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Abstract 

Using data from the Millennium Cohort Study, we investigate the dynamic relationship between underlying 

family lifestyle and childhood obesity during early childhood.  We use a dynamic latent factor model, an 

approach that allows us to identify family lifestyle, its evolution over time and its influence on childhood 

obesity and other observable outcomes.  We find that family lifestyle is persistent and has a significant 

influence on childhood weight status as well as other outcomes for all family members.  Interventions should 

therefore be prolonged and persuasive and target the underlying lifestyle of a family as early as possible 

during childhood in order to have the greatest cumulative influence.  Furthermore, the results indicate that to 

reduce inequalities in childhood obesity, policy makers should target disadvantaged families and design 

interventions specifically for these families. 

  



1 Introduction 

Childhood obesity has been a growing problem in recent years but the causes are still not fully understood.  

Recent public health interventions and guidance which aim to reduce childhood obesity are increasingly 

focusing on the family, for example Change4Life (Department of Health, 2009) and clinical and public health 

guidance from the National Institute for Health and Care Excellence (NICE, 2008, 2010, 2006), rather than 

only on the child.  In doing so they acknowledged an association between family lifestyle and childhood 

obesity.  However, there is a lack of empirical evidence on this relationship. 

Previous studies have shown strong associations in BMI between family members (Abrevaya and Tang, 2011; 

Burke et al., 2001; Brown et al., 2013; Brown and Roberts, 2013) suggesting that childhood BMI could 

depend on the same influences as the BMI of other family members.  In addition, childhood adiposity is 

associated with socioeconomic status (Shrewsbury & Wardle, 2008) and parental education (Lamerz et al., 

2005; von Kries et al., 1999), hours spent watching television (Hancox and Poulton, 2006), diet and exercise 

(James et al., 2004; Taylor et al., 2015) and breastfeeding (Gibson et al., 2016).  Consequently, fully 

understanding the complex relationship between childhood obesity and other outcomes of family lifestyle 

could improve future interventions by helping to determine the expected benefits of family lifestyle 

interventions, when to implement them and which children and families might benefit the most from them. 

Given that childhood obesity and other outcomes of family lifestyle are expected to be dependent on the same 

underlying influences, it is important to model these outcomes jointly.  Despite this, the majority of previous 

studies have estimated these variables independently (Mizutani et al., 2007; Francis et al., 2003; Dewey, 

2003).  This approach is less informative when considering policy implications because it is only possible to 

identify how potential lifestyle interventions might influence a single outcome.  Other studies have jointly 

estimated a range of observable lifestyle outcomes, including diet, alcohol consumption and smoking habits 

(Balia and Jones, 2008; Contoyannis and Jones, 2004), allowing the benefits of potential interventions to a 

range of outcomes to be investigated.  To our knowledge, no previous study has attempted to simultaneously 

model multiple lifestyle outcomes for multiple family members and how this underlying lifestyle impacts on 

childhood obesity.  If lifestyle is a family-level concept which influences a range of outcomes for all family 

members, it is unlikely that interventions targeting individual children will be effective and family-level 

interventions which aim to improve the underlying lifestyle of a family will be more successful as well as 

having additional benefits.  This could provide important evidence in support of public health interventions 

such as Change4Life (DH, 2009) as well as informing future interventions. 

Existing studies show that early-life influences of obesity, particularly lifestyle during pregnancy and early 

infancy are important in predicting later obesity (Gibson et al., 2016; Reilly et al., 2005; Ajslev et al., 2011; 

Toschke et al., 2002).  However, these studies are generally cross-sectional and do not allow the evolution of 

lifestyle behaviours over time to be investigated.  These early-life influences might continue to have an effect 



throughout childhood and new influences could emerge as children grow up and their immediate environment 

changes, for example starting school.  Cunha & Heckman (2008) encouraged the use of more flexible 

dynamics when modelling development during childhood because children change so rapidly.  If family 

lifestyle persists over time, then it is likely that it will be difficult to change and strong interventions will be 

required.  However, any successful interventions could have long-lasting impacts on a range of outcomes for 

all family members and bring additional benefits throughout life.    

This paper contributes to the exiting literature by using a dynamic latent factor model to investigate how 

family lifestyle evolves over time during early childhood and how family lifestyle dynamics influence 

childhood obesity.  Underlying family lifestyle will be identified in each period of the model using a latent 

factor: a range of lifestyle outcomes identified using exploratory factor analysis (EFA) will be included in the 

construction of the factor at each time point.  In addition, a structural model will be employed to investigate 

how this latent factor evolves over time.  This approach has a number of advantages.  First, structural models 

can explain much more than models which use a single equation and can be used to investigate multiple and 

more ambitious research questions than more modest models such as fixed effects or instrumental variable 

models (Heckman and Urzúa, 2010).  Second, unlike more commonly used autoregressive models, structural 

models allow parameter estimates to differ over time.  Third, different mean outcomes can be identified for 

children with different characteristics unlike existing studies into adiposity which are restricted to estimating a 

single average treatment effect for a sample (Conti et al., 2011).  Identifying the full distribution of treatment 

effects allows those who will benefit most from potential interventions to be identified; this is vital evidence 

for policy makers in order for them to have the greatest possible impact.   

