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Abstract

Natural language generation (NLG) is the task of generating natural language from a meaning rep-
resentation. Rule-based approaches require domain-specific and manually constructed linguistic
resources, while most corpus based approaches rely on aligned training data and/or phrase tem-
plates. The latter are needed to restrict the search space for the structured prediction task defined
by the unaligned datasets. In this work we propose the use of imitation learning for structured
prediction which learns an incremental model that handles the large search space while avoid-
ing explicitly enumerating it. We adapted the Locally Optimal Learning to Search (Chang et
al., 2015) framework which allows us to train against non-decomposable loss functions such
as the BLEU or ROUGE scores while not assuming gold standard alignments. We evaluate our
approach on three datasets using both automatic measures and human judgements and achieve
results comparable to the state-of-the-art approaches developed for each of them. Furthermore,
we performed an analysis of the datasets which examines common issues with NLG evaluation.

1 Introduction

Natural language generation (NLG) is the task of generating natural language from a machine-
interpretable meaning representation (MR). Traditionally, NLG systems tend to be rule-based and require
domain-specific language resources (i.e. sentence plans, aggregation rules, ordering information, etc.) to
be manually authored for a particular task, e.g. weather reporting (Reiter et al., 2005), route navigation
(Dale et al., 2003), or ontology descriptions (Bontcheva and Wilks, 2004; Androutsopoulos et al., 2013).

From a machine learning perspective (ML) perspective, NLG is a complex structured prediction task
due to its large output space, which is the set of all possible NL utterances. To limit the output space, many
ML-based approaches rely on aligned training datasets (Mairesse et al., 2010; Dethlefs et al., 2013) that
specify the words that each MR element is responsible for, and phrase templates. While these enable a
variety of models to be trained, their applicability is restricted as they need additional manual annotation.

More recently, ML-based approaches focused on learning NLG models from unaligned training data.
Dušek and Jurcı́cek (2015) learn how to incrementally generate deep-syntax dependency trees of candi-
date sentence plans specifying which MR elements to be mentioned and the overall sentence structure,
however the surface realization (i.e. the actual NL word generation) is performed using rules based on
the frames of an English-Czech dependency treebank, a resource that may not be available for certain
domains or languages. In another approach, Wen et al. (2015) use a Long Short-term Memory (LSTM)
network to learn from unaligned data and jointly address sentence planning and surface realization. They
augment each cell of the LSTM with a gate that conditions it on the input MR. However the LSTM is
trained using cross-entropy at the word level, thus unable to take into account interactions among the
word being considered and words to be predicted later in the sentence, an issue which was ameliorated
by training a backward LSTM to re-rank the best-scoring outputs generated by the forward one.

In this paper, we propose an ML-based approach that learns sentence planning and surface realization
from unaligned training data using the imitation learning Locally Optimal Learning to Search (LOLS)
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Predicate: INFORM
name = "The Saffron Brasserie"
type = placetoeat, eattype = restaurant
area = riverside, "addenbrookes"
near = "The Cambridge Squash", "The Mill"

Reference:
The Saffron Brasserie is a restaurant at the side of the river near
the Cambridge Squash and the Mill in the area of Addenbrookes
Reference with replaced verbatim values:
X-name-1 is a restaurant at the side of the river near X-near-1
and X-near-2 in the area of X-area-1

Figure 1: Sample MR and corresponding NL utter-
ance from the BAGEL dataset.

Predicate: INFORM
type = "hotel", count = "182"
dogs_allowed = dont_care

Reference:
There are 182 hotels if you don’t care if dogs are allowed.
Reference with replaced verbatim values:
There are X-count-1 X-type-1 if you don’t care if dogs are allowed.

Predicate: ?REQUEST
price_range

Reference: So what price range are you looking for?

Figure 2: Sample MRs and corresponding NL ut-
terances from the SF datasets.

framework (Chang et al., 2015). Similar to other imitation learning algorithms for structured prediction
such as DAGGER (Ross et al., 2011), LOLS reduces structured prediction to classification with greedy
inference thus avoiding the enumeration of all outputs, while also ameliorating the issue of error prop-
agation. Unlike other structured prediction frameworks, LOLS is able to learn using non-decomposable
loss functions. Thus it is well-suited to learning NLG systems where measures such as BLEU (Papineni
et al., 2002) or ROUGE (Lin, 2004) that do not decompose over single words are commonly used for
evaluation. Thus we are able to learn the interactions of the word currently being predicted with those to
be predicted later in the sentence. We further propose a variant of LOLS using sequence correction and
updates (Collins and Roark, 2004), and an exponential decay schedule (Daumé III et al., 2009) . We com-
pare against the systems by Dušek and Jurcı́cek (2015) and Wen et al. (2015) on their respective datasets
(three datasets across two domains) and show that the NLG system proposed achieves comparable results
in both automatic and human evaluations.1

