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Person-Specific Gesture Set Selection for Optimised Movement

Classification from EMG Signals

Adam Hartwell, Visakan Kadirkamanathan and Sean Anderson

Abstract— Movement classification from electromyography
(EMG) signals is a promising vector for improvement of human
computer interaction and prosthetic control. Conventional work
in this area typically makes use of expert knowledge to select
a set of movements a priori and then design classifiers based
around these movements. The disadvantage of this approach
is that different individuals might have different sets of move-
ments that would lead to high classification accuracy. The novel
approach we take here is to instead use a data-driven diagnostic
test to select a set of person-specific movements. This new
approach leads to an optimised set of movements for a specific
person with regards to classification performance.

I. INTRODUCTION

Movement classification from surface Electromyography

(EMG) signals to control prosthetics and other human com-

puter interface devices is an important and challenging

problem. The conventional approach to EMG based move-

ment classification is to select some number of movements,

experimentally acquire the EMG data per movement per

subject, and then design classifiers to distinguish between

those movements either in general or on a per subject basis.

This conventional approach neglects the fact that the most

separable movements (and hence the optimum selection to

maximise classifier performance) vary between individuals.

The novel aim of this paper is to investigate how to

optimally select a set of movements from EMG data for

a specific individual, which to our knowledge has not yet

received attention in the literature. This work has applica-

tions in personalised prosthetic control and more generically

control in human computer interfaces.

Early research into EMG-based movement classification

[1]–[4] and recent commercial surface EMG devices such

as the Myo Armband [5] addressed the problem of clas-

sification from a small pool of movements only. Recently,

there has been a trend towards developing EMG movement

classification for larger gesture sets [6]. None of these

approaches, however, have directly addressed the issue of

selecting person-specific movements that would optimise

classification performance.

In this work, for the first time, we change perspective

on the EMG movement classification problem, and directly

focus on selecting a set of person-specific gestures from

a superset. We use a data-driven approach as opposed to

a priori selection of movements from expert deduction on

the general separability of movements. This has the key
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advantage that the movement set selection can easily be

automated and made person-specific for each distinct task

or application, via a rapid diagnostic test. This paves the

way for a new approach to the EMG control of devices that

is tailored to both individuals and tasks.

An additional benefit of our approach is that it enables

improvements in classification performance at a relatively

small additional cost to time in the experimental steps.

This is because experiment design, set up and the (ethical)

approval process is the major hurdle to gathering EMG data

for classification, against which the diagnostic test proposed

here is relatively inexpensive. In a practical scenario, the

diagnostic testing may be done by gathering data on more

movements than is required for the intended application

and then sub-selecting from those movements for optimum

classification.

The experimental data used here to evaluate gesture selec-

tion methods was surface EMG recorded as part of the Non-

Invasive Adaptive Prosthetics (NINAPRO) project [7], [8].

NINAPRO provides an open source database of EMG data

on 53 movements (including rest) across 27 subjects. Here,

the rest movement was treated as a base since in practical

applications it is often necessary or useful to distinguish

when an individual is not attempting a movement.

In order to select person-specific gesture sets, we propose

and evaluate three different gesture set selection algorithms.

We compare performance to a baseline of arbitrarily selecting

the movements in the order they are presented by Atzori et

al [6]. The three metrics are: 1. maximising the minimum

distance between means of each movement in Euclidean

space; 2. maximising the minimum KL-divergence; and 3.

training the classifier on the full 53 movements first, then

taking the movements in order of highest classification

accuracy.

The Mean Absolute Value (MAV) was selected as the

feature representation due to its simplicity, high performance

in classification tasks [9] and lack of hyper-parameters. Five

standard classifiers types were evaluated to ensure results

were not an artifact of the particular assumptions of a

specific classifier. The five types of classifier are K Nearest

Neighbours (KNN), Linear Discriminant Analysis (LDA),

Support Vector Machines (SVM) with Radial Basis Function

Kernels (SVM-RBF) and with Linear kernels (SVM-L) and

Decision Trees (DT).

In order to aid researchers all code used and raw results ob-

tained will be made available via https://github.com/Lif3line

under a modified MIT Licence.



