
This is a repository copy of Classification of form under heterogeneity and non-isotropic 
errors.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/111230/

Version: Accepted Version

Article:

Shuweihdi, F, Taylor, CC orcid.org/0000-0003-0181-1094 and Gusnanto, AS (2017) 
Classification of form under heterogeneity and non-isotropic errors. Journal of Applied 
Statistics, 44 (8). pp. 1495-1508. ISSN 0266-4763 

https://doi.org/10.1080/02664763.2016.1214246

(c) 2016, Informa UK Limited, trading as Taylor & Francis Group. This is an Accepted 
Manuscript of an article published by Taylor & Francis in the Journal of Applied Statistics 
on 29 July 2016, available online: https://doi.org/10.1080/02664763.2016.1214246

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


July 5, 2016 Journal of Applied Statistics Classification*of*Form*(second*revised**)

1



July 5, 2016 Journal of Applied Statistics Classification*of*Form*(second*revised**)

To appear in the Journal of Applied Statistics
Vol. 00, No. 00, Month 20XX, 2–14

Classification of Form under Heterogeneity and

Non-Isotropic Errors

Farag Shuweihdia∗ , Charles C. Taylora and Arief Gusnantoa

aDept. of Statistics, University of Leeds,Leeds, LS2 9JT, UK

(v4.1 released December 2013)

A number of areas related to learning under supervision have not been fully investigated, particularly
the possibility of incorporating the method of classification into shape analysis. In this regard, prac-
tical ideas conducive to the improvement of form classification are the focus of interest. Our proposal
is to employ a hybrid classifier built on Euclidean Distance Matrix Analysis (EDMA) and Procrustes
Distance (PD), rather than Generalised Procrustes Analysis (GPA). In empirical terms, it has been
demonstrated that there is notable difference between the estimated form and the true form when
EDMA is used as the basis for computation. However, this does not seem to be the case when GPA
is employed. With the assumption that no association exists between landmarks, EDMA and GPA
are used to calculate the mean form and diagonal weighting matrix to build superimposing classifiers.
As our findings indicate, with the use of EDMA estimators, the superimposing classifiers we propose
work extremely well, as opposed to the use of GPA, as far as both simulated and real datasets are
concerned.