2 Natural language generation

The NLG process takes as input a meaning representation (MR) consisting of a predicate followed by
an unordered set of attributes and corresponding values; the output is a NL sentence. Figures 1 and 2
show samples from the BAGEL (Mairesse et al., 2010) and SF datasets (Wen et al., 2015) that we are
considering in this work. The predicates in each MR are utterance-level labels that represent the overall
function of the utterance, e.g. whether the utterance should inform the user of the attributes and values,
or whether it should request them from the user. Each attribute may have multiple values, which may
be either strings that appear verbatim in the references (e.g. “the Saffron Brasserie”, “hotel”), constants
from a controlled vocabulary (e.g. placetoeat), or boolean (e.g. yes, no).

We preprocess the MR-NL pairs by replacing verbatim strings with variables (“X-”) in the MRs and NLs,
which results in the same delexicalized MR paired with multiple NL references (see Figures 1 and 2). Note
that the second MR in Figure 2 contains no verbatim strings, and its reference is not modified. Multiple
references for the same MR can be beneficial since they capture lexical variation for the same meaning,
but also pose a challenge to model learning as they provide ambiguous training signal.

We formulate the generation of a NL utterance from a MR as a sequence of two types of actions,
content prediction actions ac and word prediction actions aw (Alg. 1). To generate an NL utterance,
each content prediction action selects which attribute c should be expressed next; in the case of multiple-
valued attributes, one value is chosen based on their order of appearance in the training data. Once the
content prediction action sequence is completed, for each selected attribute c, we generate a sequence
of words chosen from its corresponding dictionary Dc. This dictionary consists of all the words that we
have observed to co-occur with attribute c in the training data. Content and word prediction have special
termination actions (ENDattr and ENDword respectively). The generation process can stop without
exhausting all attributes in the MR thus making it possible to omit information deemed redundant (e.g.
that a restaurant is a place to eat). From the action sequence produced, it is straightforward to derive the
final sentence by keeping the word prediction actions; the content prediction actions are discarded.

1All code is available at https://github.com/glampouras/JLOLS NLG
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Algorithm 1: NLG process
Input: meaning representation MR with set of attributes C, attribute dictionaries Dc, ∀c ∈ C
Output: action sequence A

1 do
2 predict attribute c ∈ C ∪ {ENDattr} and append ac to Ac

3 remove c from C
4 while ac 6= ENDattr

5 for ac in Ac do
6 do
7 predict word w ∈ Dc ∪ {ENDword} and append aw to Aw

8 while aw 6= ENDword

9 A = (Ac, Aw)

Fig. 3 illustrates the action sequence to generate the NL sentence for the MR of Figure 1. The first set
of actions is to choose amongst the attributes (eattype, name, near, or the content termination action
ENDattr), and if necessary also choose which value to express (e.g. for area, either riverside or
X-area-1). Following this, for each chosen attribute and value we generate an appropriate sequence of
word prediction actions (e.g. “at”, “the”, “side”, “of”, “the”, “river”) followed by the ENDword action
denoted by “|” (top part of Fig. 3). Content prediction actions are only used indirectly to generate the
sentence; thus different sequences can result in the same sentence, as shown in the bottom part of Fig. 3.

The NLG process defined in this section assumes we train two types of classifiers, one for the content
prediction actions and one for word prediction actions for each attribute. If we had alignment informa-
tion, it would be possible to extract data to train both types of models, either independently (Angeli et al.,
2010) or jointly. However, we do not assume access to such information. Instead, we take advantage of
the ability of imitation learning algorithms such as LOLS to learn with non-decomposable loss functions
by only needing to evaluate complete output predictions instead of individual actions. In NLG’s case, this
means we do not require explicit supervision for the content and word prediction actions, but only a way
to evaluate complete generated sentences against the reference using measures such as BLEU.

