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 10 

Food production and consumption cause approximately one third of total greenhouse 11 

gas emissions1-3, and therefore delivering food security challenges not only the capacity 12 

of our agricultural system but also its environmental sustainability4-7. Knowing where 13 

and at what level environmental impacts occur within particular food supply chains is 14 

necessary if farmers, agri-food industries and consumers are to share responsibility to 15 

mitigate these impacts7,8.  Here we present the analysis of a complete supply chain for a 16 

staple of the global diet – a loaf of bread. We obtained primary data for all the processes 17 

involved in the farming, production and transport systems leading to the manufacture 18 

of a particular brand of 800g loaf. The data were analysed using an advanced life-cycle 19 

assessment tool9, yielding metrics of environmental impact, including greenhouse gas 20 

emissions. We show that over half the environmental impact of producing the loaf of 21 

bread arises directly from wheat cultivation, the use of ammonium nitrate fertiliser 22 

alone accounting for around 40%. These findings reveal the dependency of bread 23 

production upon the unsustainable use of fertiliser and illustrate the detail needed if the 24 
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actors in the supply chain are to assume shared responsibility for achieving sustainable 1 

food production.  2 

 3 

A projected human population of 10 billion10 and an increasing consumption of food 4 

that has high environmental impact associated with economic development11 are placing 5 

massive strain on the global agri-food system.  Meeting the challenge of achieving 6 

sustainable food security requires consideration of all the key aspects of food production and 7 

consumption, taking a holistic agri-food ecosystem approach that includes land and resource 8 

use, crop production, consumer behaviour and human health7. Moreover, in order to 9 

materialise a condition in which collective action and shared responsibility occurs within 10 

fragmented food supply chains, an integrating framework that involves the mapping, analysis, 11 

visualisation and sharing is needed7.  Integration can be enabled through supply chain 12 

sustainability research, which yields total visibility of the entire supply chain9,12,13.  To realise 13 

this ambition, a natural resource driven business experiment involving a mixed methods 14 

approach of quantitative analytical modelling and qualitative contextualisation was deployed 15 

to develop a detailed case study of environmental impact in the manufacture of a specific 16 

food-stuff – a loaf of whole grain bread.  This involved Life Cycle Assessment (LCA) at each 17 

stage of the supply chain for the loaf of bread.  18 

 It is well known that the more precise are the sources of data for an LCA model, the 19 

more accurate are the results from the LCA modelling. Most of the existing LCA research 20 

relies on both primary and secondary data, the latter used to compensate for the unavailability 21 

of primary data. Consequently, an artificial level of uncertainty in the data averages out the 22 

variation hence making the environmental impact from a modelled supply chain a proxy and 23 

an estimate, as in all previous LCA of the wheat-bread supply chain14-17, where primary data 24 

might be used for one process stage but secondary data for others (e.g. ref. 17). To address 25 
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this deficiency, and in contrast to all previous studies, we utilised primary data at all stages of 1 

the linked Cradle to Gate UK bread manufacturing life cycle, with 90% of the process stages 2 

modelled on the basis of  primary data. This was enabled by collaboration with a commercial 3 

bread and flour producer and a large agronomy services provider. The higher level of 4 

granularity achieved in this way increases the confidence level of the results and therefore the 5 

certainty and validity of the conclusions upon which action is based.   6 

Three supply chain stages were considered (Figure 1): wheat cultivation which 7 

includes ground preparation, sowing the wheat seed, application of agrochemicals,  8 

harvesting of the wheat grain, drying, storage and finally transportation to the mill; milling, 9 

which includes the transformation of cultivated wheat grain into wholemeal flour, through 10 

intake, cleaning, milling and out-loading processes, prior to transportation to the bakery; and 11 

baking, which comprises all the remaining processes leading to the final, packaged loaf of 12 

wholemeal bread. Primary data for material and energy flow was collected for the designated 13 

14 processes at these three stages of the supply chain, calibrated to a functional unit, a single 14 

wholegrain loaf of bread, weighing 800 g (Supplementary Data Figs.1-3).  Each loaf required 15 

cultivation of 7.2E-05 hectares or 0.72 m2 of land.   This produced 688 g of grain, using a 16 

number of fertiliser inputs: 42.0 g of granular ammonium nitrate (580 kg/hectare), 11 g of 17 

triple superphosphate (152 g/hectare), 6 g muriate/sulphate of potassium (83 kg/hectare) and 18 

