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Abstract

Headlines play a crucial role in attract-

ing audiences’ attention to online artefacts

(e.g. news articles, videos, blogs). The

ability to carry out an automatic, large-

scale analysis of headlines is critical to

facilitate the selection and prioritisation

of a large volume of digital content. In

journalism studies news content has been

extensively studied using manually anno-

tated news values – factors used implic-

itly and explicitly when making decisions

on the selection and prioritisation of news

items. This paper presents the first at-

tempt at a fully automatic extraction of

news values from headline text. The news

values extraction methods are applied on

a large headlines corpus collected from

The Guardian, and evaluated by compar-

ing it with a manually annotated gold stan-

dard. A crowdsourcing survey indicates

that news values affect people’s decisions

to click on a headline, supporting the need

for an automatic news values detection.

1 Introduction

In this digital age, where “the widening gap be-

tween limitless media and limited attention makes

it a challenge for anything to attract an audience”

(Webster, 2014), headlines play a special role.

Their main function is to draw attention and act

as the visual entry point to online digital con-

tent (Leckner, 2012). This is intensified on so-

cial media, where in cases of indirect engagement

(e.g. with retweeted news articles) headlines are

often the only visible part of the main content.

Liu (2005) found that compared to print media,

digital readers spend more time browsing, scan-

ning, and keyword spotting. Various studies con-

ducted by Chartbeat found that 38% of users leave

a website immediately after accessing it1, and that

an average reader will spend only 15 seconds on

a website2. An American Press Institute study

found that roughly six in ten people acknowledge

that they are “headline-gazers” checking only the

headline and not reading the full article 3.

Therefore, automatic processing of headlines is

needed to facilitate the selection and prioritisation

of large volumes of digital content. This has been

studied in the journalism field by considering news

values. These are aspects of an event determining

whether and to what extent it is reported, therefore

guiding editorial selection. Recent journalism re-

search (O’Neill and Harcup, 2009, p.171) suggests

that news values can also be applied to the audi-

ence reception perspective, thus helping to analyse

what attracts audiences to certain headlines.

The automatic extraction of news values from

headlines can be a central tool for a range of ap-

plications. Automatically extracted news values

scores can be correlated with online attention met-

rics, such as pageviews, to investigate which head-

line aspects influence online popularity. They can

play a key role in content-based recommender sys-

tems, especially when a user model is not avail-

able (the so-called ‘cold start’ problem). Headline

newsworthiness insights can be incorporated into

online content publishing, e.g. YouTube4 to guide

authors on how to compose the headline text to at-

tract audiences’ attention. Furthermore, digital hu-

manities researchers can conduct large-scale com-

parisons of news values across digital outlet types,

genres, demographics, etc.

Despite the importance of headline news val-

ues, there are no automatic computational means

to extract them from headline text. This requires

advanced text processing to compute appropriate

1http://slate.me/1cJ7b5C
2http://yhoo.it/2cEQMVC
3http://bit.ly/21LwfS5
4https://www.youtube.com/



features that can be related to news values. It

makes for a challenging problem, because news

values often involve tacit knowledge. There are

no precise definitions of news values which can

be used for automatic text processing, which is

further aggravated by the nature of headline text.

Critically, there are no studies to inform how to as-

sociate news values with various features that can

be automatically extracted from headline text.

To address these challenges we utilise state-of-

the-art techniques to develop a method for auto-

matic extraction of news values from headline text.

Our solution includes several NLP methods, such

as wikification, sentiment analysis, and language

modeling. We further combine them with other

AI methods, including a burst detection algorithm

to propose new techniques for estimating entities’

prominence. The approach is applied and evalu-

ated on a large corpus of news headlines from a

prominent news source – The Guardian.

Focusing on headline news values, the paper

presents a new perspective on processing digi-

tal content and contributes to text analytics by:

(i) providing the first computational method for

a fully automatic extraction of news values from

headlines which combines relevant NLP tech-

niques; (ii) evaluating the news values feature en-

gineering by applying the computational method

to a large corpus of news headlines and comparing

the automatic annotation to a gold standard devel-

oped for this task, (iii) confirming through a user

crowdsourcing study that people’s choices to click

on news items are influenced by news values in the

headlines, indicating the significance of automatic

news values detection.

2 Related Work

Headlines are gaining ground in the NLP com-

munity as a text type to be studied separately.

This follows research suggesting that headlines

can function autonomously from the full text. Ac-

cording to Dor (2003) the reader receives “the

best deal in reading the headline itself”. Empir-

ical studies seem to support this – Gabielkov et al.