3 Locally Optimal Learning to Search

Here we describe how we learn the content and word classifiers we introduced in Section 2. As input
to the algorithm (Alg. 2), we assume a set of training instances S and a loss function ` that compares
complete NL sequences generated for MRs in S against references for that MR, e.g. using BLEU or ROUGE.
In addition, an expert policy πref must be specified which will be acting as an oracle during training,
returning the best content or word action possible given the words predicted already and the gold standard
NL reference for the instance. We describe the expert policy and loss function in detail in separate
subsections. Finally, the learning rate β is also part of the input. The output is a learned policy consisting
of one classifier for content prediction and one classifier for word prediction for each attribute c, whose
label set is the attribute dictionary Dc. These classifiers are learned using a cost-sensitive classification
(CSC) learning algorithm (CSCL). In CSC each training example has a vector of misclassification costs,
thus rendering some mistakes on some examples more expensive than others.

Before the training iterations begin, a policy π0 (i.e. content and word classifiers) is initialized on

X-name-1 | is a restaurant | at the side of the river | near X-near-1 | ...

CONTENT PREDICTION

X-name-1 restaurant riverside X-near-1 X-near-2
name eattype near area area

WORD PREDICTION

X-name-1 is a | restaurant at the | side of the river near X-near-1 | ...

CONTENT PREDICTION

X-name-1 restaurant X-near-1 X-near-2
name eattype area area

Figure 3: NLG process example with two different content and word prediction action sequences.
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Algorithm 2: Locally Optimal Learning to Search (LOLS) for NLG

Input: training instances S, expert policy πref , loss function `, learning rate β, CSC learner CSCL
Output: Learned policy HN

1 Initialize a policy π0

2 for i = 0 to N do
3 CSC examples E = ∅
4 p = (1− β)i // exponential decay
5 for s in S do
6 Predict A by executing πi(s) // roll-in
7 for action at inA do
8 Let πout = πref with probability p, otherwise πout = πi

9 foreach possible action aj
t do

10 a′t+1:T = πout(s; a1:t−1, a
j
t) // roll-out

11 Assess cjt = `(a1:t−1, a
j
t , a′t+1:T )

12 Create a feature vector Φt = f(s, a1:t−1)
13 Add (Φt, ct) to E
14 Set a? = aj

t with minimum cjt // find best possible action
15 if at 6= a? then
16 evaluate only the next E actions at+1 . . . at+E in A
17 then replace A by executing πref for actions a1:t+E

18 and πi(s) for actions at+E+1:T // sequence correction

19 Learn πi+1 = CSCL(πi, E) // update

20 HN = avg(π0, . . . , πN )

the training data. For every instance s of the training data S, the algorithm predicts an action sequence
{a0 . . . aT } (line 6, roll-in) using the learned policy πi of the previous iteration (if it is the first iteration,
this is the initial learned policy π0), using the NLG process defined in Alg.1. At each timestep t of
this sequence, the algorithm considers all actions aj

t that the (content or word) classifier could take
(line 9). In order to estimate the cost of each action aj

t , the algorithm produces an action sequence{
a1:t−1, a

j
t , a′t+1:T

}
(line 10, roll-out) assuming action aj

t was taken, and assesses it according to the
loss function ` (line 11). Thus the algorithm learns whether to select an attribute or generate a word
by taking the corresponding action and assessing its effect on the quality of the complete NL. A CSC
training example is generated from these costs (line 12-13), which will be used to update the appropriate
classification model in the learned policy. The features Φt are extracted from the input MR and all
previous actions and the partial NL corresponding to them (line 12) thus capturing (possibly long-range)
dependencies between actions. Finally, all the policies trained at the end of each iteration are averaged
into a final policy (line 19). The learned policies consisting of classifiers, unlike the expert policy πref

which is available only for the training instances, can generalise to unseen data.
When examining all possible actions, the algorithm generates the rest of the alternative sequence (roll-

out) {a′t+1:T } according to either the expert policy πref or the learned policy πi, depending on the
probability p. In its original specification (Algorithm 1 by Chang et al. (2015)), LOLS chooses which
policy to use for each roll-out separately (πout is set inside the foreach loop) and may use a different
policy to perform the roll-out for each possible action, but we use the same policy (expert or learned)
for all actions to ensure that their costs are calculated consistently. We update this probability p (line
4) at the start of each training iteration, according to the learning rate β. Chang et al. (2015) set this
probability to a fixed value throughout all iterations, but we opted to follow SEARN’s exponential decay
schedule (Daumé III et al., 2009), to increasingly move away from the expert policy as we found it to
work better in initial experiments; we discuss this further in section 4.2. By gradually decreasing the use
of πref in the roll-outs, the costs used to train the classifiers are adjusted to their own predictions, thus
teaching them to predict actions jointly.