3 mL of liquid ammonium nitrate (42 L/hectare, applied just prior to harvest to maximise 19 

protein content of the grain). Upon transfer to the mill there are two key output streams. 20 

Firstly, a small proportion of the grain (about 3%) is rejected upon delivery if it fails to meet 21 

strict quality standards concerning excess moisture, the presence of foreign bodies or 22 

contamination. Secondly, around 22% of wheat grain is lost during the extraction process; 23 

this loss accounts for the difference between in mass between raw, dirty wheat and flour 24 

leaving, after excess moisture and non-millable impurities are removed. During milling a 25 
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total of 520 g of flour is produced in processes consuming approx. 0.07kWh electricity. 1 

Before baking a number of ingredients, including 365 g of water and 13 g of sugar, were 2 

added to the flour to give a mass of 950 g.  A further 5.8 % loss of solid flour due to sub 3 

optimal quality reduced this mass to 898 g, whilst the final preparation and the baking 4 

process resulted in 3.5 g of flour loss and reduction in mass to 807 g through water 5 

evaporation.  0.09 kWh of electricity was consumed at the bakery.   6 

The raw data were analysed using the Supply Chain Environmental Analysis Tool’s 7 

(SCEnAT) Life Cycle Assessment (LCA) methodology9. To provide a broad assessment of 8 

environmental impact on air, water and land, six contrasting impact categories were selected 9 

for analysis – these are expressed as “potential” impacts. Thus, for example, emission of 10 

greenhouse gases is quantified as global warming potential (GWP), the eutrophication 11 

potential (EP) is a measure of pollution of water courses and human toxicity potential (HTP) 12 

quantifies the potential human health problems caused by release of toxic substances into the 13 

environment.   14 

GWP data calculated for each supply chain process are shown in supplementary data, 15 

figures 3-6.  GWP from the whole supply chain was found to be 0.589 kg CO2-eq per loaf of 16 

bread, and it is clear immediately that wheat cultivation is the major source -  this supply 17 

chain stage totalling 0.388 kg CO2-eq, with the growth and protection process stages (mostly 18 

fertiliser) alone accounting for  0.281 kg CO2- eq.  Milling added a further 0.028 kg CO2- eq.  19 

and the bakery stage 0.173 kg CO2- eq.   20 

Impacts from each process in the supply chain were added together to give their 21 

cumulative environmental impacts, expressed as a percentage of the total in Figure 2.  All the 22 

processes involved in cultivation of wheat account for 65.8 % of the total GWP, which is 23 

within the range of previous analyses using secondary datasets14-16.  Similarly, wheat 24 

cultivation was the principle cause of the other environmental impacts: 68.5 % EP, and 77.9 25 
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% HTP. Fertiliser used to promote growth of the wheat crop was found to be the largest 1 

single process contributing to environmental impact metrics (red bar in Fig. 2), for example 2 

accounting for 47.8 % GWP, 38.5% EP and 41.9 % HTP.  3 

Other processes involved in cultivation had significant, though lesser impacts.  The 4 

use of farm machinary in preparation of land accounts for 5.2 % of total GWP. Grain drying 5 

is another significant cultivation hotspot; farmers are normally contracted to deliver wheat 6 

grain for storage with a water content of lower than 15% in order to pass the weight and 7 

pricing thresholds expected by the buyers. In our study, electric continuous flow grain dryers 8 

were used to reduce water content.  Grain drying, storage and transport to the mill together 9 

account for 8.7 % of GWP, 6.5 % of EP and 7.6 % of HTP respectively.  10 

Baking, ingredients handling and cleaning/milling were found to be significant GWP 11 

hotspots, accounting for 9.7, 9.1 and 4.4 % respectively. Energy is the key contributor to 12 

GWP in milling and baking processes. In particular, gas usage during baking accounted for 13 

