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Abstract—The use of increasingly complex hardware and
software platforms in response to the ever rising perfor-
mance demands of modern real-time systems complicates the
verification and validation of their timing behaviour, which
form a time-and-effort-intensive step of system qualification or
certification. In this paper we relate the current state of practice
in measurement-based timing analysis, the predominant choice
for industrial developers, to the proceedings of the PROXIMA1

project in that very field. We recall the difficulties that the
shift towards more complex computing platforms causes in that
regard. Then we discuss the probabilistic approach proposed
by PROXIMA to overcome some of those limitations. We
present the main principles behind the PROXIMA approach
as well as the changes it requires at hardware or software level
underneath the application. We also present the current status
of the project against its overall goals, and highlight some of
the principal confidence-building results achieved so far.

I. INTRODUCTION

Complex high-performance hardware and software com-

ponents are increasingly used in critical real-time embedded

systems (RTES)2 in match with the rising computational

demands of new-generation avionics, automotive, railway

and medical RTES.

The verification of the timing behaviour in industrial-

quality RTES requires providing evidence that the appli-

cation will always perform its duties in a timely fashion.

This verification involves the use of methods to estimate the

worst-case execution time (WCET) of the time-critical appli-

cation programs, and their completion time once governed

by the scheduling decisions made at system level. WCET

estimates need to be sufficiently tight (to avoid incurring

undue pessimism) and trustworthy enough to earn the level

of confidence defined in the applicable safety standards.

Determining a tight and sound Worst-Case Execution

Time (WCET) bound of software programs running on

1Probabilistic real-time control of mixed-criticality multicore systems.
2For safety, availability, security, mission or business concerns.

modern, high-performance processors is especially challeng-

ing [4]. Various WCET analysis techniques exist in the state

of the art. The industrial users in PROXIMA all come from

measurement-based deterministic timing analysis (MBDTA),

which is not surprising owing to its considerable presence in

current industrial practice [28]. With MBDTA, the software

programs of interest are executed on the target platform to

collect a score of execution-time measurements. To achieve

minimum soundness, MBDTA requires the user to have

control on: (i) the conditions in which the measurement

runs are made so that they represent those expected during

operation; and (ii) the input and state conditions that may

cause the program to incur its worst-case timing behaviour.

The most well-known factors that affect the program’s

execution time include the input vectors that determine –

among other – the control flow path taken by the program in

the measurement runs. We call them high-level level sources

of jitter. The use of complex high-performance hardware

creates other low-level sources of jitter, which include: the

mapping functions that determines how software objects

are assigned to memory, as they determine how they are

placed in cache, the conflicts that they can suffer, with

the consequent execution-time effects; and, in a multicore

setting, the way parallel contention on access to shared

hardware resources (e.g., a bus) cause access requests to

jitter in time.

With MBDTA, the end user must control all input and

state conditions with influence on execution-time jitter so as

to achieve sufficient coverage of its effects for all sources

of it in the system (across the whole set of measurement

runs made during analysis). While tools exist for high-level

sources of jitter that validly aid the user in that endeavour, no

such tools exist for low-level sources of jitter. For instance,

it is hard to assess whether all potential cache layouts,

or a representative subset of them, have been exercised

in the measurement runs. Likewise in a multicore setting,

determining whether the access requests from a program



Figure 1. Introduction to MBPTA and its use.

have aligned with those of its parallel contenders in a manner

that represents a sufficiently stressful scenario is exceedingly

hard. Overall, the lack of control and coverage of low-level

sources of execution-time jitter in a processor with high-

performance features severely limits the confidence that can

be provided on the computed WCET value.

Contribution. The PROXIMA project aims at enabling

cost-effective verification of timing analysis – including

worst case execution time – for real-world software pro-

grams running on complex multicore and manycore plat-

forms. The project vision rests on two main principles.

First, selectively introducing randomization in the timing

behaviour of selected hardware and software resources or

making them work on their worst latency so as to cause

the whole spectrum of impact of low-level sources of

jitter to be captured in measurement runs. Second, using a

measurement-based probabilistic timing analysis (MBPTA)

techniques to determine the worst combined impact of all

sources of jitter present in the system, thereby quantifying

the probability that the execution time of the software

program of interest may exceed a given bound. The injection

of timing randomisation (and forcing some resources to

work on their worst latency) in the execution platform

is a fundamental enabler to the guarantee that, across a

sufficiently low number of runs, the impact of all existing

sources of jitter can be individually covered. This tenet is

in contrast with deterministic architectures where, no matter

how many measurement runs the user may make, it is hard

if at all possible to provide a quantitative guarantee that

all the timing phenomena of interest have been observed.