3.1 Expert policy

The expert policy πref is invoked when assessing possible actions using roll-outs (line 10). Given the
sequence of actions already taken {a0 . . . at}, it acts as an oracle that returns the best possible action
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X-name-1 is a restaurant | serving chinese | restaurant

| chinese | restaurant

X-name-1 chinese restaurant

name food eattype

t=1 t=2 t=3

t=4 t=5 t=6 t=7 t=8 t=9 t=10 t=11 t=12

`(â5) = 0.0

`(a5) = 0.3

INFORM (name = X-name-1, eattype = restaurant, food = chinese)

Figure 4: LOLS roll-in (bottom) and roll-out (upper branch) trajectories. Content and word actions are in
single and double boxes respectively.

to take, according to the NL reference for the training instance. If a word action is to be predicted by
the expert policy we locate the word that makes the sequence (ignoring content actions) best match (i.e.
minimize the loss function to) the NL reference. In order to return content actions though, an optimal
expert policy would need access to alignments between the MR and the NL reference, which we assume
we don’t have. Instead, we define a simple heuristic alignment approach that augments the training
data with noisy alignments, resulting in a suboptimal expert. LOLS is particularly suitable for this as
it can learn with suboptimal expert policies (Chang et al., 2015). This is due to assessing the costs
for all possible actions via roll-outs evaluated using the loss function against the (gold) reference, from
which the classifier can learn to prefer actions that could contradict those returned by the expert policy.
Additionally, in LOLS there is no per-time step mixing of expert and learned policies (i.e. all actions
in a single roll-out are predicted by either the expert or the learned policy), which makes designing the
expert policy much simpler overall; this is important in tasks like NLG where the optimal action changes
drastically when mistakes happen, which is unlike tasks like POS tagging.

The naive alignment used in the expert policy uses the following heuristics. The verbatim values of
the MR are simply aligned with their occurrences in the NL reference. The constant values are compared
with all unaligned word n-grams in the reference, and aligned with the most similar one according to their
character-based Levenshtein distance. For boolean attributes, or attributes with the dont care value, we
compare the attribute name with the unaligned n-grams (e.g. aligning dogs allowed="yes" to “allows
dogs”) instead of the value. Finally, inferred alignments are expanded to unaligned words on the right
and left side of the sequence until an already aligned word (or punctuation) is found.

Figure 4 illustrates how examining all possible actions at each time step can overcome the errors
in the naive alignments. The content sequence has already been predicted (top of the figure), and at
timestep t = 7, the classifier returns action a7 = “restaurant”. However, later on the sequence we need
to predict words for the attribute eattype, for which the classifier (due to the naively aligned training
data) is likely to repeat the word “restaurant” leading to an unnatural utterance. So, given this action
(â7 = “restaurant”), the resulting sequence has a cost of `(a7) = 0.3. By examining all possible actions,
the algorithm can surmise that if the classifier stops generating words about the current attribute (â7 =
“restaurant”), it would lead to a more natural utterance, and hence a lower loss (`(â7) = 0.0) which will
update the learned policy accordingly. An alternative course of action would be for the classifier to learn
to stop generating words about the attribute eattype at action â12 = “restaurant”.

3.2 Loss function

In LOLS the loss function is only used to compare complete action sequences against references (line
11). Therefore, it does not need to decompose over individual actions and allows us to use measures
like BLEU (Papineni et al., 2002) or ROUGE (Lin, 2004) as loss functions. These measures can consider
multiple references for the same MR, which is useful in learning lexical variation, i.e. multiple ways of
expressing the same meaning. The loss function is used to assess roll-outs obtained by both learned and
expert policies when assessing both action types. In this way, content actions, which are ignored by the
loss function, are evaluated based on their impact on word predictions that follow them. When invoking
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the expert policy for content actions, the loss function only checks if the reference contains the attributes
in the roll-out. We examine the impact of various loss functions in section 4.2.

Additionally, the loss function penalizes actions that are certain to lead to undesirable behavior, i.e.
repeating words, producing a termination action without having generated anything, predicting attributes
not present in the MR, or attributes whose dictionary does not contain the word(s) that should follow.