Keywords: Data mining, classification, shape analysis, similarity, distance

1. Introduction

In reality, it is often the case that a number of species have distinct characteristics, in
relation to shape. For instance, it is more frequently the case that the head of a female dif-
fers, in how it looks, from that of a male. The fact that someones hand during childhood
differs from how it looks during adulthood suggests that shape may change according to
factors, such as gender, growth and time. As an additional example of shape, someone
may show diverse momentary facial emotional expressions, in response to a certain situa-
tion, such as joy or anger. One significant question could be raised as to whether or not an
entitys shape is influenced by its position, rotation, and size (or basically, as explored in
this paper, the position and rotation). Comprehending the previous phenomena requires
us to create a tool that is based on statistics and through which shape can be understood.
[6] developed a methodology, known as statistics-based shape analysis theory. This area
has received extremely significant contributions, from outstanding sources of references
about shape analysis development, such as [2] , [4] and [7]. In a broad range of fields,
for instance psychology and biology, utilisation of shape analysis has been notable. As a
result of great interest in it, textbooks covering a wide range of shape analysis aspects,
have been produced, such as [14] and [3].
A configuration relating to geometry is described as a form (or size-and-shape), when
it is invariant under translation and rotation. Typically, analytical investigation of form,
in relation to a mathematics-related concept, requires an assortment of unique points,
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known as landmarks, to be depicted, by a specialist, on an object of interests image, as a
first step. Putting it more explicitly, a continuous image is converted into a limited set
of isolated (discrete) points (i.e landmarks). The significant characteristics of a configu-
ration related to geometry are identified by these landmarks, denoted by a matrix in two
or three dimensions (i.e coordinates). In the case of two dimensions, it is easy to denote
landmarks coordinates through an actual or intricate scheme [3]. In this undertaking,
real system is considered. Ordinarily, a matrix denotes a configuration, say x, of order
k×m, where k is the number of landmarks, and m is a dimension such that m ≥ 2. For
an ideal alignment of matrices through a matching method, artificial variability caused
by a set of unfavourable factors (i.e arbitrary location and orientation) presents itself as a
key issue; commonly, this issue is addressed through restoring the factors of a predefined
geometric alteration. Both the Ordinary Procrustes Analysis (OPA) and the Generalized
Procrustes analysis GPA can be utilised to handle the issue through similarity alterations
[4]. [1] examined the significant role individual landmarks play in the identification of
shape variation.
In the case a certain form, one of the targets is identify the population class where it
belongs. In other words, the configuration that is akin to a certain class and distin-
guishes it clearly from other classes is accurately identifiable. Form classification involves
a basic requirement: presupposing that the errors around the k landmarks are isotropic.
The non-fulfilment of isotropic presupposition means the presence of non-isotropic er-
rors. Therefore, substandard performance is a possible outcome of the employment of any
classification methodology, if this issue is not considered. Given that the calculated mean
form is the basis of the superimposing classifiers suggested, it is it is important to note
that, even under the condition of isotropy, [8] demonstrated that bias can be shown by
the estimated mean form using GPA in the case of large errors. Additionally, when GPA
is used under isotropic Gaussian errors, the calculated mean form is not a steady estimate
of the true mean form [9]. The objective of classification faces a challenge as a result of
these circumstances, given that it needs a technique through which mean and covariance
matrix can be estimated to improve the performance of classification. Therefore, it is sig-
nificant that weights showing landmarks degrees of influences are included in a classifier
incorporating Procrustes distance. It is basically important that these weights adjust the
information in the case of each landmark. In this research study, given the claim by [9]
that GPA estimators show inconsistence under non-isotropy, Euclidean Distance Matrix
Analysis (EDMA) [9] will be adopted, instead, to compute the mean form and weighting
matrix to achieve a better classification precision. Incorporating Euclidean distance for
inter-landmarks, [9] demonstrated that in R

2 , and under the Gaussian errors, the mean
form produced by EDMA is calculated in a consistent manner, with the use of a bias
corrected estimator. To examine whether or not an average form estimated by GPA and
EDMA differs from the true form in cases of non-isotropy Gaussian errors, numerical
examples have been provided here. Therefore, it can be established which method of
computation is suitable to create a classifier. With both EDMA and GPA estimators
employed to construct the superimposing classifiers, the purpose is to identify the most
effective technique of computation, in relation to the improvement of the form classifi-
cation performance. As claimed by [9], the superimposed methods of form or shape are
unacceptable, in statistical terms. As far as the objective of classification is concerned, it
is vital that the enhanced classification using a superimposing method is compared with
a common technique of classification; the decision tree classifier will be adopted, with
the use of transformed landmarks.
Section 2 introduces a weighted superimposing classifier employing PD. Section 3,

includes our elucidation of how the variance of centred and non-centred landmarks will
not be considerably different for many landmarks. A demonstration of the outcomes of the
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superimposing classifiers using real and simulated configurations is included in Sections
4 and 5. Discussion is given Section 6. Lastly, conclusions are provided in Section 7.

2. Form Classification

For an assumed G labelled reciprocally exclusive form populations, say π1, · · · , πG, let
Xg =

{

xg,1, · · · ,xg,ng

}

be a set of forms drawn i.i.d from class g, in which each xg,i ∈ πg
and xg,i /∈ πg′ for g 6= g′. A configuration matrix x can, by means of translation and
rotation, result from perturbation employing a linear Gaussian model [4] which suggests
that all configurations are perturbed, translated and rotated and on a random scale:

x =
(

µg +Eg

)

Γ + 1kB
T , g = 1, · · · , G. (1)

in which 1kB
T and Γ are nuisance factors (location and orientation matrix), i.e unwanted

information not relevant to geometrical form information. µg is the true mean and Eg is a
k×m matrix of separate arbitrary errors, which, as per the norm, distributed with mean
equal to zero and covariance matrix (form variation matrix) Σkm,g = Σk,g⊗Σm, in which