Timing randomisation also ensures that the impact that

each individual source of jitter has on program execution

time follows a probabilistic law, which allows using sound

statistical means to determine the number of runs required

to observe its manifestation and thus apply probabilistic

modelling soundly. In that manner the user is relieved from

the heavy control obligations carried by the use of MBDTA.

II. MEASUREMENT-BASED DETERMINISTIC TIMING

ANALYSIS: STATE OF PRACTICE

Cost/benefit considerations compounded with industrial

pragmatism cause MBDTA to be the dominant state of

practice. The typical conduct is to capture the “high-water

mark” value in execution time across multiple runs of the

program of interest and then add an engineering margin to it

(e.g., 20%) to compensate for the unknown. For this method

to be used with sufficient confidence, substantial effort must

be expended to ensure that the worst-case conditions have

been exercised or closely approximated, which however is

diluted in the overall testing campaign. This has proven to be

feasible and viable for simple hardware and simple software.

In the general case however, software programs may have

an inordinately large input space, which cannot possibly

be exercised in a test campaign searching for worst case.

The input vectors used are therefore those intended for

functional testing, which may not be fit to incur the longest

execution time, falling short on the side of the worst-case

path or in the coverage of the low-level sources of jitter.

Tool support exists that allows this manual process to be

reduced to a series of smaller testing problems that can be

more easily managed. For example, a tool may automatically

combine the measurements taken from multiple tests on the

program of interest, to calculate a high-water mark bound

that includes conditions that are not necessarily exercised in

a specific test case. Doing that removes the need to drive the

program down the worst case path in one single test case.

Instead, multiple (smaller and easier) test cases are used to

drive each fragment to its own worst case, the results being

automatically combined according to the program structure.

This approach, which is implemented in commercial tools,

has seen broad acceptance in DO-178B/C projects, due to it

being incremental on the existing methods, with significant

cost saving in terms of testing effort.

As platform complexity increases, the effort to test the

longest path within a single test case exceeds practical and

cost limitations. Furthermore, low-level factors out of the

control of the tester (such as cache state, jitter caused by

floating point operations and such like) limit the reliability

and confidence of this method.

• For instance, the memory placement of software objects

has been deemed a factor of high consequence on

execution time in the presence of cache memories

as it determines how different addresses compete for

cache space. Even if those addresses can be fixed

so that inter-task side-effects can be avoided, this is

not so for stateful services from the operating system,

whose execution time may depend on execution history.

Services using different memory locations as a result of

past history, would cause different cache access patterns

and different execution times to emerge depending on

the type and cardinality of tasks included in the test.



Figure 2. MBPTA’s use procedure

• Another example is the floating-point unit. For most

architectures the floating-point unit takes a variable

latency depending on the particular values operated.

This cause that depending on the particular values used

in each experiment – which the user can hardly control

– the program will suffer a variable impact due to

floating point operations.

Getting accurate and cost-effective timing analysis ulti-

mately comes down to a question of representative testing,

which means selecting a suitable level of detail for compo-

nents (ideally as large as possible) so that the user can ensure

that test inputs and test conditions exercise each component

adequately. This should provide confidence that all important

sources of jitter have been observed without introducing

additional conditions that are infeasible in practice. Then

those results need to be combined in a representative way.

III. PROBABILISTIC ANALYSIS AND RANDOMISATION

PROXIMA’s MBPTA derives probabilistic WCET

(pWCET) estimates in the presence of high-performance

hardware. pWCET distributions express the maximum

probability with which one instance of the program can

exceed a given execution time bound. For instance, in

Figure 1 we observe that the probability that one instance

of the program to run longer than 4 ms is smaller than

10−14. The particular execution-time value chosen is the

one whose exceedance probability is deemed sufficiently

low in relation to the integrity level of the functionality

being analysed, dependent on the corresponding safety

standard. For instance, the execution rate of a program

could be used to determine the exceedance threshold per

instance such that the set of program’s executions occurring

in an hour can be shown not to incur more exceedances

than a given threshold (e.g., 10−9). Interestingly, at the

moment safety-related standards and guidance documents

Figure 3. GPD and GEV

do not support the concept of probabilities associated with

software. However it is not unusual for acceptable practice

for certification to change over time, e.g. the adoption of

fixed priority scheduling in aircraft engines [7], [16] which

contrasts with the earlier practice of static scheduling.