Public health decisions, for example those made by the NICE, use a range of evidence.  This includes cost-

effectiveness analysis which requires the prediction of future outcomes as consequences of potential 

interventions or policies.  These models are evidence-based wherever possible but inevitably rely on a variety 

of assumptions when evidence is lacking.  Evidence is routinely taken from trials, policy evaluation or 

econometric studies but much of this evidence uses static models with short-term single outcomes.  Dynamic 

models with multiple outcomes, like those employed in this paper, provide more long-term evidence without 

the need for further assumptions or extrapolation, leading to more robust public health interventions being 

recommended.   

In summary, we identify a comprehensive measure of family lifestyle which incorporates a range of family 

lifestyle outcomes, including childhood adiposity.  We investigate the influence family lifestyle has on 

childhood weight status, and how family lifestyle evolves over time during early childhood.  This is 

information which will be fundamental in determining the lifestyle interventions at a family level which are 

likely to be most effective.    



2 Econometric Methods 

In order to investigate the dynamic relationship between underlying family lifestyle and childhood obesity, we 

use a dynamic latent factor model, similar to that used by Cunha & Heckman (2008).  They use this approach 

to identify the formation of skills during early childhood, whilst we use it to explore the evolution of family 

lifestyle and its relationship with obesity.  The model is made up a set of latent factors (sometime known as 

measurement models) which identify the underlying lifestyle of a family using a range of outcomes and a 

structural model which estimates the relationship between these latent factors, in this case, the dynamic 

process of how family lifestyle evolves over time.  Both parts of the model are outlined below and are jointly 

estimated using maximum likelihood.  More details about structural models can be found in the literature 

(Bollen, 1989; Byrne, 2012).   

2.1 Latent Factor for Family Lifestyle 

Previous studies, such as Balia and Jones (2008) have jointly estimated multiple lifestyle outcomes using a 

multivariate probit model.  Their model took into account the correlation of the error terms in each of the 

outcome equations and accounts for possible endogeneity of unobservables in the correlation of error terms.  

However, using this model it is not possible to directly estimate the underlying factor which is influencing 

each of these outcomes and therefore it is also not possible to estimate the effect that this underlying factor has 

on each of the outcomes.  Due to the unobservable nature of this underlying factor, the only way to directly 

estimate it is using a common factor model, allowing this underlying concept to be identified without 

measurement error (Skrondal and Rabe-Hesketh, 2004).   

We are interested in the relationship between childhood adiposity and underlying family lifestyle, so that 

 𝒀𝒀𝑖𝑖𝑖𝑖 = 𝝀𝝀𝑡𝑡𝜽𝜽𝑖𝑖𝑖𝑖 + 𝜹𝜹𝑡𝑡𝑾𝑾𝑖𝑖𝑖𝑖 + 𝝃𝝃𝑖𝑖𝑖𝑖 (1)  

where 𝒀𝒀𝑖𝑖𝑖𝑖 is childhood adiposity outcome at time 𝑡𝑡 of child i, 𝜽𝜽𝑖𝑖𝑖𝑖 is underlying family lifestyle with 

corresponding factor loading 𝝀𝝀𝑡𝑡 at time 𝑡𝑡, 𝑾𝑾𝑖𝑖𝑖𝑖 is a vector of independent variables influencing the adiposity 

outcome at time 𝑡𝑡 with vector of coefficients 𝜹𝜹𝑡𝑡 and 𝝃𝝃𝑖𝑖𝑖𝑖 is normally distributed error term. 

Lifestyle is unobservable and cannot be identified using this single equation.  The only way in which to 

identify underlying family lifestyle and estimate its influence on childhood adiposity is to use a latent factor.  

This uses additional observable outcomes which depend on family lifestyle as proxies for it.  Because these 

observable outcomes each depend on underlying family lifestyle there is likely to be multicollinearity between 

them but by using a latent factor, this multicollinearity can be accounted for. 

Similar to Equation 1, each additional outcome used to proxy family lifestyle is related to the underlying 

latent factor so that, for continuous outcome 𝑘𝑘   



 𝒀𝒀𝑘𝑘𝑘𝑘𝑘𝑘 = 𝝀𝝀𝑘𝑘𝑘𝑘𝜽𝜽𝑖𝑖𝑖𝑖 + 𝝃𝝃𝑘𝑘𝑘𝑘𝑘𝑘; (2)  

the error terms are equivalent to that in Equation 1 and are independently and identically distributed.  Other 

parameters are also equivalent to those in Equation 1, meaning that the effects of underlying family lifestyle 

on each of these outcomes can be investigated using this model.  In both Equations 1 and 2, continuous 

outcomes are estimated using a linear regression and discrete outcomes are estimated using probit or ordered 

probit models, respectively.  Threshold parameters for these discrete variables are jointly estimated and are 

strictly increasing. 

The outcomes of family lifestyle can differ between periods.  We assume here for simplicity that there is a 

single latent factor but this will be tested using the exploratory factor analysis (EFA).  Outcomes in each 

period will be chosen using EFA and informed by existing literature.  It is important that Equations 1 and 2 

are jointly estimated in order to create the latent factor.  If childhood adiposity were not included in the 

estimation of the same latent factor then underlying family lifestyle would be endogenous in Equation 1.  It is 

assumed that there is no remaining correlation between outcomes at time 𝑡𝑡 once the underlying factor for 

family lifestyle has been accounted for.   

2.2 Structural Model 

A structural model estimates the relationships between the latent factors; in this case, it creates the dynamic 

structure of underlying family lifestyle over time.  This structure allows more long-term outcomes to be 

investigated and can show the extent to which influences can accumulate over time. 