(2016) found that 59% of shared news content on

Twitter is not clicked on, i.e. has not been read

before being shared. This makes headlines key for

sharing content on social media. In the journal-

ism community, the importance of headlines has

already been acknowledged. For example, Althaus

et al. (2001) looked at substitutes for full article

text including headlines and their impact on con-

tent analysis. Tenenboim and Cohen (2013) con-

ducted a study on the effect of headline content on

clicking and commenting. However, these efforts

included a manual annotation, which limited their

scope. More recently, NLP researchers also fo-

cused on headlines, including headline generation

(Gatti et al., 2016) and keyword selection for pop-

ularising content (Szymanski et al., 2016). We add

to this ongoing NLP research by proposing news

values to analyse headlines.

News values originated in the journalism stud-

ies field with the work by Galtung and Ruge

(1965). Since then a variety of taxonomies of news

values have been proposed: Bell (1991), Harcup

and O’Neill (2001), Johnson-Cartee (2005) and

Bednarek and Caple (2012). Regardless of differ-

ences in granularity and definitions, there is a con-

siderable overlap between all these taxonomies.

This allows us to select the news values which are

most frequently mentioned and most relevant to

headline text. These include: prominence, sen-

timent, superlativeness, proximity, surprise, and

uniqueness. We offer a systematic and fully repli-

cable method of an automatic extraction of these

news values from headlines. Furthermore, we

show that these news values influence people’s de-

cisions to click on a headline.

News values have been widely used in jour-

nalism studies, however researchers still mainly

rely on manual annotation. For example, news

values were used by Bednarek and Caple (2014)

to analyse news discourse, while Kepplinger and

Ehmig (2006) used them to predict the newswor-

thiness of news articles. Since news values need

to be annotated manually, large-scale analyses of

news articles in journalism studies have focused

on aspects that are readily available through arti-

cle metadata (e.g. topics in Bastos (2014)). There

have been some limited attempts at using compu-

tational methods to enable large-scale annotation

of news values from text, however these can be

described at most as semi-automatic. For exam-

ple, Potts et al. (2015) manually choose news val-

ues indicators from a preprocessed corpus; more-

over, the approach relies on keywords and is topic-

dependent. This paper presents the first attempt at

a fully automatic and topic-independent extraction

of news values which is applied and validated on

headlines from a ‘broadsheet’ news source. Our

news values detection is largely not news-specific



and can be extended to titles in other genres.

From an NLP perspective headlines pose an

engineering challenge. This includes linguistic

aspects like unusual use of tenses (Chovanec,

2014) and deliberate ambiguity (Brône and Coul-

son, 2010). There are also some domain-specific

phenomena like click-baiting (Blom and Hansen,

2015). Headlines are typically short, which limits

the amount of context that many NLP tools rely

on. While feature engineering from headlines is

less studied, there are research efforts that specif-

ically address short texts. Tweets have attracted

considerable attention, leading to the development

of some Twitter-specific tools (e.g. TweetNLP5).

Tan et al. (2014) is an example of feature engineer-

ing from tweets that looks specifically at wording

and its effect on popularity. Another example of

a text closely related to headlines are online con-

tent titles, e.g. image titles on Reddit (Lakkaraju

et al., 2013). Many approaches include features

like ratios for various parts of speech, sentiment,

and similarity to a language model. However,

they need to be adjusted to work with headlines.

For example, since headlines offer limited con-

text, sentiment analysis carried out on word-level

is more appropriate (cf. Tan et al. (2014), Gatti

et al. (2016), Szymanski et al. (2016)). For each

news value we either re-implement the most ap-

propriate state-of-the-art methods, or implement

new techniques that work well with headlines.

3 Extraction of News Values

We present feature engineering methods for six

news values. These six were selected, because

they occur frequently in news values taxonomies

(cf. Section 2). The feature computation methods

are summarised in Table 2. Although our goal is a

generic framework, we are inspired by research in

the news domain. Consequently, the features are

informed by news values related to news content.

Preprocessing. All headlines are part-of-

speech tagged (Stanford POS Tagger (Toutanova

et al., 2003)) and parsed (Stanford Parser (Klein

and Manning, 2003)). Wikification (a method

of linking keywords in text to relevant Wikipedia

pages; e.g. Mihalcea and Csomai (2007)) is used

to identify entities in the text. Headlines are wiki-

fied using the TagMe API6, a tool meant for short

texts, making it suitable for headlines.

5http://www.cs.cmu.edu/ ark/TweetNLP/
6http://tagme.di.unipi.it/

Notation. We see the headline H as a set of

tokens obtained from the POS tagger. We denote

the set of content words in H as C and the set of

entities in H as E (cf. Table 1).