3.3 Sequence correction

Another modification we introduced to the original LOLS algorithm is sequence correction in which soon
after the first suboptimal action at (i.e. not having the minimum cost among those possible) of the roll-in
trajectory is encountered (lines 14-18), we attempt to correct the errors encountered so far in the sequence
before examining further actions. We allow the algorithm to examine at most E actions (at+1 . . . at+E)
following the first suboptimal one (line 16) before re-predicting the roll-in trajectory using the expert
policy πref up to and including the final examined action a1:t+E , and using the policy πout to predict the
rest of the sequence at+E:T (lines 17-18). We then proceed with examining the next action at+E+1 of the
new corrected sequence. If suboptimal actions are encountered further in the new sequence, sequence
correction may again be performed and the sequence re-predicted.

We found this to be helpful in avoiding generating noisy CSC training examples. Consider the refer-
ence “‘X-name-1 is a hotel that allows dogs” and the predicted (incorrect) partial output “X-name-1 is a
dog”. When assessing the action for the next word, it is likely that predicting “that” or “hotel” will result
in lower cost than ENDword since a loss function such as BLEU or ROUGE would reward the increased
word overlap. Assuming that we extract the previous word as a feature in line 12, this would result in
learning that predicting “hotel” after “dog” is beneficial. However, this appears to be the case due to
the the loss function and the incorrect partial prediction. Correcting the sequence after we encounter the
suboptimal word action “dog” to “‘X-name-1 is a hotel” will provide the appropriate context for the next
action’s CSC; most of the features Φt are extracted from this context. The intuition is similar to the early
updates in the incremental perceptron proposed by Collins and Roark (2004).

3.4 Comparison to other Imitation Learning frameworks

In previous subsections, we introduced three modifications to the LOLS framework: 1) the use of SEARN’s
exponential decay schedule when determining the πout policy, 2) the use of the same policy (expert or
learned) for actions in the same step of the sequence, instead of potentially using a different policy for
each roll-out, and 3) using sequence correction when encountering suboptimal actions in the sequence.

The main difference of LOLS to other imitation learning frameworks is how the roll-in and roll-out
predictions are performed. LOLS performs each roll-in deterministically using the expert policy πref ,
while the SEARN and DAGGER (Ross et al., 2011) frameworks roll-in using mixtures of the learned and
expert policies; however, partially using the expert policy to roll-in limits those algorithms’ capability to
learn from the classifiers’ mistakes. For roll-out, SEARN stochastically uses a mixture of the learned and
expert policies, similarly to LOLS. DAGGER does not employ roll-outs, but uses the expert policy (also
referred to as dynamic oracle) to “teach” the correct action to the classifier; this means that it cannot be
used to learn using non-decomposable loss functions. Later, a variant of DAGGER, coined V-DAGGER

(Vlachos and Clark, 2014), introduced roll-outs to the framework (again using a stochastic mixture of
the two policies). AGGREVATE (Ross and Bagnell, 2014) uses a similar roll-in strategy to LOLS, but
the expert policy is used exclusively for each roll-out; in the case of NLG, where the expert policy is
suboptimal (see section 3.1), this may introduce noise to the classifier.

4 Data and experiments

4.1 Implementation details

We use the adaptive regularization of weight vectors (AROW) algorithm (Crammer et al., 2013) for cost-
sensitive classification learning. We train separate content and word classifiers for each predicate, and
predicate-attribute combination, respectively. Both types of classifiers (word or content action classifiers)
exploit features from the immediately preceding words, attributes and attribute-value pairs, and from
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language models estimated on the classifier’s corresponding training data. They also consider features
based on the input MR, such as which attributes and values have already been mentioned and which have
not, and, specifically for the word classifiers, whether a word partly or wholly expresses a value.

During training, we also prevent the classifiers from generating more actions than what has been
observed in the training data. Finally, the NL utterances are generated in a “delexicalized” form, but we
replace the variables with the corresponding values in post-processing; this is the reverse procedure of
replacing verbatim values with variables as shown in Figures 1 and 2. The same system is applied to all
datasets discussed in the following sections, and its code will be publicly available upon publication.

4.2 Experiments with the SF datasets

The two SF datasets were created by Wen et al. (2015) and contain MRs about hotels and restaurants
respectively.2 The hotel dataset consists of 5,192 MRs with a single NL reference each. They contain
8 predicates (inform, confirm, etc.) and 12 attributes, some of them unique to each dataset. Each
attribute can take at most one value (or be empty). Following Wen et al. (2015) we partitioned the data
into a training, validation, and testing set in a 3:1:1 ratio. We also created multiple references for each
validation and test MR as they did, by grouping all delexicalized references that correspond to the same
delexicalized MR. We then repopulate the references according to the MR’s values.

