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Abstract

Fine particles of ash emitted during volcanic eruptions may sporadically influence cloud

properties on a regional or global scale as well as influencing the dynamics of volcanic

clouds and the subsequent dispersion of volcanic aerosol and gases. It has been shown

that volcanic ash can trigger ice nucleation, but ash from relatively few volcanoes has been

studied for its ice nucleating ability. In this study we quantify the efficiency with which ash

from the Soufriere Hills volcano on Montserrat nucleates ice when immersed in supercooled

water droplets. Using an ash sample from the 11th February 2010 eruption, we report ice

nucleating efficiencies from 246 to 265 K. This wide range of temperatures was achieved

using two separate droplet freezing instruments, one employing nanolitre droplets, the other

using microlitre droplets. Soufriere Hills volcanic ash was significantly more efficient than all

other ash samples that have been previously examined. At present the reasons for these dif-

ferences are not understood, but may be related to mineralogy, amorphous content and sur-

face chemistry.

Introduction

Water droplets in tropospheric clouds can supercool to below 236 K before freezing homo-

geneously, but suitable aerosol particles can catalyse ice formation at much higher tempera-

tures. These ice nucleating particles (INPs) can have wide ranging effects on the properties of

clouds, which has an indirect impact on climate [1]. There are many INP types in the Earth’s

atmosphere, but it is currently unclear which are most important in different regimes [2,3].

One category of INP is volcanic ash which may have a sporadic impact on clouds as far as

thousands of kilometres from the volcano [4] and has been linked to sporadically high concen-

trations of INP in the vicinity of volcanoes [5]. Within a volcanic ash influenced air mass it is

thought that ash might compete with other important INP types, such as desert dusts [2]. In

addition to impacting clouds on a regional scale, volcanic ash is the primary component of vol-

canic clouds and plumes emitted from erupting volcanoes. Durant et al. [6] suggest that volca-

nic clouds will be INP-rich in contrast to ‘meteorological’ clouds which are often INP-limited
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and that this will produce clouds with very different microphysics. Supercooled water forming

in the volcanic cloud may freeze well above the homogeneous limit due to the presence of the

ash, resulting in the release of latent heat and the invigoration of the updraft. Hence, an under-

standing of the ice nucleating properties of volcanic ash is important for understanding issues

such as the dispersion of volcanic gases which can increase human mortality if advected to

populated areas [7].

During the formation of mixed phase clouds significant ice formation normally occurs only

after liquid water droplets have formed [2,8]. Freezing of supercooled water droplets can be

triggered by INPs via several pathways [9]. Contact freezing involves the collision of an INP

with a supercooled droplet upon which the droplet freezes. Condensation freezing describes a

sequence of events whereby an aerosol particle takes up water prior to freezing of the conden-

sate. Immersion freezing is caused by an INP suspended in a supercooled water droplet. There

is some ambiguity between immersion and condensation freezing, since an aerosol particle

could conceivably first serve as a cloud condensation nucleus (CCN) and activate to a cloud

droplet. After acting as a CCN, an insoluble component immersed in the cloud droplet may

trigger heterogeneous freezing. We take the pragmatic view that when an INP is immersed

inside a droplet, it is freezing in the immersion mode and it is in this mode that we study the

ice nucleating ability of volcanic ash.

The Soufriere Hills volcano is located on the island of Montserrat in the Caribbean, which

is dominated by low level (1–5 km) easterly winds and intermediate level westerly winds (8–18

km), where mean background aerosol concentrations are relatively low due to a lack of local

sources [10]. This leads to volcanic eruptions drastically increasing aerosol concentrations

over short timescales [11].

