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Abstract 
The aim of this work was to investigate the sliding wear coefficient k, using an 
experimental sliding wear study on the valve-seat insert contact. Commercial 
inlet valve and seat inserts were used as test specimens. The tests were per-
formed at room temperature and at 200˚C, using test duration of 72,000 cycles 
and 18,000 cycles, respectively, and both in dry sliding conditions. A load of 5 
N, an average speed of 22 mm/s and sliding distance of 2.2 mm were used for 
all tests. The sliding wear coefficients were calculated using experimental and 
analytical methods. The wear volume was higher in the tests at 200˚C both in 
valve and seat insert specimens. The principal wear mechanisms observed in 
valve specimen were oxidation and abrasion. 
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1. Introduction 

Some studies have been carried out in order to understand the wear mechanisms 
that occur in the valve/seat insert interface, some of them concentrating mainly 
on the inlet valves [1] [2] [3] and others focusing on exhaust valves [4] [5] [6] 
[7]. Some works have investigated the effects of the combustion pressure [8], the 
valve velocity [9], the fuel type [10], the cycle number [11], the high temperature 
[12] [13], the wear in valves of heavy duty engines [14] [15] and the effect of ap-
plying different hardening processes on the valve/seat insert interface [16] [17] 
[18] [19]. The operation temperature of inlet valves is between 180˚C and 360˚C 
[12]. For this specific work, a temperature of 200˚C was used in order to realize 
an experimental study of sliding wear at the valve/seat insert interface. Some ex-
periments also were performed at room temperature in order to have a compar-
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ison parameter of the wear volume. The objective of this study was to investigate 
the sliding wear coefficient k, at room temperature and 200˚C, using experi-
mental methods. 

2. Experimental Details 
2.1. Test Apparatus 

The experimental tests were carried out in dry conditions using a PLINT TE77 
High Frequency Friction/Wear Machine. The specimens were placed as shown 
in the simplified schematic diagram (Figure 1). The moving specimen (seat in-
sert) is mechanically oscillated against the fixed specimen (valve). A force trans- 
ducer measures the friction force in both sliding directions. 

2.2. Test Specimen 

The specimens used are shown in Figure 2. They were obtained from a com-
mercial valve and seat insert and prepared for placement in the PLINT machine. 
Their mechanical properties are shown in Table 1. 
 

 
Figure 1. Simplified schematic diagram of High Frequency Friction Machine (1: Friction 
force transducer; 2: S.I. specimen; 3: Valve specimen; 4: Heater block; 5: Roller; 6: Normal 
load; 7: Oscillator driver). 

 

 
Figure 2. Test specimens. 
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2.3. Test Procedure 

Before all of the tests, the valve and seat insert specimens were cleaned of any re-
sidue oxide layer by washing in ethanol using an ultrasonic bath. 

To know the effects of temperature in the k value, two types of tests were per-
formed, one at room temperature (R.T.) and another at 200˚C. The valve and 
seat insert were placed in the rig as shown in the simplified schematic diagram 
(Figure 1). The load was selected in such a way that wear would be produced 
with a low number of cycles. 

The tests performed at R.T. were run to 72,000 cycles and tests carried out at 
200˚C were run to 18,000 cycles. This was predetermined with several prelimi-
nary tests, to know how many cycles were necessary to cause damage on the 
surfaces. Table 2 shows the operating conditions of the tests conducted. 

3. Experimental Results and Discussion 

3.1. Friction Behavior 

The coefficient of friction (CoF) was measured in all tests. Friction coefficient 
increased during the early part of experiment, reaching an average value of 0.6 at 
the end of the test. Some debris was observed originating an increase in the fric-
tion coefficient. 

3.2. Wear Volume 

During a wear process, one of the major factors causing change in surface pro-
files is the material removal [20]. The determination of the wear volume in tri-
bological testing is a key element [21], as it is more discriminative than the wear 
scar width/diameter. In this work, the total lost material was calculated by add-
ing the wear volume from the valve and seat insert. 

The width, length and depth of the valve specimen wear scars, were obtained 
using profilometry (Figure 3) and optical microscopy. Figure 3(a) and Figure 
3(b) show the profile of the wear scar for the tests at R.T. and at 200˚C, respec-
tively. The average data of the depth, width and length of scars, as well as the  

 
Table 1. Properties of the specimens. 

 Material 
Young’s  

modulus, GPa 
Poisson’s  

ratio 
Average 

Hardness, HV 
Average 

Roughness, Ra µm 

Valve 
Martensitic,  

low alloy steel 
210 0.29 564.8 0.409 

Insert Cast seat insert 120 0.26 470.2 1.963 

 
Table 2. Test parameters. 

Test type Valve temp., ˚C Normal load, N Stroke, mm Frequency, Hz Cycles 

A 20 (R.T.) 5 2.2 5 72,000 

B 200 5 2.2 5 18,000 
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wear volume, are shown in Table 3. As can be seen tests at 200˚C produced 
higher wear volumes due to thermal softening causing the increased damage of 
the valve surface. 

