
(see also Theorem 5.7 below). For the notion of restricted weight, see the discussion
above [48, Proposition 4.12].

Proposition 4.23 [48, Proposition 4.12] Let Cτ be a class of finite simple groups G(q)

of fixed Lie type τ , let FqG(q) denote the corresponding group ring, and let V (λ) be
an irreducible FqG(q)-module of restricted weight λ, with the action of G(q) on V (λ)

given by ρ(q) : G(q) × V (λ) → V (λ). Then the structures (G(q), Vλ(q), Fq , ρ(q))

are uniformly definable in the fields Fq or in corresponding difference fields.

The following result is proved in [64, Proposition 2.2], with the easy (ii) added in
[55, Theorem 4.7]. We do not give background on generic types for groups definable
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in simple theories, but refer to [76] or [64]. In (ii), G◦
M denotes the intersection of the

M-definable subgroups ofG of finite index, and SG(M) denotes the set of all complete
1-types over M which contain the formula x ∈ G.

Theorem 4.24 Let T be a simple theory over a countable language, M̄ an ω1-
saturated model of T with a countable elementary substructure M, and G an
∅-definable group in M̄. Let p1, p2, p3 be three principal generic types of G over
M.

(i) There are g1, g2 ∈ M̄ such that gi |	 pi for i = 1, 2, g1 and g2 are forking-
independent over M, and g1g2 |	 p3.

(ii) If r ∈ SG(M) has realisations in Go
M then there are ai ∈ G with ai |	 pi (for

i = 1, 2, 3) such that a1a2a3 |	 r .

Using the asymptotic information in Theorem 4.22, this easily yields the following.

Corollary 4.25 Let Cτ be as in Theorem 4.18, and let φi (x, ȳ) be formulas for i =
1, 2, 3. Then there is μ ∈ Q

>0 such that for any sufficiently large G ∈ Cτ and
ā1, ā2, ā3 ∈ G|ȳ|, if |φi (G, āi )| ≥ μ|G| for each i , then

φ1(G, ā1).φ2(G, ā2).φ3(G, ā3) = G.

The proof shows in addition that |φ1(G,ā1).φ2(G,ā2)|G| | → 1 as |G| → ∞. We remark
that the same result follows from Nikolov–Pyber [60], where it is rapidly derived
from the following result of Gowers (and the Nikolov–Pyber result is about arbitrary
sufficiently large subsets of G, not necessarily definable).

Proposition 4.26 ([29], see also [60]) Let G be a group of order n such that the
minimal degree of a nontrivial representation is k. If A, B,C are three subsets of G

such that |A|.|B|.|C | > n3
k , then there is (a, b, c) ∈ A × B × C such that ab = c.

In particular, if w(x1, . . . , xd) is a non-trivial group word, then w defines a map
Gd → G by evaluation, and we denote the image of w by w(G). For example, if
w(x1, x2) = x−1

1 x−1
2 x1x2 then w(G) is the set of commutators of G. Using a result of

Larsen [44] (with an earlier version due to Borel) which says that in simple algebraic
groups the word map is dominant, Corollary 4.25 yields

Theorem 4.27 Let w1, w2, w3 be non-trivial group words, and Cτ a family of finite
simple groups of fixed Lie type. Then w1(G)w2(G)w3(G) = G for sufficiently large
G ∈ Cτ .

Remark 4.28 1. There has been considerable recent literature on word maps, with
much stronger results proved. For example, by [45], if w1, w2 are non-trivial words,
and G is any sufficiently large finite simple group, then w1(G)w2(G) = G. For
finite quasisimple groups (groups G such that G = G ′ and G/Z(G) is non-abelian
simple) this does not hold in general, but for any three non-trivial words we have
w1(G)w2(G)w3(G) = G if G is sufficiently large relative to the wi—see [46]. The
famous Ore Conjecture states that if G is a non-abelian finite simple group then every
element of G is a commutator. This has now been proved—see [49].
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2. If w(x1, . . . , xd) is a group word, Theorem 4.22 can be applied, within a family
Cτ of finite simple groups, to the formula φ(x̄, y) of form w(x1, . . . , xd) = y, to give
uniformity on the asymptotic sizes of the preimages of the word map w : Gd → G
for G ∈ Cτ .

3.TowardsCFSG?Given that pseudofinite simple groups have supersimplefinite rank
theory, one might (ambitiously) hope to classify them, under the additional assump-
tion of supersimplicity,without using the classification of finite simple groups (CFSG).
More generally, one might hope, without CFSG, to describe infinite families of finite
simple groups all of whose ultraproducts are supersimple of finite rank. This is in
the spirit of the Cherlin-Zilber Algebraicity Conjecture, which asserts that any sim-
ple group of finite Morley rank is isomorphic to a simple algebraic group over an
algebraically closed field.