The Soufriere Hills volcano had been dormant since the 19th century until 1995, when fol-

lowing extensive seismic activity, it became active again [12]. Between 1995 and 1999, the first

phase of eruptive activity was characterised by repeated lava dome growth and collapse, with

frequently occurring pyroclastic flows and ash plumes [13]. For the first half of 1999, ash vent-

ing was a daily occurrence. A second phase of lava extrusion from 1999–2003 lead to the explo-

sive eruption of July, 2003, when significant sections of the volcanoes dome collapsed. From

2003–2009, several phases (3rd and 4th phase) of explosions, lava extrusion and ash venting

occurred at the Soufriere Hills volcano, including a whole dome collapse on the 20th May 2006

[14]. More recently, phase 5 of the volcanoes activity lead to the partial collapse of the dome on

the 11th February 2010 (from which the sample used in this study was taken) [15]. Although

eruptive activity has slowed since 2010, the Soufriere Hills volcano is currently an important

source of episodic aerosol production which may influence cloud formation in the region.

A number of previous studies have established that volcanic ash has the capacity to nucleate

ice. Early research suggested a range of volcanic ash samples could act as INPs but these studies

made use of fog chambers where the nucleation mode was not constrained and the freezing

characteristics were reported with the semi-quantitative measure of threshold freezing temper-

ature [16]. More recent research by Durant et al. [6] has evaluated volcanic ash samples from

Chile and Hawaii in the immersion freezing mode giving overall median freezing temperatures

of 253.1 K. They also investigated the effects of composition and surface area on the ice nucle-

ating efficiencies of volcanic ash, but found only a weak correlation with freezing temperature.

Kulkarni et al. [17] has suggested that composition is of secondary importance compared to

crystallographic structure regarding the ice nucleating efficiency of volcanic ash. Fornea et al.

[18] determined an average freezing temperature of 254.9 ± 2.0 K for large ash particles (250–

300 μm) immersed in droplets. In their study it was also shown that particles in contact with

the surface of the droplet froze approximately 7 K warmer than when the particle was fully

immersed within a droplet, a similar finding to that of Durant and Shaw [19]. Gibbs et al. [20]
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recently reported that a rhyolite glass from the Minoan eruption of Santorini in Greece nucle-

ated ice when immersed in water. Ice nucleation by fine ash from the Icelandic Eyjafjallajökull

eruption in 2010 has been studied and may have had a significant impact on supercooled

cloud glaciation over Europe [4,21,22].

Murray et al. [2] reviewed and reassessed the available laboratory literature data (prior to

2012) for volcanic ash and was only able to quantify the efficiency of ice nucleation for ash

from two locations, Eyjafjallajökull and Mount St. Helens in three studies [18,21,22]. The three

studies formed a consistent story over the temperature range, but in a more recent study it was

shown that ash from other locations had very different ice nucleating abilities [23]. In this

study we present an evaluation of the ice nucleating efficiency of an ash sample from the Sou-

friere Hills volcano on Montserrat in the Caribbean.

Experimental

The Soufriere Hills ash sample was collected from the surface north east of the volcano’s dome

(E297˚ 50.7’ N16˚ 45.3’) after the partial collapse of the volcano’s lava dome produced large

ash clouds on the 11th February. The ash sample was collected from a metal surface above the

ground, removing the risk of contamination from the soil surface. The ash sample was ground

in order to make the particulates small enough to suspend in water. The mass fraction of the

various crystalline components and amorphous fraction was determined using powder X-ray

diffraction (XRD) and Rietveld refinement (see Table 1) [24,25].The specific surface area of

the ground ash was determined to be 4.07 ± 0.02 m2 g-1 using the Brunauer-Emmett-Teller

(BET) nitrogen gas absorption method. From this, the surface area of ash per droplet has been

calculated using the weight fraction and median droplet volume, in conjunction with the spe-

cific surface area.

Two separate instruments were used to quantify ice nucleation by the Soufriere hills volca-

nic ash sample over a wide range of temperatures. Both instruments are based on a cold stage

upon which droplets are placed, cooled and frozen. They are collectively referred to as the

Nucleation by Immersed Particle Instrument (NIPI) suite. Each instrument is designed to

operate with a specific range of droplet sizes, where larger droplets contain a greater surface

area of INPs and are therefore more likely to freeze at warmer temperatures. For the experi-

ments reported here we used droplets ranging from 0.1 to 1 nanolitres in the nL-NIPI and

droplets of one microlitre in μL-NIPI.