7.9 % of overall GWP. Similarly, electricity usage during cleaning/ milling, mixing/ divide/ 14 

first proof, baking and de-pan/ cooling stages were identified as significant hotspots, 15 

contributing 4.2 %, 1.6 %, 1.8 % and 2.2 % to overall GWP  respectively.  These processes 16 

contribute to ET and HTP to similar extents. 17 

The upstream supply chains of various ingredients added to flour to form bread dough 18 

during the ingredients handling stage of baking also contributed to GWP, the most significant 19 

being wheat gluten, sodium stearoyl lactylate, fermented wheat flour and sugar which 20 

accounted for 2.6 %, 1.5 %, 1.5 % and 1.1 % respectively. The switch to the use of Low 21 

Density Polyethylene (LDPE) wrapping has reduced the environmental burden of bread 22 

packaging, as compared to more traditional plastic packaging types.  However, packaging is 23 

still a notable contributor to GWP (3.1 %). 24 
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This study highlights the contribution of fertiliser to the environmental impact of 1 

bread production.  Remarkably, the use of ammonium nitrate fertiliser alone accounts for 2 

most of this, 0.256 kg CO2-eq, 43.4 % of overall GWP (Figure 3). Similarly 34.1 % of EP 3 

and 32.5% of HP are due to ammonium nitrate. This value of GWP measures the CO2 4 

emissions associated with the manufacture and application of the fertiliser and N2O released 5 

into the atmosphere from the on-farm degradation of ammonium nitrate by soil microbes. 6 

The exact amount of GWP from N20 release depends of a variety factors and its 7 

estimation is the subject of some controversy18.  Previous studies with maize19 and wheat20 8 

have estimated it to be of similar proportions to the GWP arising from energy use during 9 

manufacture. We calculated 0.083 kg CO2e per loaf arising from N2O emissions (see 10 

supplementary data Figure 4), approx. 1/3 of the total.  The other environmental impacts of 11 

the use of this fertiliser have been described21, eutrophication of water courses in particular.  12 

Their quantitative significance in the wheat-to-bread supply chain is made clear in our study. 13 

  Nitrogen use efficiency (NUE) of wheat yield, defined as the ratio of harvested 14 

nitrogen to that applied to the field ultimately determines the environmental impact of 15 

nitrogen fertiliser. In our study NUE was estimated to be 71%, in line with that predicted for 16 

the 246 kg N/hectare fertiliser application used22, which is slightly above the UK average, 17 

and typical of intensified production.  Studies show that whilst wheat yield increases with 18 

higher applications of fertiliser, NUE declines22.  However, without such intensive 19 

fertilisation, there is lower yield, and a small but important reduction in the protein content of 20 

the grain. Consequently, the cost of a staple food item made from UK wheat could rise.  21 

Alternatively, in a global wheat market, the environmental impact of fertiliser use could be 22 

exported via the import of cheaper grain from other countries.  Clearly neither of these 23 

scenarios are desirable – instead new solutions are needed23.  These solutions can take place 24 
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at different parts of the extended supply chain, from fertiliser manufacture to bread 1 

consumption.  2 

More energy efficient methods of synthesising ammonium nitrate fertiliser would be 3 

beneficial (but presently seem unlikely), as would be a shift towards carbon neutral energy 4 

supply.  But the most immediate solutions to the fertiliser problem mostly reside in increasing 5 

NUE whilst maintaining high yield21, through a combination of improved agronomic practice 6 

and improved crop plant physiology.  To reduce on-farm fertiliser use, there needs to be a 7 

move away from blanket fertiliser application towards area-specific and temporal-specific 8 

application of fertiliser23, acknowledging the soil variation across different parts of the crop 9 

field and the differing physiological requirements for nitrogen at different stages of crop 10 

growth.  More radical is a shift away from chemical fertiliser altogether towards a biological 11 

approach to nitrogen fertilisation, such as crop rotations with nitrogen-fixing legumes24 and 12 

restoration of the soil microbe/plant root interactions that promote plant growth25. In fact, 13 

judicious use of fertiliser incorporated into a series of such modified agronomic practice 14 

drastically reduced GWP of wheat cultivation in Canada20.  Development of new wheat 15 

varieties with an increased intrinsic NUE could also make a significant contribution, although 16 

there are significant challenges to achieving this goal26 – either an increased ability to take up 17 

nitrogen from the soil27 or an altered physiology which allows more biomass accumulation 18 

per unit of taken-up nitrogen28 and allocation of more biomass N to the grain29.  Biological 19 

nitrogen fixation by the wheat plant itself remains an important, if elusive goal30.  One 20 

possible consequence of maintaining wheat yield whilst reducing or eliminating fertiliser use 21 

could be a reduction in the protein content of the wheat grain. At present, the protein content 22 

of wheat grain used in flour production forms a key aspect of the commercial contract. For 23 