II. PREPROCESSING AND CLASSIFICATION

The NINAPRO database 1 (see [7] for full details) was

used in this investigation, which covers 27 subjects perform-

ing 10 repetitions of 52 movements with a rest movement

between each (for a total of 53 movements). The signals

used here were the 10 channel surface EMG data and a-

posteriori refined movement labels. EMG signals are stated

to be root mean squared rectified and sampled at 100Hz with

a bandwidth of 0-25Hz.

A. EMG signal preprocessing

Preprocessing steps:

1) Each EMG channel was passed through a 5Hz, second-

order, zero phase, low-pass Butterworth filter

2) Signals were split into a continuous stream of windows

• Window length: 400ms (40 samples)

• Window Increment: 10ms (1 sample)

3) Each window was labelled as belonging to the move-

ment with the most number of points in the window:

always a case of rest vs some other movement

• For 50/50 splits rest was assumed

4) Movements were decoupled by removing windows that

straddle a boundary: one window lengths worth of win-

dows removed before and after a non-rest movement

5) The MAV was extracted from each channel of each

window

B. Feature selection and classification algorithms

There are 10 repetitions of each movement per subject in

the database; repetitions {1, 3, 5, 7, 9} were used for training

and {2, 4, 6, 8, 10} were used for testing. This split is chosen

over n-fold validation to be consistent with previous work

and because adjacent windows share information meaning

random selection would cause the training and testing sets

to be non-independent. Inputs were standardised for KNN,

SVM-RBF and SVM-L classified by weighted column mean

and standard deviation.

The Mean Absolute Value (MAV) was selected as the

feature representation due to its simplicity and high perfor-

mance in classification tasks [9]. The Mean Absolute Value

is defined as the mean of all values per channel per window.

This leads to a 10 dimensional feature space,

MAV (channel) =
1

T

T∑

t=1

|xt| (1)

T : Window Length (signal duration)

Due to the large amount of data on the rest movement

compared to other movements both the training and testing

sets are biased. To avoid wasting data in the testing set

performance was measured as the average of the per class

percentage corrected classified points; this is known as the

average accuracy in machine learning literature.

Average Accuracy =
1

M

M∑

m=1

correct predictionsm
Nm

(2)

m : Movement
M : Number of movements
N : Number of test points

Each classifier was trained on training sets that only

contained the X movements selected by the selection algo-

rithms to produce the results described. Due to the large

amount of rest data in the training set the rest was randomly

downsampled so that there were only as many examples of

rest as the next most represented movement.

Classifier details:

• K Nearest Neighbours (KNN)

– 10 Euclidian Neighbours

• Linear Discriminant Analysis(LDA)

– Pseudo-linear fit

• Support Vector Machine with Radial Basis Function

Kernel (SVM-RBF)

– Multiclass method: One vs All

– Sequential Minimal Optimisation

– Box Constraint of 1

– MATLAB inbuilt heuristic kernel scaling

• Support Vector Machine with Linear Kernel (SVM-L)

– Multiclass method: One vs One

– Sequential Minimal Optimisation

– MATLAB inbuilt heuristic kernel scaling

• Decision Tree (DT)

– Maximum number of decision splits: 150

– Gini’s Diversity Index used as split criterion

– Prior probabilities based on class frequencies

III. PERSON-SPECIFIC GESTURE SET SELECTION

The rest movement is used as a base for all selection

algorithms in this paper due to its utility in many real world

applications. The baseline selection method is to start with

rest then add movements in the order they are presented by

Atzori et al [6]; as the movements are presented in groups of

similar actions, a priori, this set could reasonably be assumed

to be sub-optimal.

Due to the high dimensionality of the problem (up to

53 movements, 10 dimensional feature space) exhaustive

classifier training of possible movement combinations is

computationally inhibitive similarly exhaust searches of

movement combinations even for simple distance metrics

is computationally infeasible. The three selection algorithms

evaluated here, therefore, all build up a set of movements

for an individual one movement at a time by maximising a

separability criteria:

A. Maximisation of minimum distance between movement

means

The mean of the feature representation of an individual’s

different movements is taken. The selection algorithm com-

putes the Pythagorean distances from each not currently

selected movement mean to all selected movement means,

the minimum distance to any movement in the currently



selected set is then saved and the the movement that has the

largest minimum distance is the next candidate for selection.