Σk,g is the covariance of the landmarks (the rows of Eg), ⊗ is the Kronecker product
and Σm is the covariance for the dimensions (the columns of Eg). Our assumption here
is Σm = Im, which suggests that identical separate variability exists around each mean
landmark. The case of Σm = Im was hypothesised in order to estimate the covariance
matrix with the use of GPA by [4] and EDMA by [9]. In this study, landmarks are
assumed to be independent, and hence Σk is diagonal matrixcomment .

2.1 Isotropic Model

Under isotropic conditions, all classes are presupposed to share a mutual covariance
matrix, say Σ, and m = 2 in which

Σg = Σcomment 7
km,g = Σ = σ2Ikm, g = 1, · · · , G,

indicates sameness between populations so that Σk,g = σ2Ik. Given that µ is unidentified,
it is possible to employ GPA or EDMA to calculate the true mean. OPA distance for
centred estimators is employed for the assigning of a new centred object into an identified
class.

2.2 Non-Isotropic Model

For a mitigation of the non-isotropys negative impact on superimposition classifier per-
formance, weighted PD is used. An initial allusion to this matter is Lissitz et all [11].
To directly obtain weighted PD, the least-squares technique is applied to two weighted
landmark configurations. Different from PD, in which all landmarks are equally weighted,
weighted PD provides less influence to the less accurate landmarks, but designates more
weight to extremely precise landmarks−that is, linking the weight magnitude to the
landmark quality.
This paper proposes a methodology that depends on the employment of a mean and
covariance matrix calculated by EDMA in a superimposing classifier. In fact, given its
dependence on the weighting matrix estimation method, no unique solution to the non-
isotropic error problem exists. For an assessment of the advantages of using EDMA in
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classification, the GPA-based calculation using GPA is employed to compute mean forms
and weighting matrices. Additionally, for simulated configurations, the true parameters
are utilised to build a superimposing classifier.
According to the Gaussian perturbation model, the mean form and variance-covariance
matrix Σc

k for centred configurationcomment 1 can be evaluated consistently [9]. There-
fore, for µg and Σk,g = diag(σ2

1g, · · · , σ
2
kg), EDMA is employed to identify the evaluated

mean forms {m̂g}
G
g=1 and covariance matrices

{

Σ̂c
k,g

}G

g=1
for centred configurations. The

landmark weights are calculated by (Σ̂c
k,g)

−1 where the diagonal is parallel to the diagonal
of the evaluated weights matrix w.

2.3 Superimposing Classifier

The algorithm below constitutes the basis of a method through which a configuration
matrix xo coming from an unidentified form class can be assigned:

Algorithm 1 Superimposing Classifier

Estimate m̂g and (Σ̂c
k,g)

−1, g = 1, · · · , G, using EMDA. Then, setwg =
[

diag(Σ̂c
k,g)
]−1

.

Decomposing the diagonal matrix wg so that wg = w
1/2
g w

1/2
g , the weighted PD, d(w),

between two weighted forms

d2(w),g(x
c
o) = tr(w1/2

g m̂g −w1/2
g xc

oΛ)
T (w1/2

g m̂g −w1/2
g xc

oΛ), g = 1, · · · , G. (2)

Where Λ is a rotation matrix estimated by OPA.
Assign a new configuration, say xo, needs to be classifiedcomment 9 to predicted
class g∗(xo) according to

g∗(xo) = arg min
g=1,··· ,G

d2(w),g(xo). (3)

The common classifier employing PD is noticeably acquired through the replace-
ment of w of (2) by Ikm (identity matrix). Despite the fact that, unlike Procrustes
algorithm, the estimators are simple, in terms of computation, m̂ acquired by EDMA
can cause a reflection of m̂; and with the employment of EDMA to calculate the
mean form, it is necessary that we compute k(k − 1)/2, non-zero parameters for
Euclidean distance matrix of order k × k acquired by inter-distance between k land-
marks for the configuration matrix. This is a very high figure, as compared with the
number of k parameters required for estimating the mean form, especially when k is high.