Table 1: Preprocessing: H (set of tokens), C (set

of content words), E (set of wikified entities)
“Emma Watson’s makeup tweets highlight the com-
modification of beauty”
H ={ Emma, Watson, ’s, makeup, tweets, highlight, the,

commodification, of, beauty}
C ={makeup, tweets, highlight, commodification, beauty }
E ={ EMMA WATSON, COMMODIFICATION }

NV1: Prominence. Reference to prominent en-

tities (elite nations and people (Galtung and Ruge,

1965), and more recently celebrities (Harcup and

O’Neill, 2001)) is one of the key news values.

We approximate prominence as the amount of

online attention an entity gets. As online promi-

nence varies with time we consider long-term vs.

recent prominence and burstiness. We extend pre-

vious work by using wikification for obtaining en-

tities and considering their burstiness.

For an entity e, we denote as

pageviewse,d−m,d−n
the median number of

Wikipedia daily page views7 for that entity

between days d
−m and d

−n. Day numbering is

determined in reference to the article publication

day d. Wikipedia long-term prominence is

calculated over one year (pageviewse,d−365,d−1),

and Wikipedia recent prominence on the day

before publication (pageviewse,d−1,d−1).8 For a

news-centric perspective of prominence, we also

calculate the sum of e’s mentions in the news

source headlines in the week before publication

day, denoted as newsmentionse,d−7,d−1 .

As entities exhibit different temporal patterns

of prominence, we differentiate between entities

which have a steady prominence (e.g. SILICONE)

and entities which become bursty, i.e. suddenly

prominent for a short period of time (e.g. EBOLA

VIRUS). To identify bursty entities, we imple-

ment the burst detection algorithm by Vlachos et

al. (2004) (cf. Algorithm 1). An entity is defined

as being in a burst if its moving average in a given

time frame is above the cut-off point (cf. Figure 1).

We use entity bursts in two ways. Firstly, bursti-

ness indicates the number of days that e was in

a burst over a year (daysburste,d−365,d−1). Sec-

7http://dumps.wikimedia.org/other/pagecounts-ez/
8We found the previous day’s prominence to be closest to

the actual on-the-day prominence.
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Figure 1: Time series plots of Wikipedia page

views moving averages (MA) for two entities:

non-bursty SILICONE (top) and bursty EBOLA

VIRUS DISEASE (bottom). The dashed line shows

the burst cut-off line.

ondly, current burst size indicates how many stan-

dard deviations above MAe is any e which is in a

burst day before publication (daysburste,d−1,d−1

returns 1 if e is in a burst, 0 if not). We are the first

to consider burstiness for popularity prediction.

Algorithm 1 Burst detection algorithm adapted

from Vlachos et al. (2004). Following experimen-

tation, moving average was set to three days and

the cut-off point to two times standard deviation.
1: Calculate moving average of length 3 for entity e (MAe)

for sequence d−365, ...d−1.
2: Set cutoff = mean(MAe) + 2× SD(MAe)
3: Bursts = di|MAe(i) > cutoff

As a headline can have multiple entities, all

prominence measures are aggregated via summa-

tion over all entities in H (see Table 2).

NV2: Sentiment. This refers to sentiment-

charged events (Johnson-Cartee, 2005) and using

sentiment-charged language (Bednarek and Caple,

2012). Features relating to sentiment and emotion-

ality have been shown to influence a news article’s

virality (Berger and Milkman, 2012). However,

this effect has not been studied for headlines.

As direct measures of sentiment, we combine

SentiWordNet (Baccianella et al., 2010) positivity

and negativity scores of content words, and calcu-

late sentiment and polarity scores following Ku-

cuktunc et al. (2012). Sentiment can also be in-

direct. Firstly, a word may be in itself objective,

but carry a negative connotation (e.g. scream). We

therefore measure the percentage of content words

in a headline with a positive or negative conno-

tation (using a connotations lexicon (Feng et al.,

2013)). Secondly, we measure the percentage of

biased content words (using a bias lexicon (Re-

casens et al., 2013)). For example, the same po-

litical organisation can be described as far-right,

nationalist, or fascist, each of these words indicat-

ing a bias towards a certain reading.

NV3: Superlativeness. The size (Johnson-

Cartee, 2005, p.128), or magnitude (Harcup and

O’Neill, 2001) of an event is considered to influ-

ence news selection.

We focus on explicit linguistic indicators of

event size: comparatives and superlatives (indi-

cated by part-of-speech tags), and amplifiers (in-

dicated with intensifiers and downtoners). For the

latter, we combine the lists in Quirk et al. (1985)

and Biber (1991), obtaining wordlists of 248 in-

tensifiers and 39 downtoners.