When the need arises for new technology features, the

certification authorities often develop their position on

issues to be considered and the way the technology might

be used, e.g. for caches [25] and multicore processors [26].

For the application of MBPTA, we differentiate between

two moments in the lifetime of the system: the analysis

phase, when verification of the timing behaviour takes

place; and the operation phase when the system becomes

operational. The goal of MBPTA is to compute the pWCET

function of the program of interest with execution-time

measurements taken at analysis time that are guaranteed

to represent the operating conditions that may occur during

operation. This requires MBPTA to have good control of

all low-level sources of jitter during analysis. The values

of all sources of execution-time jitter for that experiment

are referred to as execution conditions for an experiment.

MBPTA therefore requires that the execution conditions

under which measurements are collected during analysis lead

to equal or worst timing behaviour than determined by the

conditions that can arise during operation [9].

A. Extreme Value Theory

MBPTA uses Extreme Value Theory [14], [22] (EVT)

to build a pWCET distribution based on a sample with a

limited number of observations collected during the analysis

phase (e.g., in the order of thousands of execution time

measurements). Below we provide a brief and informal

description of the foundations of EVT: for more formal

descriptions of EVT, see [14], [22].

EVT is used to study the probabilities associated with the

occurrence of extreme (and thus rare) events. That is, EVT is

used to model the behaviour of maxima/minima in the tail of

the probability distribution of those events. EVT has been



Figure 4. Gumbel, Frechet and Weibul

successfully applied in a number of fields, e.g. hydrology

and insurance. EVT has two main results. First, for the

distribution of excesses over a threshold (see the top part of

Figure 3), EVT shows that the limiting distribution is a gen-

eralized Pareto distribution (GPD). Second, – under certain

conditions – the distribution of the standardized maximum of

a series (see the bottom part of Figure 3) converges to one of

the Gumbel, Frechet, or Weibull distributions, Figure 4. All

those three distributions are described within the generalized

extreme value (GEV) distribution.

EVT requires that the data being analysed can be mod-

elled with independent and identically distributed random

variables [14][8]. This can be assessed using specialised

statistical tests. Interestingly, some authors have shown that

independence across observations is not strictly needed as

long as maxima are independent or the dependence across

maxima is weak [10], [24]. However, in the rest of this paper

we build upon independent data since it is a by-product of

MBPTA-compliant platforms.

The Exponential Test is also used to confirm that the

maximum of the series converges to Gumbel’s exponential

tail, which is a good fit the WCET problem since the

execution times of a program are finite but its maximum

is unknown [11].

MBPTA applies EVT to derive pWCET estimates of a

program running on a computing platform that has char-

acteristics which ensure the emergence of sufficient ran-

domness [11]. There is a fundamental challenge in applying

EVT to solve the pWCET problem: EVT treats the system

as a black box so that the projection it produces from the

data it is fed, solely holds for exactly that system. This

requires the user to ensure that the observation data obtained

from the system incurred during analysis have an upper-

bounding relation to those the system may produce during

operation. Simple-minded application of EVT to analysis-

time observations that do not warrant the above condition

would fail to provide sound results for the operation-time

behaviour of the system. Another way to appreciate the

significance of this problem is to note that EVT should be

understood as a method that predicts the worst combined

effects of phenomena individually observed during analysis

but not to predict the occurrence of those never observed.

As a precondition to sound use of EVT, MBPTA requires

that the sources of execution-time jitter phenomena observed

during analysis have sufficient (upper-bounding) represen-

tativeness of their manifestation during operation. If this

condition is warranted, then feeding these observations to

EVT produces an approximation of the tail of the distribution

of the worst-case timing behaviour that the program may

exhibit in the operational life of the system. Next we discuss

how this can be achieved using MBTA-compliant processors.

B. Meeting MBPTA requirements

To meet the above-described MBPTA requirements,

MBPTA-compliant processors are modified in two ways:

randomisation is injected in the timing behaviour of hard-

ware resources whose jitter is high (e.g. caches and

buses) [9] so that the probability of their worst-case be-

haviour can be captured in analysis-time measurement

runs [12][3]; other processor resources with small jitter are

instead set to work at their highest latency during analysis.