The initial underlying family lifestyle 𝜽𝜽𝑖𝑖0, at time 𝑡𝑡 = 0 around the time child 𝑖𝑖 is born is 

 𝜽𝜽𝑖𝑖0 = 𝑿𝑿𝑖𝑖0′ 𝜷𝜷0 + 𝒖𝒖𝑖𝑖0 (3)  

and depends on family characteristics 𝑿𝑿𝑖𝑖0, with vector of corresponding coefficients 𝜷𝜷0.  Error vector 𝒖𝒖𝑖𝑖0 is 

made up of two parts; the family random effect 𝜼𝜼𝑖𝑖~𝑁𝑁(0,𝜎𝜎𝜂𝜂) and independent error term 𝜺𝜺𝑖𝑖0~𝑁𝑁(0,𝜎𝜎𝜀𝜀0) which 

is normally, independently and identically distributed. 

Family lifestyle in the subsequent periods of the model depends on the underlying family lifestyle of the 

previous period, so that 

 𝜽𝜽𝑖𝑖𝑖𝑖 = 𝛼𝛼𝜽𝜽𝑖𝑖𝑖𝑖−1 + 𝑿𝑿𝑖𝑖𝑖𝑖′ 𝜷𝜷𝑡𝑡 + 𝒖𝒖𝑖𝑖𝑖𝑖 (4)  

allowing underlying family lifestyle to evolve over time following a first order autoregressive process.  

Independent variables 𝑿𝑿𝑖𝑖𝑖𝑖, as well as parameters 𝛼𝛼  and 𝜷𝜷𝑡𝑡, can differ over time.  Again, the error terms 𝒖𝒖𝑖𝑖𝑖𝑖 

can be decomposed into a time-varying error term, 𝜺𝜺𝑖𝑖𝑖𝑖~𝑁𝑁(0,𝜎𝜎𝜀𝜀𝑡𝑡) and the time-invariant unobserved family 

random effect, 𝜼𝜼𝑖𝑖~𝑁𝑁(0,𝜎𝜎𝜂𝜂).  The inclusion of the family random effect allows us to account for any 



unobservable influence on underlying family lifestyle over time.  This allows us to ensure that the majority of 

variation in the observable lifestyle outcomes are accounted for within the model.  

2.3 Model Identification 

One cannot identify both the means and the intercepts in Equations 3 and 4 because both the latent factors 

𝜽𝜽𝑡𝑡  and the error terms are unobservable.  As outlined in Cunha and Heckman (2008), in order to identify 

the model, we fix the variance of some of the error terms.  The variance of the error term, 𝒖𝒖0 in Equation 3 

(𝜎𝜎𝑢𝑢0 47T) is fixed at 0.05 and the variance of error terms, 𝒖𝒖𝑡𝑡 in Equation 4 (𝜎𝜎𝑢𝑢𝑡𝑡) is fixed at 0.01.  This identifies 

the structural part of this model and is equivalent to restricting the variance to one (normalisation) as is 

done in a probit model.  In this case, model convergence was more easily achieved using values smaller 

than one but the magnitude of these values is arbitrary.  A more detailed description and proof for the 

identification of this model is given by Cunha and Heckman (2008). 

The dynamic latent factor model (Equations 1 to 3) is estimated by simulated maximum likelihood using 

Monte Carlo integration with 3,000 integration points.  Robust standard errors are computed using a sandwich 

estimator.  This requires the computation of a four-dimensional integration.  The model is estimated using 

Mplus 6.1 (Muthen & Muthen, 2011) and data manipulation is carried out in Stata 13. 

2.4 Data 

We use data from the Millennium Cohort Study (MCS) which contains a rich set of information for a sample 

of 19,517 children born in and around the year 2000.  Cohort members were recruited using child benefit 

records, at the time a universal benefit.  The cohort members’ carers were interviewed when the child was 

nine months old and subsequently when they were three, five and seven years old (see Hansen, 2012 for a 

guide to these datasets).  During each of these subsequent interviews, data on height and weight of the 

children were collected, amongst other adiposity measures, allowing BMI and weight status to be calculated.   

Childhood adiposity is an outcome of underlying family lifestyle in each period of the model.  In the first 

period, we use child weight in kilograms because weight categories are not available at nine months of age.  In 

subsequent periods, child weight status is included using the age and sex specific International Obesity Task 

Force (IOTF) definitions designed by Cole et al. (2000), which classify children as normal weight, overweight 

or obese.  The median and interquartile ranges of BMI by age and sex are displayed in Figure 1 along with the 

IOTF cut-offs.  The outcomes for the latent factors were chosen in accordance with the existing literature and 

using exploratory factor analysis (EFA) (Muthen and Muthen, 2010) for each period and are displayed in 

Table 1.  These variables include maternal and paternal weight status (normal, overweight or obese), maternal 

smoking status (smoker, non-smoker), whether a pregnancy was planned (planned, not planned), exclusive 

breastfeeding duration (never breastfed, between four and thirteen weeks, between fourteen and seventeen 



weeks and over seventeen weeks), screen time (3 hours or more each day), regular meal times, participation in 

sport (never, once, twice, three times, four or more times), visits to the park (at least once a week), unhealthy 

snacking between meals and daily breakfasting. 

Socioeconomic and family background variables directly influence underlying lifestyle; these include 

variables which are found in the literature to influence the observable lifestyle outcomes outlined above.  