Parts (1) and (2) of Theorem 4.13 are in this spirit. One route in this direction
would be to classify, without CFSG, families of finite simple groups (with supersimple
ultraproducts) with a BN pair. In a major piece of work, Tits and Weiss [72] classified
‘Moufang’ generalised polygons. Dello Stritto [21] used this to show that each of the
parametrised families of finite Moufang generalised polygons is an asymptotic class.
This and further work of dello Stritto gives a description of all Moufang polygons
with supersimple theory of finite SU-rank. This should yield a description of groups
which have supersimple finite SU-rank theory and which have a definable spherical
Moufang BN pair of Tits rank at least 2.

5 Pseudofinite permutation groups

There are the beginnings of a structure theory of pseudofinite permutation groups, and
of the model theory of families of finite permutation groups, in part under additional
model-theoretic hypotheses. Recall that a permutation groupG on a set X (herewritten
(G, X)) is primitive if there is no proper non-trivial G-invariant equivalence relation
on X , and a definable permutation group is definably primitive if there is no proper non-
trivial definable G-invariant equivalence relation on X . For a transitive permutation
group G on X , primitivity is equivalent to each point stabiliser Gx (for x ∈ X ) being
maximal, and likewise definable primitivity is equivalent to point stabilisers being
‘definably maximal’. In finite permutation group theory, and to a lesser extent infinite
permutation group theory, primitive permutation groups act as building blocks for
all permutation groups, and many questions are reduced to problems on primitive
permutation groups. Mimicking a result from [52] in the finite Morley rank case,
Elwes and Ryten used Theorem 4.17 to prove the following.

Proposition 5.1 [25] Let (G, X) be a definably primitive permutation group definable
in a supersimple finite rank theory T such that T eq eliminates ∃∞, and suppose that
for x ∈ X the point stabiliser Gx is infinite. Then G is primitive on X.

In a fundamental result, Hrushovski [34] described possible definable transitive
group actions on a strongly minimal set in a stable theory. Our nearest analogue in
the pseudofinite case is the following, with the classification of finite simple groups
currently needed in the description of case (iii).
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Theorem 5.2 [24, Theorem 5.1] Let (G, X) be a definably primitive pseudofinite per-
mutation group in a supersimple finite rank theory which eliminates ∃∞, and suppose
that rk(X) = 1. Let S = Soc(G). Then one of the following holds.

(i) rk(G) = 1, and S is divisible torsion-free abelian or elementary abelian, has
finite index in G, and acts regularly on X.

(ii) rk(G) = 2. Here S is abelian so regular and identified with X. There is an
interpretable pseudofinite field F with additive group X, and G ≤ AGL1(F) (a
subgroup of finite index), in the natural action.

(iii) rk(G) = 3. There is an interpretable pseudofinite field F, S = PSL2(F),
PSL2(F) ≤ G ≤ P�L2(F), and X can be identified with PG1(F) in such a
way that the action of G on PG1(F) is the natural one.

We take the opportunity to fill a gap at the end of the proof of Theorem 5.2, pointed
out by Wagner. Right at the end of the proof of Lemma 5.15 of [24], at the end of
Sect. 5, it is asserted that |G : PSL2(F)| is finite (to ensure SU (G) = 3), and in
particular if B is a definable group of automorphisms of F then B is finite. The reason
given is that otherwise there would be b ∈ B such that Fix(b) is an infinite (definable)
subfield of F , contradicting that F has finite rank. This argument is not clear—a priori
all elements of B could have the same finite fixed field. However, it can be shown that
in such a case the orbits of B on F would be the classes of a definable equivalence
relation on F with infinitely many infinite classes, contradicting the assumption that
SU (F) = 1.

In [8] Borovik and Cherlin answer a question first raised in [9, Problem 1.6],
showing that there is a function f : N → N such that if (G, X) is a primitive
permutation group of finite Morley rank then RM(G) ≤ f (RM(X)), where RM
denotes Morley rank. The proof uses the O’Nan-Scott-Aschbacher analysis of [52],
and, remarkably, though there is no classification of simple groups of finite Morley
rank, uses many of the difficult tools developed with such a classification in mind.
There is an analogous result for definably primitive permutation groups in o-minimal
structures (where there is a classification of definably simple definable groups, due to
Peterzil, Pillay, and Starchenko) in [51]. In the pseudofinite case, we pose the following
question. It is also raised in [24], where Theorem 6.2 provides partial information, and
material in [48] should yield an answer.

Problem 5.3 Show that there is a function f : N → N such that if (G, X) is a
pseudofinite definably primitive definable permutation group in a supersimple theory
of finite SU-rank then SU (G) ≤ f (SU (X)).