As a result the corresponding measurements at analysis

upper bound the execution time distribution for that resource

that may manifest during operation time [21]. The low-to-

high boundary for the above discrimination is processor and

application dependent.

It is worth noting that the goal of MBPTA compliance,

i.e. randomizing the timing of some (jittery) resources

and making the remaining work in their worst latency, is

not providing independent and identically distributed (i.i.d.)

execution times. Instead, the goal is to help providing an

argument that i) analysis time observations capture the

execution time impact of jittery resources; ii) that impact

upperbounds the one that can occur during operation. The

fact that i.i.d. execution times are obtained is a by-product

of MBPTA compliance.

C. Application Process

Figure 2 outlines the MBPTA procedure. First, the user

has to provide confidence that the execution platform is ren-

dered MBPTA-compliant by hardware or software means, so

that the sources of execution-time jitter can be deemed con-

trolled. Second, the user gathers execution-time observations

from measurement runs of the software program of interest

(Unit of Analysis). Third, this body of data is processed with

the Block Maxima Method [14] to derive a distribution of

maxima, which is fed to a checker that determines whether

the samples that compose it are independent and identically

distributed (as EVT requires). The checker also assesses

whether the data follows the Gumbel distribution. Once all

the tests are passed, the EVT process for tail extension is

applied, which determines the parameters of the Gumbel



distribution that best fit the given distribution of maxima.

Finally, we assess whether the collected measurements are

sufficient to ensure statistical representativeness. Should

this not be the case, more measurements would have to

be collected and the process would be repeated until this

condition is satisfied. Experience suggests that the number

of runs required is in the order of thousands.

IV. CURRENT STATUS AND FUTURE STEPS

In its quest for high test-readiness level, PROXIMA has

strived to advance the maturity of all individual elements re-

quired for correct functioning of MBPTA. We now describe

the situation for each such element.

A. MBPTA Improvements

In terms of the MBPTA procedure per se, PROXIMA is

advancing on the following fronts.

• Path Coverage: MBPTA provides pWCET estimates

that are valid only for the paths that have been exercised

by the input vectors provided by the user. However,

complexity and cost considerations often restrain the

user from providing adequate path coverage. It is also

worth noting here that MBPTA technology in general

does not build on the ‘probability’ of each path to

occur. It is in fact quite complex, if at all possible,

to determine for a particular path the probability with

which it will be executed during operation [9] and to

guarantee that the path frequency observed at analysis

time, for a concocted set of input vectors, matches

exactly that probability. With MBPTA, if a path can

be executed at operation, its impact is conservatively

factored in the pWCET estimate

The Extended Path Coverage (EPC) [29] technique re-

lieves the user from this stringent coverage requirement

only relying on a set of measurements for each basic

block (already requested in DO-178C [23] for DAL-A

functions). EPC builds on the concept of probabilis-

tic path-independence to characterize the probabilistic

impact of unobserved paths on the set of observed

execution times. The computed impact is then used to

synthetically extend the set of observations to obtain the

equivalent effect of full path coverage, while incurring

a small amount of overestimation in comparison with

standard MBPTA. Tool support for EPC has been fully

implemented for an FPGA processor that has been

developed in PROXIMA, seeking MBPTA-compliance

by design. After a first positive evaluation on top of a

cycle-accurate simulator reported in [29], EPC support

is now being evaluated on the actual FPGA.

• Dependent data: The basic versions of EVT require

independence conditions on the set of execution time

measurements. However, this requirement may not hold

if successive values are dependent in time, the distri-

bution changes gradually over time, or the distribution

changes periodically.

By using appropriate methods for modelling block

maxima for dependent data and threshold exceedances

for dependent data, in the context of Generalized Ex-

treme Value (GEV) and Generalized Pareto Distribution

(GPD) estimators respectively, EVT can be used with

dependent data. In this respect, by building two separate

and independent estimation methods (therefore free

of common-mode errors) we provide the validation

arguments for the obtained pWCET estimate. The

claim is that if the pWCET estimates obtained by the

two methods are sufficiently close, then the obtained

pWCET is indeed valid with respect to set of execution-

time measurements provided.

• Multicore analysis: Resources shared by multiple cores

are subject to interference resulting from parallel com-

peting accesses or modifications. Inter-core interference

constitutes an important part of the execution conditions

that need to be controlled. Maximising the interferences

observed at analysis time is extremely complex, as

interfering co-runners would be required to conflict

with each and every requests of the Unit of Analysis.