These include socioeconomic status (SES) using the five point National Statistics Socioeconomic 

Classification (NS-SEC) scale.  The highest SES level of each of the cohort members’ parents is used to 

measure the cohort members’ family SES at birth.  Maternal education at birth is also included.  Both family 

SES and maternal education influence lifestyle only in the initial period of the model.  This is because they do 

not differ a great deal over time and so any influence they have on later periods’ lifestyle is assumed to be 

captured through the autoregressive process.  Family structure, i.e. whether the family is a two-parent or 

single-parent family, is included in every period of the model because it has more variation throughout early 

childhood.  Cunha & Heckman (2009) found that single-parent households were less able to invest in their 

children and suggested that this could be due to differences in time constraints between single-parent and two-

parent households, or the lack of resources available to single-parent households.  These variables all have an 

influence on childhood weight status through their influence on underlying family lifestyle.  Ethnicity, age and 

sex are included as independent variables directly influencing child weight.  We allow ethnicity to influence 

weight status in each subsequent period but because weight status is age and sex specific, age and sex are only 

included in the initial period. 

Any observations which are not present in all four periods are removed from the analysis leaving a balanced 

sample of 11,484.  In line with previous literature, children are also removed from the sample for a number of 

other reasons.  These include children from multiple births, those weighing less than 2.5kg at birth, those 

taken to a special care unit straight after birth and those who’s main carer is not their natural mother.  

Observations are also removed from the sample when independent variables are missing.  This leaves a 

balanced panel sample of 8,462 observations.  Missing data are assumed to be missing at random. 

One benefit of latent factor models is that item-non-response in the outcomes does not necessarily result in 

observations being removed from the analysis.  A latent factor can still be estimated using the remaining 

outcomes, provided that there are at least two non-missing outcomes for each observation.  In accordance with 

the World Health Organisation recommendations for biologically implausible values, childhood and parental 

weight statuses are recorded as missing if the height, weight or BMI values used to calculate them were 

implausible.  Although this means that childhood adiposity outcomes were recorded as missing for some 

observations, this does not result in the removal of any observations.  



3 Results 

Two different specifications of the dynamic latent factor model outlined above were implemented.  Initially, a 

model was estimated with constant parameters across all periods.  In this model, all lifestyle outcomes which 

appear in more than one period of the model had constant parameters, including factor loadings and threshold 

parameters.  Independent variables influencing underlying family lifestyle or childhood adiposity and which 

appear in more than one period also had fixed parameters.  In the second less restricted model, factor loadings, 

threshold parameters and independent variable coefficients were allowed to vary over time.  All parameters 

were freed over time apart from the autoregressive component (𝛼𝛼𝑡𝑡) and the factor loadings 𝝀𝝀𝑘𝑘𝑘𝑘 for maternal 

and paternal weight categories along with their corresponding threshold parameters.  These parameter 

estimates are restricted over time in order to achieve convergence in the model which was not possible when 

they were freed.    

In both the restricted and unrestricted models, the family random effect 𝜼𝜼𝑖𝑖  was found to be insignificant.  This 

suggests that the majority of variation in the observable lifestyle outcomes is accounted for by the underlying 

latent factor.  For this reason, and to enable the final model to converge more readily, this random effect was 

removed from the final models.  This did not significantly affect our results. 

Model fit of the unrestricted model showed an improvement on the restricted model using a likelihood ratio 

(LR) test as well as Akaike and Bayesian Information Criteria (AIC and BIC) supporting the claim by Cunha 

& Heckman (2008) that time-invariant parameters are not always best practice when analysing data on young 

children because they are constantly developing and changing.   The remainder of this paper therefore focuses 

on results from the unrestricted model. 

3.1 Parameter Estimates 

Table 1 shows the factor loadings for each lifestyle outcome in each period of the model whilst Tables 2 and 3 

present the parameter estimates relating to determinants of childhood adiposity and family lifestyle, 

respectively.  As indicated in Table 1, all factor loadings are significant and have the expected sign; an 

improvement in underlying family lifestyle is associated with improved lifestyle outcomes, including but not 

limited to childhood adiposity.  Childhood adiposity has a consistently positive and significant response to 

changes in the latent family lifestyle.  Maternal weight status provides the largest informational content for the 

underlying lifestyle factor, particularly in comparison with paternal weight status, suggesting that the mother 

is largely responsible for the lifestyle of a family.  The proportion of variance in childhood weight status 

explained by underlying family lifestyle is 11.3%, suggesting that improvements to family lifestyle could 

significantly reduce the likelihood of obesity in a child.  Comparatively, the proportion of variance in maternal 

weight status explained by family lifestyle is 93.5%.  This suggests that maternal weight status will be highly 



influenced by family lifestyle and that maternal obesity could prove useful in identifying families that need 

more help improving their lifestyle. 

Table 2 shows the parameter estimates for variables influencing childhood adiposity in each period.  It shows 

that boys weigh more at nine months than girls do, ceteris paribus.  At nine months of age, Asian children 

weigh significantly less than their white counterparts do.  These associations are as expected.  Asian children 

are significantly less likely to be obese or overweight at the age of three years, but this association is 

insignificant by the age of five.  Conversely, black children are, on average, significantly more likely than 

white children to be obese or overweight at the age of five and seven years. 

Factor scores provide numerical values for underlying family lifestyle. Although these factor scores have no 

cardinal meaning and cannot be directly compared across time periods, they can be used to rank families in 

terms of their lifestyle to determine where each family lies on a lifestyle distribution.  Families with higher 

factor scores have ‘healthier’ lifestyle than families with lower factor scores.  Our results show that the 

variation in previous family lifestyle accounts for 98.7% of variation in current family lifestyle when the child 

is four years old.  Table 3 shows the parameter estimates for the variables influencing these factor scores.  