We first discuss the nL-NIPI which has been used in several previous studies [26–28].

Briefly, nL-NIPI consists of an aluminium cold stage cooled by liquid nitrogen and tempera-

ture is controlled using two embedded cartridge heaters in conjunction with a temperature

control unit (Eurotherm 2416); the estimated temperature measurement uncertainty is ±0.2 K.

It can be cooled at a defined rate (10 K min-1 was used here). Nanolitre volume (30–70 μm

diameter) droplets were placed on a hydrophobically coated, siliconised glass cover slip which

in turn sits on top of a thermally conductive diamond window through which the droplets are

illuminated from below, allowing their phase to be determined with an optical microscope

Table 1. Mineralogy of the ash sample (%) used here and the samples used by Schill et al. [23].

Mineral / Sample Anorthite (Ca-Feldspar) Enstatite Cristobalite Albite (Na-Feldspar) Tremolite Quartz Riebeckite

Soufriere Hills (this study) 45 18.8 16.6 11 5.9 2.7 -

Soufriere Hills (Schill et al., 2015) 10 11 - 71 - 1 7

Fuego (Schill et al., 2015) 36 - - 64 - - -

Oruanui (Schill et al., 2015) 26 - - 47 - 27 -

doi:10.1371/journal.pone.0169720.t001
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(Olympus BX51). Droplets are generated by first suspending a known mass of ash in a volume

of ultra-pure water (18.2 MO cm) and then nebulising this suspension into a chamber where

they are allowed to settle onto the glass cover slip. The humidity in the chamber is maintained

at water saturation in order to prevent condensation or evaporation of water from the droplets.

Silicone oil is then placed over the top of the droplets to prevent them from evaporating during

the experiment. The oil has previously been shown not to influence heterogeneous freezing by

comparison of experiments with and without the oil [24,29].

The μL-NIPI was used to examine the ice nucleation efficiency of the volcanic ash at higher

temperatures. This system is described in detail elsewhere [30] and has been used in other

studies [26–28,31,32]. A Picus Biohit electronic micropipette was used to pipette 1 μL droplets

of ash suspension onto a hydrophobic siliconised glass slide placed onto the temperature con-

trolled plate of a Grant-Asymptote EF600 Stirling engine. The droplets were then cooled at

rates of 0.2–2 K min-1 with an estimated temperature uncertainty of ±0.4 K. A gentle flow of

dry nitrogen was passed over the droplets to prevent ice growth from frozen droplets inducing

freezing in neighbouring unfrozen droplets. Whale et al. [30] showed that a dry nitrogen flow

using this apparatus had no effect on the freezing measurements; any effect was therefore

smaller than the temperature error of the instrument. The droplets were monitored with a dig-

ital camera and the freezing temperature of each droplet determined by subsequent analysis of

the video.

Analysis

In this paper we use the time-independent singular description of ice nucleation to describe

the efficiency with which ash nucleates ice [2,3,33]. The relationship of the fraction of droplets

frozen (fice(T)) with the density of active sites (ns(T)) is described by:

f ice Tð Þ ¼
niceðTÞ

n
¼ 1 � eð� nsðTÞσÞ

Where nice(T) is the number of frozen droplets at the specified temperature T, n is the total

number of droplets (liquid and frozen), and σ is the surface area of ash per droplet. In the

microliter experiments, where all droplets were of the same volume (1 μl), σ was determined

from the mass of ash per droplet and the specific surface area. For the nanolitre experiments,

there was a broad droplet size distribution so the method described in Umo et al. [27] was

employed.