2.4 Decision Tree

Through the classification decision tree, which is a non-parametric technique, we are
able to categorise new objects into one (and only one) predefined sub-class, commonly
through the use of axis-parallel decision boundaries [5]. Although it requires extensive
computation, this technique is extremely easy to comprehend. Given that it is a flex-
ible method, the decision tree works well in the case of data being linearly separable
(Σg = Σ, g = 1, · · · , G,) and non-linearly separable (Σg 6= Σg′ , g 6= g′ = 1, · · · , G,).

5
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Additionally, it does not require any probability assumptions. Given the nuisance pa-
rameters, it is important that the tree classifier is learnt on altered form landmarks
imposed on a general mean form, say x′ as follows:

Algorithm 2 Decision tree based on transformed landmarks

Apply GPA to a training set of configuration matrices of order k×m,X = {x1, · · · ,xn}
to estimated transformed landmarks X

′

= {x′
1, · · · ,x

′
n} and general mean form m̂.

Each transformed matrix say x′
k×m, is arranged in a row vector,

x′
k×m → (x′1, · · · , x

′
km) = x′

1×km.

Use a matrix of transformed landmark variables X
′

n×km to construct tree classifier.
Apply OPA to align a new configuration xo on m̂.
The tree classifier is employed to allocate x′

o to an estimated class.

3. Variance of Centred Landmarks

For a set of configurations of size n with independent landmarks, i.e, such
that cov(xj , x

′
j) = σjj′ = 0, j 6= j′ = 1, · · · , k,main comment the consequence of centring

on landmark variance, say Σ̂c
k is examined through the perturbation model,

xi = µ+Ei, i = 1, · · · , n, (4)

where

xi =







xi1 yi1
...

...
xik yik






,

and Ei denotes an error matrix after a normal distribution with mean zero and diagonal
covariance matrix Σk. Let (s2xj

, s2yj
) and (x̄j,ȳj) , j = 1, · · · , k, represent the sample

variance and mean of landmark j. comment 20 Given that this research study examines
Σk as being a diagonal matrix, the landmarks coordinates are separate, cov(xj , xj′) =
0, · · · , j 6= j′. The coordinates of landmarks are independent and identical to
each other, Σm = Im, which suggests that identical separate variability exists
around each mean landmark.comment 21 Currently, in the event of the configurations
acquired from model (4) being centred, we get

xc
i =







xi1 − x̄∗i yi1 − ȳ∗i
...

...
xik − x̄∗i yik − ȳ∗i






=







xci1 yci1
...

...
xcik ycik






,

where

x̄∗i =

∑k
j=1 xij

k
and ȳ∗i =

∑k
j=1 yij

k
.
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Thus, the sample variance for a centred landmark, say l, is

sc2l =
1

n

n
∑

i=1

(xcil − x̄cl )
2

=
1

n

n
∑

i=1

[(

xil −

∑k
j=1 xij

k

)

−
1

n

n
∑

i=1

(

xil −

∑k
j=1 xij

k

)]2

=
1

n

n
∑

i=1





(k − 1)

k

(

xil −
1

n

n
∑

i=1

xil

)

−
1

k

k−1
∑

j=1,j 6=l

(

xij −
n
∑

i=1

xij
n

)





2

=
(k − 1)2

k2
s2l +

1

k2

k−1
∑

j 6=l=1

s2j +
k − 1

k2
covariance terms.