1) Our first multicore MBPTA analysis variant re-

lies on observations made with controlled co-

runners that constitute a multi-variate model that

relates the sources of inter-core interferences to a

given impact. The inter-core interference model

can then be used to derive an inflation factor

that upper-bounds the possible impact of inter-

core interference, including the worst case, on

the Unit of Analysis in the actual system. The

use of a MBPTA-compliant platform, offering ran-

domised arbitration policies and isolation between

the shared state space used by different cores,

guarantees representativeness of each observed

and predicted interference scenarios. The provi-

sion of the interferences-generating contenders

during analysis is lifted from the end user.

2) Our second variant, called partially time com-

posable bound, builds on two elements. First,

performance monitoring counters (PMCs) when

running each task in isolation. These include ex-

ecution time, bus accesses and memory accesses.

And second, worst-latencies that a request from a

given task can cause on a contender task. This is

derived by deploying a set of specialized applica-

tion kernels (or resource stressing kernels [15]).

With these two pieces of information the model

derives the worst contention that a task can suffer

from another contender task without the need of

simultaneously running them.



Figure 5. PROXIMA platforms.

• Tool support RVS is a framework of tools for on-target

verification for embedded, real-time software. RVS in-

cludes RapiTime, a measurement based software timing

performance tool. RapiTime automates the instrumen-

tation of software for measurements, and processes data

to identify WCET hotspots and potential WCET paths

based on the actual observed measurements. RVS has

been adapted for PROXIMA by the development of

new instrumentation routines for gathering data from

PROXIMA platforms, by incorporating the PROXIMA

pWCET calculations into the standard workflow, and

support for data post processing such as via EPC.

In addition, RVS viewer has been adapted to include

visualisation of the pWCET graphs.

B. MBPTA-enabling hardware

In PROXIMA, we have implemented a MBPTA-compliant

4-core processor FPGA prototype, starting from an RTL

LEON3 processor description [27] enhanced with shared

L2 cache, improved tracing support, and a per-core float-

ing point unit (FPU). To achieve MBPTA compliance the

following hardware modifications have been applied: all

floating point operations can be selectively set to work at

their worst-case latency; L1 data and instruction caches,

TLBs implement random placement and replacement [18].

The same holds for the L2 cache, which is also partitioned

across cores to be free from inter-core conflicts. Those

modifications increase the FPGA resources consumption by

a mere 2%. The next planned step is to implement random

arbitration for the on-chip bus [17].

In PROXIMA we also address manycore processors. To

this end, we have built a performance simulator that models

an exploratory clustered manycore. Efficient networks-on-

chip (NoCs) have been designed for tree-based intra-cluster

communications and crossbar-based inter-cluster communi-

cations. The manycore processor simulator will be further

extended to make it entirely MBPTA-compliant, thus dealing

with memory and I/O access.

C. MBPTA-enabling software

PROXIMA also seeks to enable MBPTA compliance on

top of Commercial Off-The-Self (COTS) processors. To this

end, we have extended prior software-only randomisation

solutions [19], [20] to attain MBPTA compliance on top of

caches that implement modulo placement and LRU replace-

ment.

Software-only randomisation solutions randomise the

placement of objects in memory so that the resulting cache

conflicts also take a random nature, independent of the

actual location of the objects in memory. In PROXIMA

we have devised two method to achieve this goal: one

which operates on a single executable and causes it to

take random placements; another, which builds multiple

executables which differ in memory placement. The for-

mer is called Dynamic Software Randomisation (DSR); the

latter Static Software Randomisation (SSR). DSR performs

randomisation at runtime by placing objects dynamically

in random locations with support from a combination of

a compiler pass and a runtime library. SSR achieves the

same effect in an entirely static manner by randomising

the position of objects in the source code (and so in the

binary), thus also leading to random memory locations.

Whereas DSR randomises execution time across runs, SSR

does so across binaries. Hence, the timing analysis process

and interpretation of the results changes across techniques,

although this is transparent to the user.

Currently, PROXIMA supports SSR on COTS LEON3

and AURIX TriCore processors, and DSR on the COTS

LEON3 processor. DSR will also be readied for a P4080

processor.

D. Real-Time Operating System (RTOS)

RTOSes can provide useful help in meeting the MBPTA

requirements. The solution embraced within PROXIMA

builds on the concept of time-composable RTOS, which

guarantees to only cause an additive contribution to the

execution time of the application program, without causing

it to incur additional jitter effects caused by history or data



Figure 6. Reference architecture.

dependence owing to RTOS interference action or services.