The parameter, ns, provides a pragmatic, surface area normalised, measure of the efficiency

with which a particular material can nucleate ice. This allows for comparison between different

experimental systems and comparison with different ice nucleating materials. It also allows the

estimation of the atmospheric ice nucleating particle concentration if the atmospheric abun-

dance of the tested material is known [2]. However, it should be borne in mind that this conve-

nient description of nucleation neglects time dependence. Recent work shows that the time

dependence of nucleation is more important for some ice nucleating species compared to oth-

ers [32,34]. Hence, we also explore the time dependence of this volcanic ash by conducting

experiments at various cooling rates.

Results and Discussion

Fig 1 shows the fraction of droplets frozen as a function of temperature for 10 K min-1 cooling

rate experiments where nanolitre volume droplets contained 0.1 wt% volcanic ash. Freezing

occurred heterogeneously from 244.5 to 258.5 K, well above homogeneous freezing (~236 K)

[35]. Pure water droplets of similar or larger sizes have been shown to freeze homogeneously
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using nL-NIPI in the past [26,27]. For the droplets containing ash, higher freezing tempera-

tures are observed for the larger droplet diameters (50–70 μm) compared to the smaller drop-

lets (30–49 μm) as expected, due to a comparatively higher ash surface area present within

each droplet. Freezing temperatures for similar experiments performed with microlitre volume

droplets with cooling rates varied between 0.2 and 2 K min-1 are also shown for comparison in

Fig 1. Since the amount of ash in these droplets was 103 to 104 times greater than in the nanoli-

tre droplets they froze at warmer temperatures.

Values of ns are shown in Fig 2 for the nanolitre and microlitre experiments. The values

of ns from the two sets of experiments are consistent with one another. In addition, ns from

microlitre experiments with both 0.01 and 0.1 wt% ash were also in good agreement probing a

total mass range of 1x10-6 – 1x10-10 g (including the nanolitre experiments), indicating that ns

is not dependent on the amount of material in the droplet or the size of a droplet. This is

important because in order to access small, but atmospherically relevant, values of ns we

have to have many thousands of particles per droplet. This contrasts with the situation in

the atmosphere where each particle (or aggregate of particles) is capable of acting as a CCN

and becoming immersed in an individual droplet. The lack of dependence of ns on the

amount of material in a droplet or the size of the droplet indicates that processes such as

particle aggregation do not significantly reduce the surface area available to nucleation in

our experiments.

There is also no observable dependence of ns on cooling rate, which was varied between 0.2

and 2 K min-1 in the microlitre experiments and 10 K min-1 in the nanolitre experiments.

Fig 1. Fraction of droplets frozen as a function of temperature for nanolitre and microlitre volume

supercooled water droplets containing Soufriere Hills volcanic ash particles. Droplets with diameters in the

range of 30–70 μm (nanolitre volumes) were cooled at 10 K min-1 and had ash concentrations of 0.1 wt%. The 1

microlitre droplets had an ash concentration of 0.01 wt% and were cooled at rates from 0.2–2 K min-1.

doi:10.1371/journal.pone.0169720.g001
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Herbert et al. [32] show that the shift in temperature between fraction frozen curves on chang-

ing cooling rate is determined by the slope of the nucleation rate of a single component with

temperature (−dln(Js,i)/dT = λ). Smaller values of λ correspond to stronger time dependence.

Given our temperature uncertainty and the statistical spread in the fraction frozen curves in

Fig 1 we estimate that λ was larger than 4 K-1 in the observed temperature range. For a single

component material the magnitude of λ is equal to the slope of dln(ns,i)/dT, but for a multiple

component material dln(ns,i)/dT is smaller than λ. The value of dln(ns,i)/dT from Fig 2 for the

steepest part of the curve is 1 K-1, which is smaller than λ, indicating that this material is best

described as a multiple component species. This implies that there is strong particle-to-particle

variability in the ice nucleating ability of this volcanic ash. This contrasts with a single compo-

nent material (such as kaolinite KGa1b) where each particle has a similar ability to nucleate ice

[32].