UK bread-making, a high protein content of 11-13g/100g is required, a higher amount needed 24 

for wholemeal loaves (which account for approx. 10% of the UK market) compared to white 25 
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loaves (80% UK market). The wheat grain protein requirement for wholemeal bread in the 1 

current study is 13g/100g. An important part of the solution to the fertiliser problem could be 2 

a change in bread-making technology to accommodate grain with lower protein content31.  3 

Much research takes a generic approach to identifying the interventions needed to 4 

deliver sustainable food security.  Extending beyond this, our study points to the increased 5 

granularity of the information that is required to make accurately informed decisions about 6 

individual food supply chains.  As argued previously this information has to be integrated and 7 

applied across the entire supply chain7 – otherwise time, effort and resources will be wasted 8 

implementing changes of little overall significance whilst ignoring the real problem, in this 9 

case study, the use of fertiliser.  So, having identified the problem, responsibility for 10 

implementing any or all of the above solutions must be designated.  According to the 11 

principles of extended producer responsibility, all the actors in the supply chain have to share 12 

responsibility8.  Similarly such responsibility must be extended to the consumer. Thus 13 

although the fertiliser manufacturer may bear the biggest responsibility, actions have to be 14 

co-ordinated across the wheat-bread supply chain, between the fertiliser manufacturer, the 15 

farmer, the mill, the bakery, the retailer and the consumer.  This new direction is feasible due 16 

to increasingly advanced data capture and sensor technology where LCA will be a norm for 17 

all decision making across the supply chains. 18 

The dependency of delivering high yields of high protein bread wheat upon 19 

unsustainable amounts of fertiliser exposes an unresolved grand challenge for the 21st 20 

century: how to produce more food but with lower pollution32.  Our findings bring into focus 21 

a key part of this challenge – resolving the major conflict embedded in the agri-food system, 22 

whose primary purpose is to make money not to provide sustainable global food security33. 23 

High agricultural productivity, necessary for profit for farmers, agri-businesses and food 24 

retailers, whilst also keeping prices low for consumers, currently requires high levels of 25 
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application of relatively cheap (and often subsidised) fertilisers.  The environmental impact 1 

of fertiliser use is not costed within the system and thus, there are currently no effective 2 

incentives to implement of any of the solutions described above32.  3 

 4 

Methods 5 

Data collection. A Life Cycle Assessment (LCA) methodological approach was used to 6 

evaluate the environmental impact of commercial bread production in the UK, using 100% 7 

group 1 and 2 domestic milling wheat. The functional unit is defined as a single wholegrain 8 

loaf of bread, weighing a total of 800g and the scope of the study is from cradle (farm) to gate 9 

(shipping of the final, packaged loaf of bread to a retailer). All agricultural and production 10 

stages are based in the UK and data is representative of the 2014 wheat harvest and 11 

production period. The supply chain was segmented into three distinct stages, cultivation, 12 

milling and baking. Primary data was collected at each of these stages, with a leading UK 13 

commercial bread manufacturer providing access to milling and bakery datasets and a large 14 

agronomy organisation providing access to farm level data, using the example of a farm 15 

producing UK group 1 and 2 milling wheat at 9.5t/ha.  Data collection was undertaken 16 

through both field interviews and analysis of organisational datasets, which in combination 17 

provided researchers with a detailed understanding of energy and material flows through each 18 

of the defined three model stages. For mill and bakery stages, data was obtained for two 19 

specific sites that represented an average energy and material consumption balance for the 20 

partner’s annual production; these were in Bradford and Manchester respectively. At a farm 21 

level, material, machinery and energy data, provided in collaboration with a large agronomy 22 

organisation, has been modelled from an upper quartile farm in terms of yield and 23 

agricultural efficiency.   24 
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Environmental Impact Categories. Life Cycle Inventory (LCI) data for all identified 1 

material and flows was sourced from the Ecoinvent database (v3.2)34. The Ecoinvent 2 

database provides well-documented LCI process data for a large number of materials and 3 

products covering relevant environmental flows, such as resource extraction, land use and 4 

emissions, as well as all material and energy inputs and products of an activity. To provide a 5 

broad assessment of the environmental impact that UK commercial bread production has to 6 

air, water and land, six impact categories were selected for analysis from the CML (2001) 7 

categorisation model available in Ecoinvent, produced by the Institute of Environmental 8 