Previous family lifestyle has a positive and statistically significant influence on current family lifestyle.  

Determinants of family lifestyle in this model are consistent with the literature.  Family SES, maternal 

education and being from a single-parent family each have a statistically significant effect on initial latent 

family lifestyle.  Families with high SES are at the higher end of the lifestyle distribution in the initial period 

and those with a low SES are towards the lower end of the distribution, ceteris paribus.  Single-parent families 

are on average higher up the lifestyle distribution across all periods.  However, this effect is only significant in 

the initial period and when the child is seven years old.   

3.2 Factor Scores 

From the model, we can determine the factor scores for the underlying family lifestyle factors for each 

individual.  Factor scores are the numerical values of the underlying factors and are estimated using the 

observable characteristics of each observation (Skrondal and Laake, 2001).  In this case, they have no cardinal 

meaning but factor rankings and percentiles can be used to compare observations with respect to family 

lifestyle.  From this, the persistence and mobility of underlying family lifestyle can be investigated.  In 

addition, we can use the variance-covariance matrix from the model to calculate the proportion of variance in 

variables of interest explained by the latent factor. 

Correlations between the factors scores in each period are consistently above 0.982, demonstrating an 

immobility in the family lifestyle distribution.  Table 4 shows what proportion of families remain in the same 

part of the lifestyle distribution over time.  For example, 87.43% of families which were above the ninety-fifth 

percentile on the lifestyle distribution in the initial period remain above the ninety-fifth percentile when a 

child is seven years of age, showing some movement at the upper end of the distribution.  Families that are 



initially in the bottom five percentiles almost never improve their lifestyle.  The increased movement at the 

upper end of the family lifestyle distribution suggests that general interventions at a population level are likely 

to help only those at the upper end of the distribution and are unlikely to benefit those that are in need of the 

most help to improve their lifestyles.  This suggests that in order to improve the lifestyles of families at the 

lower end of this distribution, interventions should be specifically designed to help these families and targeted 

directly at them.  Interventions designed to help everyone, might inadvertently, and disproportionately, help 

those at the top, rather than those at the lower end of the distribution. 

Table 5 shows the difference in characteristics between families in the top and bottom five percentiles of the 

lifestyle distribution.  Children in families above the 95th percentile have a lower BMI and are less likely to 

be obese during childhood than those from families below the 5th percentile.  This differences increases as 

children get older as those in the lowest 5 percentiles become more likely to be obese.  The most 

overwhelming difference between those at the upper and lower ends of this distribution is that between SES; 

families with low SES are almost always at the lower end of the lifestyle distribution.  The information 

displayed in Table 5 can help to identify families at the lower end of the lifestyle distribution in order to help 

policy makers design and target interventions more effectively and reduce inequalities in childhood obesity. 

4 Simulations 

In order to investigate the influences of underlying family lifestyle on childhood obesity, the posterior 

distributions of observable childhood weight status can be calculated, that is the predicted outcome of 

childhood weight status, conditional on other observable lifestyle outcomes and independent variables.  This 

equation requires the computation of several integrals and for this reason we approximate these predictions 

with simulations using the estimated parameters from the dynamic latent factor model.  This prevents the need 

for the complex calculations and allows us to estimate the likelihood of obesity in children with given sets of 

observable characteristics and at different ages using a single model.  We use 10,000 simulated repetitions in 

order to stabilise the expected means.  All simulations are estimated using Stata 13.   

Using simulations along with the parameter estimates discussed above, it is possible to investigate a range of 

policy relevant relationships within this model.  Here, we outline just a few which we feel are of particular 

policy interest.  In order to investigate the inequalities in obesity prevalence between advantaged and 

disadvantaged children, we predict the likelihood of obesity, and the expected percentile of the lifestyle 

distribution, for two hypothetical children using a multidimensional measure of disadvantage.  The first is an 

‘advantaged’ child who is from a family with high SES, has a highly educated mother and is from a two-

parent family.  The second ‘disadvantaged’ child is from a family with low SES, has a poorly educated mother 

and is from a single-parent family.  Both children are white girls and are 42.21 weeks old, the mean age of the 

cohort at the time of the initial MCS interviews. 



Table 6 shows that the advantaged child has a lower risk of obesity than the disadvantaged child, an 

observation which is consistent over time.  The difference is noticeable as early as the age of three years, 

when children from disadvantaged backgrounds are around 50% more likely to be obese than those from the 

most advantaged backgrounds.  This difference increases with age and by the age of five years, the 

disadvantaged child is more than twice as likely to be obese than the advantaged child.   

Table 7 shows the expected percentile of underlying family lifestyle for the advantaged and the disadvantaged 

child.  There is a substantial difference in the relative underlying family lifestyle between these hypothetical 

children from these different backgrounds.  The simulated kernel density distributions of expected lifestyle for 

each of these hypothetical children at the age of seven years are displayed in Figure 2 and show very little 

overlap in the distributions of family lifestyle between the two children.  These shows how the family 

background characteristics, SES, maternal education and family structure, account for significant differences 

in underlying family lifestyle and in doing so create inequalities in childhood obesity.  This difference in 

family lifestyle mediates the relationship between family background and childhood adiposity.  In addition to 

the parameter estimates fromthe dynamic latent factor model outlined above, these simulations emphasise the 

importance of targeting children from disadvantaged backgrounds when aiming to reduce inequalities in 

obesity prevalence through the use of lifestyle interventions. 