Figure 5 shows heat maps of BLEU-4 (top set) and ROUGE-4 (bottom set) scores our system achieved
on the validation set of the SF hotel dataset for different values of the learning rate β and the sequence
correction parameter E; the notation “std” denotes that no sequence correction was used in that con-
figuration. The heat maps are also grouped by which loss function was used in each configuration. By
comparing the best configurations, we can conclude that using sequence correction leads to slightly better
results (a 1.56 difference on average in BLEU). In figure 6 we show how the learned policy is improved
with each epoch of LOLS (π0 . . .π3); note that figure 5 shows the best epoch of each configuration.

Figure 5: Result heat map for SF hotels across different param-
eters.

Figure 6: Result heat map for SF hotels
across different parameters.

As loss functions to LOLS we tried BLEU-4, ROUGE-4, and the harmonic mean of BLEU-4, ROUGE-4
and ERR(%). In essence, BLEU measures the precision of the sentence’s content while ROUGE measures
the recall. We opted to use ROUGE-4 rather than other variants of ROUGE since it has been shown to

2SF is freely available for download at: https://www.repository.cam.ac.uk/handle/1810/251304
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correlate better with human assessments in summarization tasks (Graham, 2015). ERR(%) measures
what portion of the MRs is not expressed in the NL sentence; it is defined as the number of attribute-value
pairs in the MR that are not expressed in the generated NL sentence to the total number of attribute-value
pairs in the MR. We can map the values of the MR to the NL sentence similarly to how we calculate the
naive alignments (see section 3.1). By comparing these loss functions on the heat maps of Figure 5, we
find that there is very little difference between them (0.12 difference on BLEU, and 0.36 on ROUGE). We
decided to use the harmonic mean in our experiments since it captures more information.

Additionally, we tried setting a fixed value to probability p (see line 4 in algorithm 2) as per Chang et al.
(2015) instead of using SEARN’s exponential decay schedule (Daumé III et al., 2009). When comparing
the best configurations on the validation set (with no sequence correction), using a fixed value seems to
be slightly worse than using an exponential decay schedule (0.89 BLEU difference in SF hotel).

To assess the impact of naive alignments (see section 3.1) on our system we tried initializing the
policy π0 on random alignments. In this case, the values of the MR are aligned with words in the NL

reference randomly. Subsequently, the random alignments are expanded alternatively to unaligned words
similarly to naive alignment expansion as described in section 3.1. The best configuration with random
alignments, as expected, performs worse to using naive alignments (25.84 difference in BLEU), but LOLS

still improves on the initial policy (5.49 improvement on π0). While all results reported above are on the
SF hotel dataset, similar conclusions can be drawn for the other datasets we examined.

SF RESTAURANT
FULL TEST (1040 MRS) UNIQUE (158 MRS) NON-OVERLAPPING (13 MRS)

BLEU ROUGE ERR(%) BLEU ROUGE ERR(%) BLEU ROUGE ERR(%)
WEN 74.50 77.75 2.54 52.97 43.52 6.29 27.04 20.44 10.38
LOLS 66.01 64.56 0.15 49.44 38.52 0.58 28.21 21.47 0.00

SF HOTEL
FULL TEST (1076 MRS) UNIQUE (96 MRS) NON-OVERLAPPING (11 MRS)

BLEU ROUGE ERR(%) BLEU ROUGE ERR(%) BLEU ROUGE ERR(%)
WEN 86.54 84.36 0.88 66.37 56.19 3.99 37.24 27.27 6.82
LOLS 80.00 76.88 0.25 68.65 68.37 0.52 33.31 27.01 3.63

Table 1: Results on the SF datasets.