The length of the seat insert face (SIF) (Figure 4(a)) and seat insert upper face 
(SIUF) (Figure 4(b)) were measured before the tests (see Figure 5 for defini-
tions). The wear volume in the seat insert specimens was calculated measuring 
the lost volume. It was verified in all tests, by optical microscopy, that the re-
moved volume had a triangular section, represented schematically in Figure 5. 
The dimensions a, b and c, for each test specimen, were measured using optical 
microscopy, with which, the wear volumes were calculated (see Table 4). 

3.3. Optical Microscopy 

Figure 6 shows the images of the wear scars produced on the valve seating face  
 

(a)                                           (b) 

Figure 3. Profilometry of the valve wear scars: (a) R.T. test; (b) 200˚C test. 

 
Table 3. Average valve wear volume in valve tests. 

Test 
Average depth, 

µm 
Average width, 

mm 
Average length, 

mm 
Average wear 
volume, m3 

A1 (R.T.) 7.14 0.85 3.25 1.97E−11 

A2 (R.T.) 14.05 0.97 3.78 5.15E−11 

A3 (R.T.) 17.39 0.89 3.44 5.32E−11 

B1 (200˚C) 27.79 1.39 3.67 1.42E−10 

B2 (200˚C) 55.45 1.79 3.59 3.56E−10 

B3 (200˚C) 23.5 1.75 3.56 1.46E−10 

 

 
Figure 4. Dimensions before the test: (a) seat insert face; (b) seat insert upper face. 
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Figure 5. Lost volume on the worn surface. 

 
Table 4. Average dimensions and wear volume for S.I. specimens. 

Test a, mm b, mm c, mm Volume, m3 

A1 (R.T.) 0.03 0.17 0.21 1.22E−11 

A2 (R.T.) 0.15 0.42 0.53 6.16E−11 

A3 (R.T.) 0.22 0.15 0.28 5.98E−11 

B1 (200˚C) 0.21 0.33 0.46 1.30E−10 

B2 (200˚C) 0.24 0.51 0.41 1.67E−10 

B3 (200˚C) 0.29 0.39 0.38 1.79E−10 

 

 
Figure 6. Optical microscopy of valve seating face after experiments: (a) R.T. test; (b) 
200˚C test. 

 
when they were tested at R.T. and at 200˚C. For R.T. tests (Figure 6(a)), the 
formation of scratching and gouging can be seen in the sliding direction. Debris 
at the edges of the wear scars was also observed. In the case of the tests at 200˚C 
(Figure 6(b)), the main observation was oxidative and abrasive wear evidenced 
by scratching and gouging in the sliding direction. 

Observations of the seat insert face (Figure 7(a) and Figure 7(b)) show the 
formation of surface cracking and pitting due to the frictional sliding, as well as 
the presence of scratching. It can also be seen that the size of the worn surface 
for R.T. tests were smaller than the tests at 200˚C. 

3.4. Sliding Wear Coefficient 

Previous studies have been carried out to generate the sliding wear coefficient k 

Scratching 
and gouging

Original surface

Sliding 
direction
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[22]. In this work, k was determined using the Archard’s Equation [23] [24] 
(Equation (1)) and the results of the experimental tests. 

δ
=

kP NV
h

                          (1) 

where V is the wear volume (m3), k is the sliding wear coefficient, P is the nor-
mal force at interface (N), δ  is the slip at interface per cycle (m), N is the 
number of cycles and h is the hardness (N/m2). 

The final results for wear volumes and sliding wear coefficients are shown in 
Table 5. It can be seen in all tests that the k value was higher in the tests at 
200˚C, resulting in an average value of 1.17E−03 and 5.01E−05 for tests at R.T. 
The previous values of k are compatible with the results reported by Rabinowicz 
[22] for fretting and abrasive wear in unlubricated conditions. 

4. Conclusions 

Valve specimens made of martensitic low alloy steel were put in frictional sliding 
tests against seat insert specimens made of cast tool steel. 

1) The experimental procedure employed in this work, for the materials used, 
provides reliable results in wear volumes and sliding wear coefficients. 

2) The wear volume was higher in the tests at 200˚C, both in valve specimens 
and seat insert specimens. 

 

 
Figure 7. Optical microscopy on seat insert face after experiments, (a) R.T. test, (b) 200˚C 
test. 

 
Table 5. Summary of wear volumes and sliding wear coefficients. 

Test 
R.T. 200˚C 

A1 A2 A3 B1 B2 B3 

Valve wear  
volume, m3 

1.97E−11 5.15E−11 5.32E−11 1.42E−10 3.56E−10 1.46E−10 

S.I. wear volume, m3 1.22E−11 6.16E−11 5.98E−11 1.30E−10 1.67E−10 1.79E−10 

Total wear volume, m3 3.19E−11 11.31E−11 11.30E−11 2.72E−10 5.23E−10 3.25E−10 

k (Equation (1)) 2.05E−05 6.59E−05 6.38E−04 1.03E−03 1.35E−03 1.13E−03 

Avg. k 5.01E−05 1.17E−03 
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3) The principal wear mechanism observed in the wear scar surfaces of valve 
specimens was oxidation and abrasion. 

4) The sliding contact produces several damages on the seat insert face, main-
ly characterized by cracking, pitting and scratching. 
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