 

5 Discussion 

This study investigates the persistence of family lifestyle and the influence that this has on childhood 

adiposity.  The extent to which this underlying family lifestyle mediates the impacts of socioeconomic and 

family background on childhood adiposity is also explored.  Our results show that family lifestyle is 

persistent; the largest influence on family lifestyle was previous family lifestyle.  Families rarely move up or 

down the lifestyle distribution over time, particularly those at the lower end of this distribution.  We also find 

an increasing positive association between disadvantage and childhood obesity throughout early childhood. 

This study adds to the existing literature in a number of ways.  First, the latent factors used in each period 

allow a range of outcomes to be used to estimate an underlying family lifestyle.  These latent factors provide a 

more comprehensive measure of lifestyle compared to single-item lifestyle proxies, such as those used by 

many studies within the existing literature, see Reilly et al. (2005), Bauer et al. (2011), Haug et al. (2009) and 

Janssen et al. (2005).  Second, the use of latent factors also builds on work by Balia & Jones (2008) who use a 

multivariate probit model to simultaneously estimate a range of lifestyle behaviours but who do not directly 

estimate the underlying influence effecting these outcomes.  Third, this study uses a dynamic model of 

lifestyle.  Previous studies such as Janssen et al. (2005), Haug et al. (2009) and Giles-Corti et al. (2003), 

among others, investigated lifestyle variables using static or cross-sectional models.  The dynamic nature of 

the latent factor model allows the evolution and persistence of family lifestyle to be explored during early 



childhood making it possible to investigate the effects of early-life and family background influences on 

childhood adiposity over time.  The dynamic nature of the model is also important for providing economic 

models with more long-term evidence that can be used to identify the most cost-effective interventions using 

fewer extrapolations.   Finally, this study uses a large dataset which is representative of children and families 

in the UK.  To our knowledge there is no other study which investigates the effects of underlying family 

lifestyle on a range of childhood outcomes using such a large number of children.  By estimating the same 

outcomes over a period of time using longitudinal data, this study provides more long-term evidence than 

many other studies in the area and could lead to stronger public health guidance.   

5.1 Policy Implications 

Maternal weight status provides the greatest informational content to the latent factor for family lifestyle in 

each period suggesting that maternal influences are more important when investigating family lifestyle than 

paternal influences.  This could be due to the role that mothers play in the lifestyles of young families.  

Mothers are most often responsible for family diet, exercise and other lifestyle behaviours and this could mean 

that underlying family lifestyle is most highly driven by maternal lifestyle outcomes.  This would suggest that 

any family-based lifestyle policies could be easiest implemented through maternal education and providing 

mothers with additional help to improving the lifestyle of their family.   

The largest influence on family lifestyle is previous family lifestyle.  This persistence of underlying family 

lifestyle suggests that an exogenous shock to family lifestyle, caused by an intervention or otherwise, which 

successfully improves underlying lifestyle, could have long-lasting influences on childhood adiposity as well 

as the other observable outcomes for all family members.  Family lifestyle interventions should be carried out 

as early in childhood as possible in order to have the greatest cumulative impact on the outcomes for the child.  

Targeting the families of very young children or expectant parents could have effects that last throughout 

childhood.  This is consistent with other studies in the economics literature that find that other childhood 

outcomes are most improved when interventions focus on the very early years (Heckman, 2006; Cunha et al., 

2010; Heckman, 2012; Conti and Heckman, 2013) in order to have the greatest cumulative influences.  

Although interventions carried out before birth might be the most effective in reducing childhood obesity, 

targeting families this early is not always possible.  Despite earlier interventions being most effective, there is 

also evidence that successful lifestyle interventions later in childhood could still significantly reduce 

childhood adiposity.  The persistence of family lifestyle means that any interventions which aim to improve 

family lifestyle will need to be substantial, in order to cause a significant improvement family lifestyle.  The 

need for large and effective policies suggests that interventions will need to be prolonged in order to achieve 

the desired effects.   

Socioeconomic variables play a large part in shaping underlying family lifestyle throughout early childhood.  

Our results showed a large difference in the prevalence of childhood obesity expected in advantaged and 



disadvantaged children.  This large difference in obesity prevalence was largely explained by the differences 

in underlying family lifestyle in advantaged and disadvantaged families.  This, coupled with the fact that there 

is very little mobility of family lifestyle particularly at the lower end of the family lifestyle distribution, 

suggests that interventions should be specifically targeted at disadvantaged families.  This is similar to 

findings by Heckman (2006) who encouraged early interventions targeted at disadvantaged children to 

improve skill formation.  Furthermore, interventions designed to improve the lifestyle of the general 

population are unlikely to be effective in improving the lifestyle of those at the immobile lower end of the 

family lifestyle distribution.  Therefore, interventions should be designed specifically with these 

disadvantaged families in mind.  The differences in childhood obesity prevalence between advantaged and 

disadvantaged children increases as children get older.  This reinforces the suggestions that interventions 

should target disadvantaged families at the earliest possible stage of childhood in order to reduce these 

growing inequalities and to have the greatest cumulative effect over time.   

Results from this study support the use of interventions such as those that aim to tackle attitudes to lifestyle 

and educate families about how they can improve their lifestyles and what the benefits of doing so might be.  