Sciences at Leiden University, NL35. These are; Acidification Potential (kg SO2-Eq – Eur 9 

Average), Climate Change (kg CO2-Eq – GWP 100a) and Eutrophication Potential (kg NOx-10 

Eq – Eur Average). The various toxicity indicators use the reference unit, kg 1,4-11 

dichlorobenzene equivalent (1,4-DCB) and are: Freshwater Aquatic Eco-Toxicity (kg 1,4-12 

DCB-Eq – FAETP 100a), Freshwater Sediment Toxicity (kg 1,4-DCB-Eq – FSTP 100a) and 13 

Human Toxicity (kg 1,4-DCB-Eq – HTP100a).    14 

Data Analysis. Domestic LCI data was prioritised for material and energy flows throughout 15 

the three stages where available. However, it was necessary to use European or global 16 

reference LCI data for some inputs. Moreover, where specific LCI data was not obtainable 17 

for a given material or process, appropriate ‘closest match’ substitutes were identified, in 18 

collaboration with industry partners whenever possible. Allocation was necessary at both mill 19 

and bakery stages, where for example, several types of flour are produced at the same mill or 20 

energy flows are measured across multiple processes. Again, as with data substitution, where 21 

necessary, allocation was carried out through dialogue with industry partners to maximise 22 

accuracy. Our analysis considers output from milling and bakery stages as co-products, rather 23 

than traditional wastes as they are sold for use in other industries. Due to the varied use of 24 

these outputs, coupled with fluctuating market pricing, we did not consider economic 25 
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allocation to be appropriate in the instance. Instead, a traditional mass allocation approach 1 

was adopted in keeping with the finding that for external communication to the market and 2 

consumers, mass allocation should be viewed as the preferred method in most cases36. 3 

Data was combined and analysed using the Supply Chain Environmental Analysis Tool 4 

(SCEnAT) developed by researchers at the University of Sheffield, UK. SCEnAT employs 5 

life cycle assessment methodology9 to assess product supply chains, capturing both direct and 6 

indirect/embodied emissions in accordance with ISO1404037 and ISO1404438 standards.  7 

Nitrogen use efficiency was calculated using the quality-control grain protein content used by 8 

the manufacturer and a wheat grain nitrogen/protein conversion factor of 5.8139.  On farm 9 

N2O emissions were calculated using established protocols40,41 as summarised in reference 10 

42. 11 

Data availability.  The authors declare that the data supporting the findings of this study are 12 

available within the paper and its supplementary information files 13 
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Figure Legends 1 

 2 

Figure 1. The wheat-to-bread supply chain. A. Map of the supply chain showing 3 

cultivation, mill and bakery stages. Sources of energy/ material flow data from two industry 4 

partners are also shown. These sources are a large commercial bread maker with multiple 5 

production sites across the UK and a wheat farm, producing group 1 and 2 milling wheat at 6 

9.5t/ha during the 2014 harvest. B: Supply chain stages and their component processes.  7 

 8 

Figure 2. Process group environmental impact. Each coloured bar section represents the 9 

environmental impact of process groups at cultivation, mill and bakery stages as shown in 10 

Figure 1, expressed as percent of total values. Material and energy input data were assessed 11 

alongside six impact categories selected from the CML (2001)35 environmental impact 12 

categorisation model produced by the Institute of Environmental Sciences (CML) at Leiden 13 

University. AP, acidification potential; GWP, global warming potential; EP, eutrophication 14 

potential; FAETP, freshwater aquatic ecotoxicity potential; FSTP, freshwater sediment 15 

toxicity; HTP, human toxicity potential. 16 

 17 

Figure 3. Environmental impact of ammonium nitrate fertiliser in comparison to other 18 

process groups. The data for process groups were aggregated to give total impacts for 19 

ammonium nitrate (blue), and the cultivation (minus ammonium nitrate) (red), milling 20 

(purple), baking (cyan) and storage/transport (green) stages as in Figure 1. The six 21 

environmental impact categories are as described in Figure 2. 22 
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