(5)

In relation to separate variables, the final term on the right hand side of
Equation (5) is the covariance between landmarks. Since we consider the
case where the landmarks are independent, the term is practically zero, i.e.
σjj′ = 0, j 6= j′ = 1, · · · , k. Given this, it is interesting to note that in Equation

(5), sc2l will tend to s2l when k increases, provided that
∑k−1

j 6=l=1 s
2
j ≪ 1/k2 as k in-

creases. This means that, under the previously mentioned condition, the sam-
ple variance of the centred landmark will be closer to the non-centred land-
mark when the number of landmarks increases to a large number. main comment

4. Description of Experiments and Analysis

In order to establish how precise the classification techniques proposed are, experiments
are initially conducted with the use of simulation method. Triangles (a few landmarks)
form the basis of two experiments, whilst facial expressions (many landmarks) form the
basis of one experiment. Every experiment involves two classes of configuration matrices
(G = 2), produced by a perturbation linear model 1. In relation to simulated data, by
considering the true mean and covariance matrix, we will additionally be able to develop
a greater insight about how effective EDMA and GPA are, as far as the performance of
classification is concerned. In other words, through the utilisation of different methods
in the estimation of parameters and creation of classifiers, one method can be preferred
to another. A total number of nine classifiers will be built; superimposing classification
using PD and WPD will from the basis of eight of them , whilst a decision tree will form
the basis of one classifier. Real configurations involve two classes of facial expressions
and gorilla skulls.

(1) A: Heterogeneity and non-isotropic errors, d2(w),g(x) = tr(m̂c
g −xcΛ)T (Σ̂c

k,g)
−1(m̂c

g −

xcΛ), where m̂c
k,g and Σ̂c

k,g are estimated using EDMA.

(2) B: Homogeneity and non-isotropic errors, d2(w),g(x) = tr(m̂c
g − xcΛ)T (Σ̂c

k)
−1(m̂c

g −

xcΛ), where Σ̂c
k is a common matrix estimated by EDMA.

(3) C: Homogeneity and isotropic errors, d2(w),g(x) = tr(m̂c
g − xcΛ)T (m̂c

g − xcΛ), where

m̂c
k,g is estimated using EDMA.

(4) D: Heterogeneity and non-isotropic errors, d2(w),g(x) = tr(m̂c
g −xcΛ)T (Σ̂c

k,g)
−1(m̂c

g −

xcΛ), where m̂g and Σ̂c
k,g are estimated using GPA.

7



July 5, 2016 Journal of Applied Statistics Classification*of*Form*(second*revised**)

(5) E: Homogeneity and non-isotropic errors, d2(w),g(x) = tr(m̂c
g − xcΛ)T (Σ̂c

k)
−1(m̂c

g −

xcΛ), where Σ̂c
k is a common matrix estimated by GPA.

(6) F: Homogeneity and isotropic errors, d2g(x) = tr(m̂c
g − xcΛ)T (m̂c

g − xcΛ), where m̂g

is the mean form estimated by GPA.
(7) G: A tree classifier learned on transformed form landmarks.
(8) H: Homogeneity and isotropic errors, d2g(x) = tr(µc

g − xcΛ)T (µc
g − xcΛ), where µc

g

is known parameters.
(9) I : Heterogeneity and non-isotropic errors, d2(w),g(x) = tr(µc

g − xcΛ)T (Σk,g)
−1(µc

g −

xcΛ), where µc
g and Σk,g are unknown parameters.

The use of GPA and EDMA for the calculation of the true mean form for each class can
lead to the computed form mean being considerably different from the true form mean,
given the technique of computation; it is therefore likely that the superimposing classifiers
performance will differ. In relation to B simulated datasets, a sample of Goodall’s F
test is conducted to establish whether the total calculated mean form ˆ̂m produced by
averaging B sample means of the simulated datasets, say m̂1, · · · , m̂B, is equivalent to
the true mean µo. The purpose is to examine the null hypothesis H0 : µ = µo for every
class. Based on this test, a more effective method of computation will demonstrate that
ˆ̂m acquired by GPA or EDMA has, systematically, a greater similarity to the true mean,
µo.

4.1 Simulated Triangles

In this example, we consider two different triangles, where k = 3 and m = 2. The true
means, µ1 and µ2, are

µ1 =





1 1
2 3
5 1



 , µ2 =





1.15 1.15
1.15 4.58
3.43 1.15



 .