Encouraging change in specific lifestyle behaviours cannot singlehandedly address the obesity epidemic, nor 

can tackling social determinants of underlying lifestyle.  However, simultaneously targeting a range of 

different lifestyle outcomes through improved education and attitudes towards lifestyle could be one way of 

effectively reducing the prevalence of childhood obesity with further benefits to other observable outcomes 

for the family.  Current UK policies such as Change4Life have identified the need to target families rather 

than individuals when aiming to improve childhood outcomes.  In addition, NICE (2013) have also recognised 

that disadvantage and obesity are closely related.  However, there is a lack of specific focus, in both design 

and implementation, on families from a disadvantaged background.  NICE (2013) recommended the targeting 

of specific neighbourhoods alongside more widespread interventions, but they do not go as far as suggesting 

that interventions in these neighbourhoods should specifically designed for disadvantaged families.  Future 

interventions that aim to reduce inequalities in family lifestyle, childhood obesity and a range of other 

outcomes for all family members should consider the design of interventions specifically for disadvantaged 

families. 

The multiple outcomes estimated in this study, using a single dynamic model, mean that policy implications 

go beyond childhood obesity.  The results emphasise the need for policy makers to consider the long-term 

influences and effects on multiple outcomes that their family lifestyle interventions could have.  It is important 

to consider how these interventions might improve a number of observable outcomes for multiple family 

members over time as well as reducing inequalities in these outcomes.  Not only is this important for policy 

makers but also for cost-effectiveness modellers wishing to provide robust evidence to decisions makers such 

as NICE on public health interventions.  The joint estimation of the system of equations included in these 

latent factors can also provide economic or cost-effectiveness models with estimates of correlations between 

these equations which means that fewer assumptions are required.  



5.2 Limitations 

Although we find that the underlying factor for family lifestyle accounts for the vast majority of variation in 

the observable outcomes, it is possible that genetics could be playing a role here.  In our sample, the mother is 

always the biological mother of the child but the father figure is not always a biologic father and sometimes 

no information on a father is collected at all.  This could suggest that genetics could, to some extent, be 

responsible for some of the association between weight statuses of family members; child weight might be 

more correlated with maternal than paternal weight status because they are more often genetically related.  

This could increase the correlation between maternal and childhood adiposity relative to the correlation 

between paternal and childhood adiposity, meaning that maternal weight status provides the higher 

informational content.  We can be confident however, that any part genetics does play in this underlying factor 

is minimal because many of the other outcomes used to create the latent factors are clearly related to lifestyle 

and not to genetics.  There is a growing literature on obesity and epigenetics and future research could 

investigate how epigenetics might influence the relationship between childhood obesity and family lifestyle.  

The MCS contains data from when a cohort child is born.  However, data from before birth might have 

proven useful in identifying family lifestyle before the birth of a child.  This would have allowed the 

effects of having a child on family lifestyle to be investigated.  More detailed data on siblings might also 

have been useful and future research from later waves which contain such data could focus on the 

differences between individual and family effects.  There could also be a cohort effect here.  All children 

in the sample were born around the turn of the millennium; results might be slightly different for children 

born today.  That said, given the rise in both childhood obesity and inequalities faced by disadvantaged 

families, any associations between the two could be even stronger. 

Family lifestyle is already well established by the time a child reaches seven years old.  However, as 

children become adolescents and increasingly interact with people outside the family home, they might 

be less influenced by the lifestyle of their family and could develop a more individual lifestyle as they 

become more independent.  Further research could investigate how the dynamic path of lifestyle changes 

throughout childhood and into adolescence when they begin to have increasing individual influences.  

Likewise, further research into the intergenerational transmission of lifestyle could be useful for policy 

makers aiming to target families before the birth of a child. 

5.3 Conclusion 

In order to better tackle childhood obesity and childhood obesity inequalities, interventions should be focussed 

on the family.  In particular, mothers should be provided with additional support and information on the 

benefits of a healthy lifestyle for her family.  This should be done as early as possible in childhood in order to 

have the greatest cumulative influence.  Interventions should also be designed specifically to help families 



from disadvantaged backgrounds as well as being targeted specifically at these families.  Successful 

interventions will need to be prolonged and substantial in order to overcome the persistent nature of family 

lifestyle.  These types of intervention have the potential to benefit a wide range of outcomes, including 

childhood obesity.  
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Tables and Figures 

Figure 1: Median BMI and Interquartile Range by Age and Sex 

 
Box plots showing median and interquartile range for BMI by age and sex using data from the Millennium Cohort Study.  Outliers not included.  
International Obesity Taskforce (IOTF) age and sex specific cut-offs for obesity and overweight also shown.   
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Figure 2: Kernel Densities of Lifestyle Distributions in Advantaged and Disadvantaged Children aged 
7. 