We seek constant (or at least near-constant) timing behaviour

for RTOS services, and prevent the RTOS from interacting

with the inner state of shared hardware resources. The

resulting time composability is achieved at the cost of a

modest performance loss.

The RTOS-level solutions pioneered in PROARTIS [1]

have been brought to maturity within SYSGO’s PikeOS [2],

which supports para-virtualization of multiple guest OSes

with guarantees of isolation (see Figure 7). Time compos-

ability improvements have also been implemented on the

guest OSes used in the PROXIMA case studies, namely

ARINC-653, and native PikeOS.

For research purposes at lower Technology Readiness

Level (TRL), we produced a time-composable version of

more generic RTOSes, such as RTEMS in its recently-

released multiprocessor variant, for use with the FPGA, a

multicore port of TiCOS, an ARINC-653 compliant RTOS

developed in PROARTIS, for use with the P4080, and Erika

Enterprise3, for use with the AURIX.

All of the PROXIMA RTOSes have also been modified

to meet the instrumentation requirements entailed by the

MBPTA technology, and to support the application of SW-

only time randomization techniques.

E. Certification

PROXIMA addresses critical RTES, therefore, it must

comply with the safety standards of the target critical in-

dustries. The PROXIMA team is developing a cross-domain

argumentation considering the commonalities of the different

safety certification standards considered in the project: Rail-

way (EN-5012x), Automotive (ISO-26262), Avionics (DO-

178) and Space (ECSS-Q-ST-x0C).

Within this cross-domain approach, the mathematical

foundations of MPBTA are being demonstrated with rigour

and authority sufficient to withstand independent review,

together with the required answers of the representativeness

3Erika Enterprise RTOS, http://erika.tuxfamily.org/drupal/.

Figure 7. PikeOS framework.

question (including for the example, the quality and quantity

of the input data to be collected during analysis) and the

implications of the requiring hardware and software modifi-

cations. The certification approach in PROXIMA also under-

goes domain-specific evaluations. In the case of the railway

domain, for example, an early safety concept has been elab-

orated considering the use of MBPTA on a mixed-criticality

and multicore scenario [5]. This concept, which also presents

a first version of the mathematical foundation of the MPBTA

process and the design of a hardware implementation of an

on-chip Pseudo Random Number Generator (PRNG) to feed

timing randomization [6], has been positively assessed by

an external certification authority addressing SIL-4 integrity

level within IEC-61508/EN-5012x standards.

V. PROXIMA PLATFORMS AND EARLY RESULTS

PROXIMA seeks to increase the TRL of the MBPTA

technology with respect to the status it had at the end of

PROARTIS – the predecessor project of PROXIMA.

Execution Platforms. PROXIMA has developed two

classes of execution platforms, depending on whether timing

randomisation is achieved by hardware or software means.

The former class includes custom processors; the latter

COTS.

• Hardware-enabled randomisation. In this group, we find

the LEON3 [27] based FPGA processor mentioned in

section IV, in which randomization is injected through

hardware modifications, as shown in the left part of Fig-

ure 5. In the said FPGA, the placement and replacement

policies for all caches are time randomised, as well as

the arbitration on access to hardware shared resources

(such as the bus). Some other resources, such as the

floating-point unit, which has a jittery response time

dependent on the input values, can be set to always

respond with worst latency.

• COTS with software-enabled randomisation. This

group includes all platforms in which the hardware



Figure 8. Results obtained and comparison with current practice.

is given cannot be customised to support MBPTA.

For those processors, we achieve MBPTA compliance

by injecting randomisation via software, with ad-hoc

software randomization technology. In this group we

find the same LEON-3 [27] based FPGA platform

mentioned above, except that no modification has been

applied to it, to keep equivalent to a COTS version.

This variant enables us to compare the effectiveness

of hardware-enabled and software-enabled solutions ap-

plied to one and the same processor. In PROXIMA we

also use two further COTS platforms, with different de-

grees of hardware resource sharing: a FreeScale P4080-

based board and an AURIX TC7XX-based board.