The weak time dependence (large λ) is consistent with the fact the microlitre and nanolitre

ns values overlap despite being determined from experiments with different cooling rates. In

contrast, Herbert et al. [32] estimated that Eyjafjallajökull ash and Mount St Helens ash had a

λ value of about 0.6 K-1, which would cause a shift in the mean freezing temperature of> 3 K

for a factor of 10 change in cooling rate. This is strikingly different to the minimal time depen-

dent behaviour observed in the present study which indicates that the ice nucleating compo-

nent of the Soufriere Hills ash is distinct to the Eyjafjallajökull ash and Mount St. Helens ash

samples. The Soufriere Hills ash sample has a λmore like that of biological ice nucleators such

as Pseudomonas syringae or inorganic nucleators such as Arizona Test Dust and K-feldspar

[32]. The X-ray diffraction analysis (Table 1) indicates that there is a significant component of

Fig 2. Values of ns in units of cm-2 as a function of temperature, at concentrations of 0.01-0.1 wt%, for

droplets of nanolitre and microlitre volume containing Soufriere Hills volcanic ash. Parameterisations of K-

feldspar taken from Atkinson et al. [31] and desert dusts taken from Niemand et al. [36] are included for comparison.

doi:10.1371/journal.pone.0169720.g002

Ice Nucleation by Soufriere Hills Volcanic Ash

PLOS ONE | DOI:10.1371/journal.pone.0169720 January 5, 2017 6 / 11



Ca and Na feldspars; hence it is possible that it is the feldspar component in Soufriere Hills ash

which nucleates ice.

The ns values for Soufriere Hills ash are also compared with literature data for microcline

(K-feldspar) and desert dust in Fig 2. The ash sample nucleates ice with ns values very close to

that of microcline [31] between 257 and 265 K and is similar to the Niemand et al. [36] desert

dust parameterisation below 256 K. More recent measurements of ice nucleation by a range of

feldspars suggest ns curves off and reaches a limiting value below about 250 K [37,38], perhaps

more consistent with the trend displayed by Soufriere Hills volcanic ash in this study. Overall,

this particular volcanic ash has a nucleating ability comparable to mineral dusts from deserts.

We now compare the results for our ash sample to ns values for volcanic ash from the litera-

ture in Fig 3. In general, the available data indicates that the ice nucleating ability of volcanic

ash samples is highly variable. Our sample of the Soufriere Hills volcanic ash is one of the most

ice-active ashes used in any of the available immersion/condensation mode studies. In contrast

to our data, another sample from the Soufriere Hills studied by Schill et al. [23] was very poor

at nucleating ice, with nucleation occurring close to the homogeneous limit. There were some

mineralogical differences between the Soufriere Hills ashes used in our study and that of Schill

et al. [23]. Our sample contained a greater proportion of Anorthite and less Albite compared

to their sample. Schill et al. [23] also report that their sample contained 11% amorphous mate-

rial, whereas our sample contained no detectable amorphous material. Our ash sample was

collected after a dome collapse eruption on the 11th of February 2010, while Schill et al. [23]

report that their sample resulted from an explosive eruption in January 2010 [15]. These com-

positional differences may be due to the different eruption types, with dome collapse eruptions

leading to less amorphous material compared to the freshly erupted magma from an explosive

Fig 3. Values of ns in units of cm-2 as a function of temperature, for ice nucleation by volcanic ashes in the

immersion/condensation modes from this study and the literature [18,21–23].

doi:10.1371/journal.pone.0169720.g003
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eruption, which is rapidly quenched. The quartz polymorph cristobalite (present in our sam-

ple) is a common product of lava dome eruptions but would not be found as a product from

explosive eruptions [39], such as the ash studied in Schill et al. [23]. The ice nucleating activity

of ash may therefore differ depending on the type of eruption and inherently also on composi-

tion. A direct comparison study of the ice nucleating ability of ash from different lava dome

and explosive eruption types could evaluate this possibility. We also note that Schill et al. [23]

agitated their suspensions for 12 hours prior to their experiments whereas we conducted the

experiments within a matter of minutes of suspending the dust. In a separate study we have