 
Kernel density of posterior lifestyle distributions for advantaged and disadvantaged children aged seven years. 
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Table 1: Estimated Factor Loadings 
 Factor Loading, 𝛌𝛌 (Equations 1 and 2) 

(Standard Error) 
Dependent 
Variable Initial Age Three Years Age Five Years Age Seven Years 

Weight (kg) -0.051*** 
(0.007) - - - 

Weight Category - -1.205*** 
(0.079) 

-1.535*** 
(0.080) 

-1.518*** 
(0.078) 

Maternal Weight 
Categorya 

-8.527*** 
(0.321) 

-12.574*** 
(0.418) 

-12.574*** 
(0.418) 

-12.574*** 
(0.418) 

Fathers Weight 
Category 

-1.393*** 
(0.102) 

-1.215*** 
(0.088) 

-1.215*** 
(0.088) 

-1.215*** 
(0.088) 

Mothers’ Smoking 
Behaviourb 

-0.739*** 
(0.105) 

-0.757*** 
(0.101) 

-0.697*** 
(0.092) 

-0.643*** 
(0.083) 

Planned Pregnancy 0.712*** 
(0.079) - - - 

Breastfeeding 
Behaviour 

1.056*** 
(0.064) - - - 

Regular Meals - 0.577*** 
(0.091) 

0.648*** 
(0.090) - 

Over Three Hours 
TV per day - -0.867*** 

(0.076) 
-0.545*** 
(0.070) 

-0.431*** 
(0.062) 

Sport - - 0.669*** 
(0.053) 

0.561*** 
(0.047) 

Playground/Park - - 0.154*** 
(0.057) 

0.182*** 
(0.051) 

Unhealthy Snacks - - - -0.290*** 
(0.056) 

Regular Breakfast - - - 0.553*** 
(0.082) 

N 8,462 
This table shows factor loadings from the factor models.  * p < 0.01, ** p < 0.05, *** p < 0.001,  a for initial conditions this is pre-
pregnancy weight category, b for initial conditions this is smoking behaviour during pregnancy. 
 
 
Table 2: Parameter Estimates for Covariates influencing Childhood Adiposity 
 Coefficient (Equation 2) 

(Standard Error) 

 Weight at first 
Interview (kg) 

Weight Category 
Age 3 

Weight Category 
Age 5 

Weight Category 
Age 7 

  𝛌𝛌 

Family Lifestylea -0.051*** 
(0.007) 

-1.205*** 
(0.079) 

-1.535*** 
(0.080) 

-1.518*** 
(0.078) 

 𝜹𝜹 

Male 0.066*** 
(0.003) - - - 

Age (weeks) 0.004*** 
(0.001) - - - 

Black -0.010 
(0.012) 

0.186 
(0.113) 

0.352*** 
(0.103) 

0.339*** 
(0.101) 

Asian -0.077*** 
(0.007) 

-0.262*** 
(0.083) 

-0.091 
(0.080) 

0.096 
(0.076) 

Other -0.028*** 
(0.009) 

-0.011 
(0.092) 

-0.041 
(0.097) 

0.058 
(0.098) 

N 8,462 
This table shows the parameter estimates for variables having a direct influence on childhood adiposity.  a These are the factor loadings 
for childhood adiposity, also displayed in Table 1.  * p < 0.01, ** p < 0.05, *** p < 0.001.   
 



Table 3: Parameter Estimates for Covariates Influencing Family Lifestyle 
 Coefficient 

(Standard Error) 
Independent 
Variable 

Initial Family 
Lifestyle 

Family Lifestyle 
Age 3 

Family Lifestyle 
Age 5 

Family Lifestyle 
Age 7 

 α (Equation 4) 
Previous Latent 
Family Lifestyle, α - 1.094*** 

(0.007) 
1.094*** 
(0.007) 

1.094*** 
(0.007) 

 𝛃𝛃 (Equations 3 and 4) 
Currently High 
SES 

0.028*** 
(0.008) - - - 

Currently Low SES -0.072*** 
(0.008) - - - 

Maternal Education 
at Birth 

0.013*** 
(0.003) - - - 

Single Parent -0.044*** 
(0.010) 

-0.002 
(0.007) 

-0.003 
(0.005) 

-0.012** 
(0.005) 

This table shows the autoregressive parameter on lifestyle and the coefficients for independent variables directly influencing 
underlying family lifestyle.   * p < 0.01, ** p < 0.05, *** p < 0.001.   
 
 

Table 4: Proportion of Families Remaining in Initial Lifestyle Percentile Group 
Initial percentile 3 Years 5 Years 7 Years 
≥ 95th 95.48% 91.27% 87.43% 
≥ 90th 95.94% 92.77% 88.96% 
≥ 75th 95.70% 93.84% 91.52% 
Inter-quartile range 97.57% 96.46% 94.98% 
< 25th >99.99% >99.99% >99.99% 
< 10th 99.99% 99.99% 99.76% 
< 5th >99.99% >99.99% 99.99% 
N 8,462 
 
 

Table 5: Characteristics of those at Top and Bottom of Family Lifestyle Rankings 
 Initial Family Lifestyle Ranking 
Variable ≥ 95th percentile < 5th percentile 
Percentage Male 49.58% 51.34% 
Mean Weight (kg) 
(standard deviation) 

8.784 
(1.444) 

8.935 
(1.513) 

Percentage Obese Age 3 4.05% 6.01% 
Percentage Obese Age 5 2.06% 6.44% 
Percentage Obese Age 7 2.37% 8.37% 
High SES at birth 83.99% 0.42% 
Low SES at birth 0.14% 98.73% 
N 8,462 
 
 
Table 6: Obesity Prevalence in Advantaged and Disadvantaged Children 

 Advantaged (%) Disadvantaged (%) 
3 Years 3.79 6.43 
5 Years 2.81 6.17 
7 Years 2.59 6.42 

N 8,462 
 
 



Table7: Lifestyle Percentiles in Advantaged and Disadvantaged Children 
 Advantaged Disadvantaged 

9 months 85.63 7.50 
3 Years 84.96 6.86 
5 Years 84.59 6.29 
7 Years 84.39 4.97 

N 8,462 
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