NV4: Proximity. This news value has been

interpreted as both geographical (Johnson-Cartee,

2005, p.128) and cultural proximity (Galtung and

Ruge, 1965) of the event to the news source or the

reader (Caple and Bednarek, 2013).

Following an assumption that readers from the

country of a news outlet constitute the main part

of its readership, we focus on geographic proxim-

ity to the news source. We use a binary feature that

indicates whether a headline refers to an entity that

is geographically close to the news source, and

manually create a wordlist including names for the

country, regions, capital city (17 UK-related terms

in total). We then look for matches in the head-

line text (“London smog warning as Saharan sand

sweeps southern England”) or the Wikipedia cat-

egories of each entity supplied in the TagMe out-

put (category POSTAL SYSTEM OF THE UNITED

KINGDOM for headline “Undervaluing Royal Mail

shares cost taxpayers £750m in one day”).

NV5: Surprise. Events which involve “sur-

prise and/or contrast” (Harcup and O’Neill, 2001)

make news. Surprise in headlines can be implicit

(“Denver Post hires Whoopi Goldberg to write for

marijuana blog”), which requires world knowl-

edge to identify it, or explicit (“Beekeeper creates

coat of living bees”), where it arises from unusual

word combinations.

We target explicit surprise by calculating the

commonness of phrases in headlines with refer-

ence to a large corpus. We first extract phrases of

following types: SUBJ-V, V-OBJ, ADV-V, ADJ-



Table 2: Feature implementations and statistics on The Guardian. Notation is in Table 1. Measures:

median and maximum values, prevalence (proportion of non-zero scores), and the Kruskall-Wallis test

comparing the manual gold standard to automatic extraction (* p<0.05, ** p<0.01, *** p<0.001).
Feature name Implementation Median Max Prevalence KW

NV1 number of entities |E| 1 8 79% ***

Wikipedia current burst size
∑

e∈E daysburste,d
−1,d−1

×
pageviews(e,d

−1,d−1)−mean(MAe)

SD(MAe)
0 57.16 12% 0.2

Wikipedia burstiness
∑

e∈E daysburste,d
−365,d−1

21 156 78% ***

Wikipedia long-term prominence
∑

e∈E pageviewse,d
−365,d−1

1,342 125,757 79% ***

Wikipedia day-before prominence
∑

e∈E pageviewse,d
−1,d−1

1,642 1,031,722 78% ***

News source recent prominence
∑

e∈E newsmentionse,d
−7,d−1

0 122 50% **

NV2 sentiment max positivity −max negativity − 2 -2 -1 100% 0.1

polarity max positivity +max negativity 0.5 1.88 79% **

connotations # content words with positive or negative connotations

|C|
0.34 1 92% 0.2

bias # biased content words
|C|

0.13 1 61% *

NV3 comparative/superlative
# words with JJR|JJS|RBR|RBS POS tag

|C|
0 1 7% ***

intensifiers # intensifiers
|H|

0 0.34 10% ***

downtoners # downtoners
|H|

0 0.29 4% 0.2

NV4 proximity 1 if explicit reference to UK in H or in Wikipedia category tags, else 0 0 1 35% ***

NV5 surprise minLLp where LLp is the log-likelihood for a phrase in H 4.15 2,726,186 100% *

NV6 uniqueness maxt∈d−72hr cosine similarity(H, pastHt) 0 0.83 13% *

N, N-N; and generate a regular expression with

their inflected forms (e.g. man drinks → man

drinks|drank|drinking). For each regexp we ob-

tain a count from a Wikipedia corpus9 and sum

the counts for each phrase and calculate its log-

likelihood (LL). The feature value is given the

lowest LL in the headline (as we are looking for

the most surprising phrase)10.

NV6: Uniqueness. News has to be new – ”any

new comment or circumstance [. . . ] adds to the

debate” (Conley and Lamble, 2006). An analy-

sis of several storylines in the headlines corpus

showed that of two very similar headlines, the lat-

ter tends to be less popular (“Ferry disaster: South

Korean prime minister resigns” was more popu-

lar than the later “South Korean prime minister re-

signs over ferry sinking”).

For a headline H we select past headlines from

72 hours before H’s publication and which have at

least one TagMe entity overlapping or neither has

any entities11. For a pair of H and pastH vectors

(created using a tf-idf weighted Gigaword corpus)

we calculate their cosine similarity. The highest

cosine similarity is assigned as the feature value.