µ1 and µ2 are set as such, in order for the distinction between the population mean
forms is little; and, therefore, the techniques of calculation (GPA and EDMA) can be
held to account for any statistical difference and classifier performance. Additionally,
this experiment involves two covariance matrices for the purpose of examining the non-
isotropic errors impact on the calculated mean forms and the behaviour of the classifiers.
With the use of model (1), µ1 and µ2 are perturbed by landmark error matrices with
mean zero and covariance matrices:

(1) Heterogeneity and non-isotropic errors, Σk,1 = diag(0.2, 0.8, .9), and Σk,2 =
diag(0.9, 0.2, .001), respectively.

(2) Low heterogeneity and high non-isotropic errors, Σk,1 = diag(0.001, 0.4, 2.1)
and Σk,2 = diag(.005, .5, 1.9), respectively. Here, the degree of non-isotropy is higher
than the first matrices.

The assessment of each classifier is performed with the use of a training and test set,
each comprising 150 objects chosen from each class, in which n1 = n2 = 150. The total
error rate of misclassification is assessed from 50 simulations.
The mean form is computed for every simulated dataset of size 150. The number of

simulated dataset is 50, so the generated form means will be 50. The Goodall’s F-test is
then applied to the sample of size 50 generated form means. As shown by the findings
presented in Table 1, the computed mean form using EDMA is, in statistical terms,
the same as the true mean for the non-isotropic cases; meanwhile, the GPA estimator

8
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Table 1. One sample of Goodall’s F -test for testing H0 : µ = µ
o
in terms of triangle configurations. Significance

keys:* significant at 5%, ** significant at 1% and *** highly significant.

Class 1 Class 2
Experiment EDMA GPA EDMA GPA

Heterogeneity
and non-isotropic
errors

1.313 211.78∗∗∗ 1.487 266∗∗∗

Low heterogene-
ity and high non-
isotropic errors

1.301 1814∗∗∗ .398 1209∗∗∗

differs considerably from the true mean. As shown by [9], employing an empirical
example, using GPA, variance may be artificially increased at some landmarks
and decreased at others.comment 24
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Figure 1. LHS: test error rate for two groups of simulated triangles for Heterogeneity and non-isotropic errors,
whereas RHS: test error rate for Low heterogeneity and high non-isotropic errors.

Figure 1 summaries the result for the nine classifiers. The error rate of Classifier A,
which is founded on the computation of two covariance matrices using EDMA, is the low-
est among all classifiers. Additionally, employing a common covariance matrix, Classifier
B, which is founded on EDMA estimators, displays better performance than Classifier
E, which is founded on GPA estimators. In the event of superimposing classifications
ignoring weighting matrices, Classifier H, which is founded on the true mean form, dis-
plays the lowest error rate; meanwhile, the precision of Classifier C employing the EDMA
estimators mean from is marginally close to Classifier F employing the GPA mean form.
Consequently, comparing between EDMA and GPA, the performance of classification will
be improved by the addition of weights, through the use of EDMA, to superimposing
classifiers, in non-isotropic cases. On the other hand, in the case of unweighted superim-
posing classifiers, it does not appear to make any significant difference which technique
of calculation should be adopted for the mean form computation, despite the fact that
the Goodall’s F test prioritises the EDMA estimator. This is because the form of two
classes may be different enough to lead to a close result, which is not the case when
superimposing classifiers involve weighting matrices. Classifier I, employing the true co-
variance matrix, displays the worst performance, given the utter difference between the
true covariance matrix and the covariance matrix of centred landmarks, when k is small
as demonstrated by (5), where, for instance, a slight variation becomes more significant
under the influence of a post-centring larger variation . Putting it more explicitly, centred
configurations defined by the variance of a few landmarks, such as triangle example, may
seriously be increased, in an artificial manner, at some landmarks, and reduced at others,

9
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as opposed to the processes generating the variance owing to translation. Consequently,
the true covariance matrix will become an inappropriate weighting matrix.
It is established that the performance of the decision tree technique is akin to unweighted
superimposing classifiers employing EDMA and GPA estimators.