Finally, we use the test set to compare against the results of Wen et al. (2015), while setting the
parameters based on the validation set results. Our test set results are summarized in Table 1; we report
BLEU-4, ROUGE-4, and ERR(%). The BLEU-4 and ERR(%) scores of Wen et al. (2015) have been updated
after personal communication with them; both are now computed using the same implementation of the
measures. The scores are calculated on the full test set, as well as two smaller subsets. The first subset
consists exclusively of the unique MRs in the test set (i.e. no MR appears more than once in the unique
subset). The results in the unique subset may be more indicative of a system’s performance as the
distribution of MRs in the test set is unbalanced, e.g. an extreme case in the full test set, is the MR

goodbye() which appears 176 times. Comparing the two systems, we see that LOLS performs worse in
terms of BLEU and ROUGE, but also has lower ERR(%); this indicates that our system tries to include
more attributes in the NL sentences. However, when looking at the scores in the unique MR subset, the
difference between the two systems narrows, with almost no difference in the SF hotel dataset.

Examining the test set further, we noticed that there is a big overlap between the training, validation
and test sets when we consider the MRs in their delexicalized form (see sction 2). Given that both our
and Wen et al. (2015)’s models are trained on the delexicalized forms of the training MRs that means
that the evaluation is, in part, performed on MRs that have already been encountered during training.
In an effort to more accurately assess how the models generalize to unseen input, we define a second
subset of the test set, consisting of the unique MRs whose delexicalized version does not appear in either
the training nor validation data (i.e. non-overlapping MRs). As it turns out, these are only 11 and 13
non-overlapping MRs in the SF hotel and restaurant datasets respectively. Comparing the two systems in
this second subset shows little difference between them; however we cannot draw any conclusions as the
subset is very small. We show below some output utterances from Wen et al. (2015)’s system and ours:

MR: inform(type=restaurant,count=’239’,good for meal=dont care,food=dont care)
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WEN: I have found 239 restaurants serve any meal if the food type is not an issue.

LOLS: There are 239 restaurants if you do not care about the meal and food.

MR: inform(name=’kean hotel’,has internet=’no’)

WEN: We’re sorry, the Kean hotel does not have access to the internet.

LOLS: We’re sorry, the Kean hotel does not have internet.

4.3 Experiments with the BAGEL dataset

The BAGEL dataset was developed by Mairesse et al. (2010) and contains 202 MRs, each corresponding to
2 NL references.3 The dataset describes restaurants, and contains one predicate (inform) and 8 attributes
(see Figure 1). Each attribute can take multiple values, which are either verbatim strings or constants.

BLEU ROUGE NIST ERR(%)
DUSEK
Basic perceptron 52.35 46.43 4.777 23.90
+ Diff-tree upd. 56.75 50.82 5.137 25.10
+ Future promise 56.71 48.08 5.441 24.16
LOLS 54.22 47.39 5.547 16.66

Table 2: Results on the BAGEL dataset.

In this section we are comparing against Dušek and Jurcı́cek (2015), who based their work on the
BAGEL dataset. We include results from three variations of their system, the first using only a perceptron
to score the output, the second augmented with differing tree updates and the last with future promise
estimations. Following their work, we use 10-fold cross validation, with no overlap between MRs in the
training set and the test set; we obtained and use the same folds. Their scores have been recalculated
using the same implementation of the measures we use. The BAGEL dataset has no separate development
set, so we tuned our system’s parameters using 10-fold-cross-validation as well.

Table 2 shows our results; we report BLEU-4, ROUGE-4, NIST (Doddington, 2002), and ERR(%). We
have achieved better NIST scores than Dušek and Jurcı́cek (2015)’s, with slightly worse BLEU-4 and
ROUGE-4 scores. Our lower ERR(%) suggests that our system includes more information (i.e. attributes-
value pairs) into the sentences, which may account for the slightly worse BLEU and ROUGE scores.
Another explanation for Dušek and Jurcı́cek (2015)’s performance is, as stated before, that their surface
realization is performed using rules based on the frames of an English-Czech dependency treebank.

4.4 Human evaluation

To better assess the perceived quality of our system’s output, we showed pairs of MRs and generated
utterances for all datasets to 202 human judges, not involved in the work of this article. They were all
fluent, though not native, English speakers. We generated 1076 + 1040 + 202 texts from the MRs of
the SF hotel, SF restaurant, and BAGEL data sets using our NLG system, and also obtained the respective
texts that Wen et al. (2015) and Dušek and Jurcı́cek (2015) generated in their work using their best
configurations. Each MR and generated utterance was shown to (at least) three human judges, in random
order. For each pair, the judges were asked to either score the generated utterance in terms of fluency,
and informativeness; a scale from 1 to 6 was used. Each judge scored fluency and informativeness on
separate sets of texts, to minimize correlation between the criteria. Among the texts that every judge
scored, was a small subset of texts whose quality in regards to each other was known beforehand. We
used that subset to filter out unreliable human judges that did not score these texts as expected.