Given the rich literature on finite primitive permutation groups, it is natural to
attempt to classify primitive pseudofinite permutation groups. This was tackled in
[48], with the main results from there sketched below. If G is transitive on X , then an
orbital graph of G on X is a graph with vertex set X and edge set some G-orbit on the
set of unordered 2-element subsets of X . The following useful criterion for primitivity,
due to D.G. Higman, is well-known.

Proposition 5.4 [32] Let G be a transitive permutation group on a set X. Then the
following are equivalent.
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(1) G is primitive on X,
(2) every orbital graph of (G, X) is connected.

The following is now an elementary exercise.

Proposition 5.5 [48] Let (G, X) be an ω-saturated transitive pseudofinite permuta-
tion group. Then the following are equivalent.

(1) (G, X) is primitive.
(2) If x ∈ X then Gx is boundedly maximal in G, that is, there is d ∈ N such that if

g, h ∈ G\Gx then there are x1, . . . , xd+1 ∈ Gx and ε1, . . . , εd ∈ {±1} such that
h = x1gε1x2 . . . xdgεd xd+1.

(3) There is e ∈ N such that each orbital graph of (G, X) is connected of diameter
at most e.

The following question was raised in [48].

Question 5.6 Is there a primitive pseudofinite permutation group with infinite point
stabiliser such that there is no finite bound on the diameters of the orbital graphs? By
the last theorem, such a structure will not be ω-saturated.

In [48] a description, close to a full classification, is given of primitive ω-saturated
pseudofinite permutation groups. It is involved, and we omit the details.

A key ingredient in [48] is to consider pairs (G, H) where G is a finite simple
group of Lie type and H is a maximal (proper) subgroup of G (named by a unary
predicate). This is equivalent to considering the group G together with a definable
primitive action of G on a set X , namely the set of left cosets of H in G. If G = G(q)

is a simple group of Lie type and q = (q ′)r , then a subfield subgroup of G is one of
the form G(q ′) (so of the same Lie type), embedded naturally. Such subgroups can be
maximal if r is prime.

Theorem 5.7 [48] Let τ be a fixed Lie type, and let Cτ,d be the set of pairs (G, H)

where G is a finite simple group of Lie type τ , H is a maximal subgroup of G, and if
H is a subfield subgroup then the corresponding field extension has degree at most d.
Then

(1) the class Cτ,d is uniformly definable in the corresponding family of fields or
difference fields, that is, there are finitely many tuples of formulas which serve
(with suitable choice of parameters) to define all such pairs;

(2) any non-principal ultraproduct of such a family Cτ,d will be a pair (G∗, H∗) with
supersimple finite rank theory, such that H∗ is maximal in G∗.

This theorem was mis-stated in [48, Corollary 4.11], for the subgroups PSU(n, q)

are maximal but not uniformly definable in PSL(n, q2)—see the comments after The-
orem 4.1 above. The pair (G, H) is uniformly definable in the (difference) field, but
not, in a few special cases such as this, in the larger group G.

The last assertion in (2) above (maximality of H∗ inG∗) follows from the remaining
assertions, together with an argument using Theorem 4.17. This was used in [48] to
give a description of all ω-saturated pseudofinite primitive permutation groups, that
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is ω-saturated pseudofinite pairs (G, H) with H a maximal subgroup of G which is
core-free, that is, satisfies

⋂
g∈G Hg = {1}. Essentially, this is equivalent to describing

families Fd of finite primitive permutation groups G on sets X such that, for every
orbit E of G on the set X [2] of unordered 2-subsets of X , the graph on X with edge
set E is connected of diameter at most d.

6 Further directions

The following well-known question, raised by Sabbagh, has been open for a long time.

Question 6.1 Is there a finitely generated pseudofinite group?

For some discussion of this question, see Section 3 of [62] (for example Proposi-
tion 3.9). The latter paper has a number of interesting results on pseudofinite groups
somewhat disjoint to this survey, such as the following analogue of the Tits Alternative.

Theorem 6.2 [62, Theorem 4.1] Let G be an ω-saturated pseudofinite group. Then
either G contains a free subsemigroup of rank 2, or G is nilpotent-by-(uniformly
locally finite).

Motivated by foundational questions in physics, Zilber [81] has asked the following
question. See also [65] for a discussion of related topics on pseudofinite groups.

Question 6.3 (Zilber) Can an ultraproduct of finite groups have SO3(R) (or any com-
pact simple real Lie group) as a quotient? More generally, it would be interesting
to identify positive sentences of Lgp which hold of all finite groups but not of all
groups. Here a sentence is positive if it is equivalent to one in prenex normal form
with only the propositional connectives ∧ and ∨; such sentences are preserved by
group homomorphisms.