found that an albite sample can nucleate ice very efficiently when first immersed in water, but

this activity decreases dramatically with time [40]. It is possible something similar is occurring

here where an ice active component of the ash is deactivated with time spent in water. Schill

et al. [23] report ns values for two other ash samples, one of which was similarly inactive to

their Soufriere Hills sample (Fuego) and another from New Zealand (Oruanui) which was

much more active. It should be noted that the crystalline fraction of both of these samples were

primarily composed of feldspars, but the ashes were also comprised of a significant amorphous

component. This amorphous fraction may account for the lower ice nucleating activity as pre-

viously hypothesised by Kulkarni et al. [17]. However, the New Zealand ash sample was miner-

alogically distinct, also containing a significant amount of crystalline quartz as well as being

made of 59% amorphous material. Schill et al. [23] suggest that quartz might be responsible for

its ice nucleating ability.

Feldspars are known to be sensitive to exposure to acid with their surfaces rapidly trans-

forming into amorphous silicates and clay minerals [31]. Kulkarni et al. [17] also suggest that

the ‘crystallinity’ of ashes might be affected by acid coatings which might influence ice nucleat-

ing activity. It has been shown that samples in which there is a significant feldspar fraction

reduce in ice nucleation activity on exposure to acid, which is presumably due to the conver-

sion of the highly ice active feldspar surfaces to less active materials [41]. Since volcanic plumes

are characterised by high concentrations of the acid gas SO2 in the presence of water vapour, it

is possible that aerosolised volcanic ash may be deactivated when acid collects on their sur-

faces. In this study we ground the ash sample to break up the largest of the particles. This may

also have exposed fresh highly active feldspar surfaces, hence the results presented here may

represent an upper limit to the ice nucleating ability of Soufriere Hills ash, although a similar

grinding process was also used by Schill et al. [23] who reported very low activity for two out

of three of their volcanic ash samples. More work is needed to quantify the acid passivation of

volcanic ash under relevant conditions as well as the role that mineralogy and amorphous con-

tent plays in its ice nucleating ability.

Summary and Conclusions

We present an experimental evaluation of the ice nucleating efficiency of ash from the Soufri-

ere Hills volcano. In this study ash particles were immersed in droplets and the efficiency with

which they nucleated ice was quantified. Comparison with literature data for other ashes

shows that there are substantial differences in ashes from different sources and even from dif-

ferent eruptions of the same volcano. This contrasts with the view expressed previously that

many ashes have a similar capacity to nucleate ice [2] or that the majority of ashes have an

onset freezing threshold within 10 K [6]. We suggest that the ice nucleating ability of Soufriere

Hills ash may be due to the presence of Na Feldspars. Given that feldspars may be important

for ice nucleating in Soufriere Hills volcanic ash, there is the potential that the ash’s ice nucleat-

ing ability may be strongly reduced by the presence of sulphuric acid, as feldspars are chemi-

cally converted to other materials when in contact with acid. The samples used here were
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ground in order to make the particles small enough to suspend in water. This may have

exposed fresh surfaces upon which ice nucleation could occur. More work is needed in order

to address this issue. Nevertheless, this study together with previous work demonstrates that

volcanic ashes have diverse ice nucleating properties and that Soufriere Hills ash has the poten-

tial to be a source of effective atmospheric INPs.
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41. Wex H, DeMott PJ, Tobo Y, Hartmann S, Rösch M, Clauss T, et al. (2014) Kaolinite particles as ice

nuclei: learning from the use of different kaolinite samples and different coatings. Atmos Chem Phys

14: 5529–5546.

Ice Nucleation by Soufriere Hills Volcanic Ash

PLOS ONE | DOI:10.1371/journal.pone.0169720 January 5, 2017 11 / 11

http://dx.doi.org/10.1039/c003297b
http://dx.doi.org/10.1039/c003297b
http://www.ncbi.nlm.nih.gov/pubmed/20577704
http://www.ncbi.nlm.nih.gov/pubmed/10024235