BAGEL SF RESTAURANT SF HOTEL
Dušek and Jurcı́cek (2015)

LOLS Wen et al. (2015) LOLS Wen et al. (2015) LOLS+ Future promise
Fluency 5.15∗ 4.79∗ 4.49 4.23 4.41 4.68
Informativeness 4.53∗ 5.24∗ 5.29 5.36 5.36 5.19

Table 3: Human evaluation on BAGEL and SF datasets.

3BAGEL is freely available for download at: http://farm2.user.srcf.net/research/bagel/
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Table 3 shows the results of the human evaluation, averaged over all the texts. In the BAGEL dataset,
our system performs slightly worse in terms of fluency, but is perceived as more informative. In the SF

restaurant dataset, our system performs worse in terms of fluency and better in informativeness, while
in the SF hotel dataset, our system performs better in fluency and worse in informativeness. However,
no statistically significant difference was detected in the SF datasets for both of these criteria.4 Table 4,
shows the results if we isolate the human judgements for the subset of non-overlapping MRs (see sec-
tion 4.2); we see that the differences between the systems are much clearer but again we must state that
no safe conclusions can be drawn from that small a subset.

SF RESTAURANT SF HOTEL
Wen et al. (2015) LOLS Wen et al. (2015) LOLS

Fluency 3.53 3.23 2.38 4.22
Informativeness 4.90 5.23 4.65 4.30

Table 4: Human evaluation on the non-overlapping MRs of the SF datasets.

5 Related work

Apart from the works we compared against, only Konstas and Lapata (2013) and Mei et al. (2016) do
not need pre-aligned data. Konstas and Lapata (2013)’s approach incorporates the work of Liang et
al. (2009) that learns a generative semi-Markov model to calculate the alignments. We note that this
alignment model is developed on the datasets considered, and does not generalize equally well to other
datasets (Angeli et al., 2010). On the other hand, the naive alignments we infer are much simpler and we
improve them by joint learning of word and content action prediction with respect to the sentence-level
evaluation via BLEU and ROUGE. Concurrently, Mei et al. (2016) introduced an encoder-aligner-decoder
model to perform content selection and surface realization without pre-aligned data. Their work employs
bidirectional LSTM-RNN models, similarly to the work of Wen et al. (2015), and a coarse-to-fine aligner.
Unfortunately, they do not report results in the datasets we performed our evaluation on, do not compare
against Wen et al. (2015), and their code was unavailable when we were preparing this article.

Imitation learning algorithms for structured prediction have been applied successfully to a variety of
tasks, such as dependency parsing (Goldberg and Nivre, 2013) and dynamic feature selection (He et al.,
2013). Vlachos and Clark (2014) applied a variant of DAGGER (Ross et al., 2011) to learning a semantic
parser from unaligned training examples, which is the reverse task to NLG, i.e. predicting the MR given
the NL utterance. To circumvent the lack of alignment information they resorted to defining a randomized
expert policy similar to the heuristic one we define, but NLG poses a greater challenge since the output
space is all English sentences possible given the vocabulary considered.

Finally, we believe that the main benefit of our imitation learning approach, namely that it is able to
learn using a non-decomposable loss function, is orthogonal to using continuous representations such
as the hidden state and memory cell in the LSTM of Wen et al. (2015). Recent work by Ranzato et al.
(2016) showed how RNNs can be trained at the sequence level (as opposed to the word level) with non-
decomposable loss functions in the context of machine translation using imitation learning, and such an
approach would also be applicable to NLG.

6 Conclusions

In this work, we adapted the Locally Optimal Learning to Search algorithm (Chang et al., 2015) to learn
an NLG system from unaligned training data, focusing on its ability to learn with non-decomposable
loss functions and suboptimal expert policies. We compared our approach to two recently proposed
approaches for learning NLG from unaligned data on datasets they were developed on (three datasets
across two domains) and achieved comparable results in automatic evaluation. We also performed human
evaluation which showed that our system performs comparably, though its fluency requires improvement
on MRs with multiple attributes.

4We performed Analysis of Variance (ANOVA) and post-hoc Tukey tests (a = 0.05); * denotes statistical significance.
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Stéphane Ross and J. Andrew Bagnell. 2014. Reinforcement and imitation learning via interactive no-regret
learning. CoRR, abs/1406.5979.
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