4.2 Simulated Facial Expressions

The previous two instances presented the simplest case of shape classification in relation
to the number of landmarks. Two simulated facial expressions comprising k = 22 land-
marks in dimension m = 2 are deemed as two classes of interest. While the first class
is denoted by a laugh, the second is denoted by a big smile. Each simulated groups true
mean is formulated through the calculation of the mean form of a real dataset of matrices
[10] and [12]. Both expressions may involve quite similar forms, but the difference will be
mainly lie in the perturbation technique, in which the focus is placed on low heterogeneity
between classes and high non-isotropy within classes, see Figure 2. Every mean matrix
of points is separately perturbed, through the use of the linear perturbation Gaussian
model. In every class, n1 = 300 and n2 = 300. From all the datasets, 300 configurations
are chosen in an arbitrary manner to train classifiers, whilst test data depend on the
remaining configurations. The calculation of the total error rate is performed over 50
simulations.

Table 2. One sample of Goodall’s F -test for testing H0 : µ = µ
o
with respect to facial expressions. Significance

keys:* significant at 5%, ** significant at 1% and *** highly significant.

Big Smile 1 Laugh 2
Experiment EDMA GPA EDMA GPA

Heterogeneity and
non-isotropic errors

.874 1.631 1.149 1.643∗∗∗
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Figure 2. Left plot shows the variance contour of simulated facial expressions around the superimposed true

mean forms for laugh (black lines) and big smile (dotted-red lines) class. Right plot shows the test error rate for
simulated.

Table 2 includes the initial analysis in which Goodall’s F -test was employed; again, this
tests findings demonstrate that, with the use of EDMA, we accept the null hypothesis for
the both classes. As indicated by the calculation of the mean form through the use of the
GPA, only for lough class, we accept the other hypothesis. Generally, it is our observation
that employing GPA for the computation of the mean form of facial expression produces
almost the same precision as using EDMA, something that perhaps be due to the large
size of landmarks and the small sample size (B = 50).
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In relation to the findings related to classification, Classifier I which is founded on the
true form means and covariance matrices displayed the lowest error rate. This discovery
differs from the triangle instance, which displayed substandard performance with the
use of true covariance matrices. The reason for this can be elucidated by (5), in which,
with independence between landmarks permitted, the variance of centring landmarks
will be extremely akin to that of non-centred landmarks, as long as a high number of
landmarks exists. It is generally the case that superimposing classifiers using EDMA es-
timators display a far better performance than when utilising GPA estimators. With two
weighting matrices employed, Classifier A employing EDMA produces the best result,
as opposed to other classifiers employing EDMA or GPA, especially classifier D using
GPA. In relation to a common covariance matrix, Classifier B employing EDMA pro-
duces a far better precision than Classifier E employing GPA does. Likewise, unweighted
Classifier C employing EDMA outperforms Classifier F employing GPA. The decision
tree classifier outperforms the GPA superimposing classifiers, which suggests that the
tree is apparently less sensitive to heterogeneity and non-isotropy than to superimposing
classifiers GPA estimators. It is noticeable that in the case of the tree algorithm, GPA
is only employed to convert the dataset, rather than for classification.

5. Sexual dimorphism in gorilla, pan and pongo skulls

Sexual species dimorphism constitutes one of the key sources of variation in appearance
between males and females belonging to the same species. The superimposing classifiers
of interest and the decision tree technique will be adopted to differentiate between
sexual dimorphism for three skull datasets: (1). Gorilla configurations, the sample size
of gorilla configurations is 59 configurations, 29 male and 30 female, (2). Orangutan
(pongo) the sample size is 60, 30 male and 30 female and (3). Chimpanzee (pan), the
sample size is 54, 28 male and 26 female. Every configuration of skull comprises 8
labelled landmarks assessed in two dimensions (m = 2). The datasets are supplied by [13].
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Figure 3. Histogram with estimated density function for the size of skulls. For the gorilla and pongo plots, colored
bars represent female, whilst the uncolored bars represent males.
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Figure 4. The test error rate for Gorilla, pongo and pan configurations.