In all of the execution platforms, RVS is used to gather

the execution-times measurement observations. RVS auto-

matically instruments the source code so that measurements

can be taken at specific points of execution. The source code

is compiled and executed on the target, capturing the data

to a series of time trace files. Further other information such

as performance-monitoring counter or addresses traces are

extracted thanks to manual modification of the application

associated to dedicated custom exploitation scripting (not

yet integrated in an unified tool suite). The trace data are

filtered and used for Extended Path Coverage, followed

by processing through the MBPTA calculation programs to

create the pWCET curves. The data can then be viewed

within the RVS viewer in the form of a series of graphs

On top of these platforms, a set of case studies in the

avionics, space, railway and automotive domains are being

run to assess the benefits of the PROXIMA approach.

Early Results. The selected application is Weight and

Balance Back-up Computation part of the flight control

system and in charge of computation of estimations of centre

of gravity and weight of the aircraft.

We considered the FPGA platform comprising 4

LEON3 [27] processors, see Figure 6. Each core comprises

a set-associative data and instruction caches as well as fully-

associative data and instruction TLBs. The request from the

instruction path and the data path are sorted in private buses

before they are send to the shared bus and the memory

controller. The caches implement random placement [18]

and random replacement, the latter of which is deployed

in many architectures. Fully-associative TLBs implement

random replacement. Note that the effect of buffers has

been shown MBPTA compliant [13]. For the purpose of this

preliminary experiment, we show results for a single-core.

This allows us to asses the impact of randomisation in the

different caches and TLBs.

The results presented in this paper are related to the

execution of this IMA application on top of PikeOS A653

personality and hypervisor running on the MBPTA com-

pliant HW randomized FPGA one a single core with no

opponents.

We execute 1,000 times the function under analysis on the

target platform. This value ensures the results are representa-

tive, see last step in Figure 2. Execution time measurements

are captured through specific instrumentation using GPIOs

and off the shelf TraceBox hardware provided by Rapita

partner. The traces are then processed by a modified RVS

toolsuite implementing MBPTA.

We start by checking that the distribution of maximums

obtained from the original population 1,000 execution time

measurements passes the independence and identical distri-

bution tests. We consider the commonly accepted signifi-

cance value α = 0.05 for both the two-sample Kolmogorov-

Smirnov (KS) [14] test for identical distribution and the

runs-test [8] for independence. To our best knowledge there

is no proof for a precise significance value relevant to the

WCET estimation problem. We also pass the Exponentiality

Test (ET), which confirms that distribution of maximums

converge to a Gumbel.

Figure 8 shows the EVT projection obtained with MBPTA

and a comparison in terms of maximum-observed execution

time, also known as high-water mark (HWM), and WCET



estimate with respect to a deterministic architecture. In

Figure 8 we see the distribution of the execution time mea-

surement collected on the reference randomised platform and

the EVT projection obtained from that. The vertical dashed

lines from left to right show: the HWM for the deterministic

counter part of our reference architecture, the HWM for

the randomised reference architecture, the pWCET value

for an exceedance probability of 10−9 and 10−12. The last

vertical line shows the result of increasing by 20% the HWM

observed for the non-randomised architecture.

• HWM. HWM is only 5% worse for the randomised

architecture than for the deterministic one. This value

is in the range obtained for average performance results

that in general show that time-randomised architectures

provide around 10% less performance than their time-

deterministic counterparts.

• WCET estimate. In terms of WCET, the most important

metric in RTES, we show that for exceedance probabil-

ities at 10−9 and 10−12 the pWCET estimate provided

by MBPTA are only 6% and 8.5% higher than the

HWM of the randomised architecture. These results

show that the pWCET curve computed by MBPTA

slants towards the observed values, which provides

good tightness.

The pWCET bound corresponding to that exceedance

threshold is 14% higher than the HWM observed on

the deterministic architecture, hence better (because

tighter and thus less pessimistic) than the WCET value

computed with the current MBDTA techniques, which

use HWM+20%. Moreover, while MBPTA has a solid

mathematical foundation, the latter approach based on

the 20% adjustment does not, which affects its confi-

dence for future architectures.

VI. CONCLUSIONS AND FUTURE WORK

We have described the foundations of the PROXIMA

MBPTA approach and the benefits it brings over the current

practice with measurement-based timing analysis. We have

also summarized the state of PROXIMA in the develop-

ment of the technology apparatus required for the sound

application of MBPTA. Finally, we have shown early results

obtained with a real avionics case study on the PROXIMA

tool chain on a FPGA platform in which bits of the hardware

randomisation technology have been implemented. Until the

end of the project we plan to consolidate the transition to

multicores, both with customized designs in the FPGA and

COTS designs.
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