The following theorem answers a question raised in conversation by G. Levitt. The
author recently discovered that the same result was proved much earlier by Felgner
[27, Section 3]. Felgner observed that the finitely generated infinite simple group G
constructed by Higman [31] in 1951, with presentation

G = 〈a, b, c, d : ab = a2, bc = b2, cd = c2, da = d2〉

does not embed in any pseudofinite group; for, as follows from Higman’s paper, a
pseudofinite group cannot satisfy the sentence

∃x∃y∃z∃w(x �= 1 ∧ x y = x2 ∧ yz = y2 ∧ zw = z2 ∧ wx = w2).

Theorem 6.4 (i) Let S be the group of all permutations of a countably infinite set X.
Then S does not embed in any pseudofinite group.

(ii) There is a finitely generated group which does not embed in any pseudofinite
group.
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Proof (i) Let σ be the sentence

∃ f ∃g∃h([ f 2, g] = 1 ∧ [ f, g] �= 1 ∧ h−1 f h = f 2).

Suppose G |	 σ , with witnesses f, g, h. Then CG( f 2) > CG( f ) and h−1CG( f )h =
CG( f 2). Hence h has infinite order, so G is infinite. Thus, if H is a finite group, then
H |	 ¬σ , so every pseudofinite group satisfies ¬σ . As ¬σ is universal, every group
which embeds in a pseudofinite group satisfies ¬σ .

However, we claim that S = Sym(X) |	 σ , where X is a countably infinite set.
Indeed, write X = ⋃

i∈ω Xi as a disjoint union of infinite co-infinite subsets of X . For
each i put Xi := {xi j : j ∈ Z}. Let f act on X by putting f (xi j ) = xi, j+1 for each
i, j . Since f and f 2 have the same cycle type (infinitely many infinite cycles and no
other cycles) they are conjugate, that is, there is h ∈ S with h−1 f h = f 2. Let g be
the element of S such that xg0,2i = x0,2i+2, with g fixing all other elements of X . Then

g ∈ CG( f 2)\CG( f ), as required.
(ii) The finitely generated subgroup 〈 f, g, h〉 of S also satisfies σ , so does not embed

in any pseudofinite group.

Remark 6.5 1. If G is a locally finite group then G embeds in some pseudofinite
group. Indeed, we may suppose G is infinite. Let � be the atomic diagram of G, and
T be the theory of finite groups. Then clearly T ∪ � is consistent, and any model of
it is an infinite pseudofinite group which embeds G. This is a special case of a result
of Malcev that if G is a group then G embeds in some ultraproduct of the finitely
generated subgroups of G.

2. Felgner [27] asks whether one can characterise groups which embed in some
pseudofinite group, and in particular whether every torsion group embeds in some
pseudofinite group. As he notes, the answer to this is positive precisely if every uni-
versal sentence in the language Lgp of groups which holds in all finite groups also
holds in all torsion groups. The latter was posed as a question by Huber-Dyson [38].

Finally, in [6], Bello Aguirre has begun an investigation into pseudofinite rings,
by giving the following complete description of the generalised stability properties of
pseudofinite residue rings. Similar results, but from a different viewpoint (quotients of
prime ideals in non-standard elementary extensions of (Z,+,×)) have been obtained
by D’Aquino and Macintyre.

Theorem 6.6 [6] Let U be a non-principal ultrafilter on N and F be the ring
�n∈N(Z/nZ)/U . Then exactly one of the following holds, where T = Th(F).

(1) T is NIP and there is a finite set S of primes and someU ∈ U such that for n ∈ U,
every prime divisor of n lies in S.

(2) T is supersimple of finite rank, and there is d ∈ N and U ∈ U such that each
n ∈ U is a product of at most d prime powers, each with exponent at most d.

(3) T is NTP2 but not simple or NIP, and there is U ∈ U and d ∈ N such that each
n ∈ U has at most d prime divisors, but the conditions in (1) and (2) do not hold.

(4) T is TP2, and for every d ∈ N there is U = Ud ∈ U such that each n ∈ U has at
least d distinct prime divisors.
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The proof uses somemodel theory of p-adically closed fields and of their ultraprod-
ucts. A key point in (2) is that Z/pdZ is, for fixed d, uniformly (in p) coordinatised
by Z/pZ. The proof of the TP2 condition in (4) uses Proposition 2.9. The arguments
in case (2) have more recently been extended by Bello Aguirre in [7] to prove the
following.

Theorem 6.7 Let d ∈ N
>0. Then the collection of all residue rings Z/pdZ forms a

d-dimensional asymptotic class.

Bello Aguirre also investigates in [7] the structure of pseudofinite rings in general,
and gives a rapid proof of the following analogue ofWilson’s Theorem 3.1. Here a ring
is simple if it has no proper non-trivial two-sided ideal, and for any field F , Mn(F)

denotes the ring of all n × n matrices over F .

Theorem 6.8 Let R be a simple pseudofinite ring. Then R ∼= Mn(F) for some pseud-
ofinite field F and some positive integer n.
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