Noticeably, the sexual dimorphism for the gorilla and pongo configurations involves a
significant level of variation in size, with no overlapping, (see Figure

6. Discussion

As Equation 5 illustrates, when landmarks are only a few (such as the triangle instance),
there is a significant difference between the variance of landmarks before and after
centring. Consequently, based on Figure 1, Model I was weighted by the true variance
matrix, but it displayed the highest error rate, because the calculated variance of centred
landmarks and the true variance are considerably different. A high error rate was, there-
fore, displayed by Model I. Nonetheless, in relation to simulated facial configurations
(Figure 2), there are 22 landmarks, a number that is bigger than the triangle instance;
and based on Equation 5, in the event of a large number of landmarks, there could be
equivalence in the variance before and after entering confutation. Therefore, in relation
to simulated facial expressions, Model I displayed a better performance than that of the
triangle instance (Figure 1). In relation to Figure 4, given that the data are real, Model
H and Model I were not employed, because they are both founded on the true mean and
covariance matrix. With regard to Model D and Model E (using GPA), in relation to
the real data (sexual dimorphism in gorilla, pan and pongo skulls), given that a number
of landmarks could be linked owing to biological variation, there will be a change in the
true direction of variability around landmarks, as a result of employing GPA which,
is not the case for EDMA. The employment of a weighting matrix produced by GPA
therefore displayed a higher error rate than the other classifiers did. On the other hand,
EDMA depends on a form matrix, which is a matrix of distances between all landmarks.

Given its flexibility, the decision tree method offers a good performance, whether
in the case of the data being linearly separable (Σg = Σ, g = 1, · · · , G,) non-linearly
separable (Σg 6= Σg′ , g 6= g′ = 1, · · · , G,) , correlation between variables, and also it
does necessitate any probability assumptions (strong against model specification).

To achieve an improvement in facial recognition, a number of advanced methods have
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been utilised; these include PCA (Principal Component Analysis), ICA (Independent
Component Analysis), LDA (Linear Discriminant Analysis), SVM (Support Vector Ma-
chine), and HMM (Hidden Markov Model). Comparing these techniques to the shape
classifiers adopted in this study would be a thought-provoking step. Similarly, it would
be stimulating to investigate the sample size impact and using different of. This will
create a space for potential investigation of other aspects out of the realm of this paper.
This study is mainly focused on investigating form classification under heterogeneity and
non-Isotropic Errors, with the use of two distinct shape computation techniques (EDMA
and GPA).

7. Conclusion

In this paper, the methods explored serve as tools for form classification, through the
use of Procrustes distance in the non-isotropic cases. EDMA and GPA were adopted to
calculate the mean form and weighting matrix. All the considered weighting matrices
were covariance matrices, with the key reason being that the optimum method in which
landmark quality is assessed can be produced when the variation around a mean land-
mark is considered. Additionally, the decision tree, which is a non-parametric tool, was
considered in the evaluation of the conventional multivariate analysis performance.
Different from GPA, with EDMA employed to estimate the mean form, Goodall’s F -

test revealed that the sample mean, in statistically terms, was akin to the true form
employing simulation instances of triangle and facial expression.
With GPA employed, the variance increased, in an artificial manner, at a number of

landmarks and declined at others, as opposed to the processes generating the variance
under the influence of translation or rotation. On the other hand, EDMA is founded on
a orm matrix which is a matrix of distances between all landmarks that is unchanging in
relation to translation or rotation (regardless of the orientation in which the landmark
coordinate system was, the distances between the landmarks are still the same). When
EDMA is not employed, the estimators of mean form and the variance covariance
structure employing GPA are extremely intensive, in computational terms.

In relation to the separate landmarks, it was demonstrated that the centred landmarks
variance was quite akin to parallel non-centred landmarks, in the event of a high number
of landmarks. In relation to every dataset examined, with the addition of a weighting
matrix through the use of EDMA, superimposing classifiers outperformed GPA and
decision tree classifiers.
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