Best m = max(min(|µm − µg)|)),m 6⊇ g (3)

m : Movement
µ : Movement mean
g : Currently used set of movements

B. Maximisation of minimum symmetric Kullback-Leibler

Divergence between movements

Similarly the Kullback-Leibler divergence (KL) is com-

puted between all movements not currently select and the

selected movements. The closest divergence for each not

selected movement compared to all the selected movements

is retained for each not selected movement and the not

selected movement with the largest minimum divergence is

the next candidate for selection.

Best m = max(min(DKL(m||g) +DKL(g||m))),m 6⊇ g
(4)

DKL : Kullback-Leibler divergence

C. Selection of superset highest performance movements

This algorithm differs in that it is both individual and

classifier specific. Each classifier was trained on the full

53 class problem for each subject, the base class is still

rest however all other movements are selected in descending

order of performance by the classifier on the 53 class

problem. The single class with the highest classification rate

was selected first then the movement with the second highest

classification rate and so on.

Best m = max(performance(m)),m 6⊇ g (5)

IV. RESULTS

For all gesture selection methods proposed above our

baseline performance comparison was chosen as the order of

gestures given by Atzori et al [7], which is their experimental

order that groups together similar movement types such as

grasping. This order is chosen to represent how a naive

selection method might act as an appropriate number of

random selections was too computationally expensive to

compute.

The first main result was that all proposed selection

methods generally gave higher classification accuracy than

the baseline method except in the case of the LDA classifier

(Figure 1). The baseline choice of movement subsets gen-

erally performed at up to ∼ 10% worse than the superset

performance selection algorithm for up to about 30 gestures.

We found that the best gesture selection method of the

three proposed, across all five classifiers, was the superset

performance selection algorithm. This is presumably due

to the fact that the algorithm not only tailors movement

selection to an individual but also to the classifier in use, thus

optimising not just for differences in individuals but also for
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Fig. 1. Classifier performance relative to the number of movements under
consideration for the four different movement choice methods averaged
across all 27 subjects. The superset performance algorithm leads and the
baseline selection (random selection), trails near unanimously.

how those differences interact with the inherent assumptions

made by each classifier.

The other two selection algorithms, mean distance and KL

divergence, performed similarly to each other and generally

above the baseline but below the superset performance. Their

similarity is likely due to the metrics both utilising the

difference between means.

As would be expected, the difference between selection

algorithms makes the most difference for smaller subsets be-

cause as more movements are included the diversity between

subsets is reduced. Similarly the performance drop for adding

more movements is generally slightly increased when the

subset is small. Otherwise the relationship is fairly constant

when using superset performance based selection, leading to
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Fig. 2. Performance for two randomly selected subjects as more movements are added to the set being classified. Most importantly the performance
remains similar between the individuals but the set of movements is vastly different in order to achieve the same level of performance.

a near linear relationship between number of movements and

performance especially so for the SVM-RBF.

The SVM-RBF was the best classifier tested, with per-

formance (using the superset performance based selection)

dropping fairly linearly from 96% to 64%, equating to a

drop of ∼ 0.6% per additional movement. This result is very

promising and paves the way for optimisation based on clas-

sifier performance versus number of recognised movements,

as well as providing a baseline expectation of classifier

performance for a given number of movements.

Finally, we chose the best performing diagnostic test,

superset performance selection algorithm with SVM-RBF

classification, and evaluated it on two different subjects. We

found that the classification accuracy was similar across sub-

jects, but that crucially, the gestures selected were completely

different across subjects (Figure 2). This justifies the need

for a person-specific classification method and emphasises

the advantage of the proposed approach.

V. CONCLUSION

We have demonstrated that the best algorithm for selecting

a subset of movements from a larger set is the superset

performance; training a classifier on the full set then choosing

movements based on descending individual performance

order. We have also demonstrated that for a standard SVM-

RBF classifier a relatively small average performance trade

off of ∼ 0.6% per additional movement is observed.

This work paves the way for rapid deployment of indi-

vidual specific movement classification for use in prosthetic

control and more generally for human computer interaction.

It allows for experiments to be designed around gathering

movements without having to determine optimal movements

ahead of time as more movements may be gathered than

required and the optimal movements selected for classifica-

tion performance at a relatively small overhead. This new

perspective also allows for trade off between number of

movements and classifier performance allowing for specific
applications to be optimised along these lines as well as

optimised for the individual.
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