9http://www.nlp.cs.nyu.edu/wikipedia-data
10We experimented with other corpora and metrics and

found Wikipedia and log-likelihood to give best results.
11Entity overlap helps with ensuring that the headlines are

part of the same storyline; including headlines with no enti-
ties ensures more coverage. Collecting headlines from previ-
ous 72 hours works better than other cutoff points.

4 Application and Evaluation

We applied the feature extraction methods on a

corpus of headlines from The Guardian, a major

British newspaper. This provides a wide cover-

age of various topics and genres, allowing a good

exploration of news values. The automatic extrac-

tion of news values was compared to a manually

annotated gold standard.

Headline corpus. The headlines corpus was

built using the Guardian Content API12. We down-

loaded all headlines published during April 2014,

yielding a corpus of 11,980 headlines.

Automatic annotation. Feature values were

calculated for each headline. Statistics for the ex-

tracted features in The Guardian corpus are re-

ported in Table 2 (Median, Max, Prevalence).

Manually annotated gold standard. For each

news value we selected 20 headlines from the

headlines corpus. In order to use the clear-

est examples for a more accurate annotation,

we randomly selected 10 headlines from the top

quartile values and 10 from the bottom quar-

tile. For news values that are split into multi-

ple features (NV1:Prominence, NV2:Sentiment,

NV3:Superlativeness), the feature group vectors

were ordered to obtain quartiles. Overall, a total

of 120 headlines were selected for manual anno-

tation. Three expert annotators, PhD students in

linguistics, annotated each headline as positive or

12http://www.theguardian.com/open-platform



negative (Y/N) for the first five news values (cf.

Table 3). For NV6:Uniqueness, annotators were

presented with 20 headlines from the corpus and

further 20 past headlines with highest and lowest

headline uniqueness scores (which were randomly

sampled). The annotators indicated whether any

of the past headlines were very similar (i.e. highly

related) to a given headline.

Inter-annotator agreement. The inter-

annotator agreement was calculated using

Fleiss’s Kappa. It ranges from substantial for

NV1:Prominence (.76) and NV6:Uniqueness

(.73), through moderate for NV3:Superlativeness

(.43), NV5:Surprise (.48), and NV4:Proximity

(.55), to fair for NV2:Sentiment (.22). The

annotators remarked that sometimes they chose

‘on instinct’ and their responses might vary from

day to day. This highlights the challenge of an

automatic detection of news values, as news

values are somehow tacitly understood. The

annotators’ judgments were aggregated using a

majority vote, creating the gold standard.

Comparison with gold standard. We calcu-

lated pairwise comparisons between each feature

and the relevant manual label (e.g. number of en-

tities and Prominence, bias and Sentiment). The

Kruskal-Wallis test was used to determine whether

the differences in feature values for the two man-

ual annotation labels (Y/N) were significant (cf.

column KW in Table 2). These results indicate

whether the value calculated for a given feature

correctly reflects the presence of a news value in

the gold standard produced by the human experts.

The findings of the evaluation are discussed below.

5 Discussion of Feature Extraction

We use a news corpus that is representative of a

wide range of news publications under the um-

brella of ‘broadsheet’ (as opposed to tabloid news-

papers which differ in style and tone). The

Guardian corpus is a freely available resource, al-

lowing replication of methods and study findings.

While the evaluation of feature extraction is con-

ducted over one corpus, we also applied this ap-

proach to another publicly available ‘broadsheet’

corpus – New York Times (cf. Appendix A). We

will discuss below the findings from The Guardian

evaluation study, and will refer to feature extrac-

tion outputs from New York Times to illustrate fea-

ture behaviour on two corpora.

NV1: Prominence is one of the most preva-

lent news values and our approach using wikifi-

cation proves very reliable. It occurs quite fre-

quently – most headlines in The Guardian corpus

have at least one entity (median number of entities

= 1), which attracts a fair amount of online atten-

tion (median Wikipedia long-term prominence =

1,342 pageviews). Some headlines include very

prominent entities (max. Wikipedia day-before

prominence = 1,031,722). The outputs from New

York Times are similar – every headline is asso-

ciated with at least one Wikipedia entity (100%

prevalence for number of entities); and Wikipedia

burstiness, long-term, and day-before prominence

have non-zero scores in 66% of headlines. This

shows that Wikipedia provides a wide coverage

for the computation of prominence. Wikipedia

current burst size is a rare feature (12% in The

Guardian and 10% in NYT), because capturing an

entity in a burst is uncommon, since bursts do not

apply to all entities and do not happen frequently.

The IAA for Prominence is the highest (κ=.76)

and nearly all features reach p<0.001 when com-

pared to the manual annotations. This strongly

supports our implementation of Prominence, in

particular the use of wikification and Wikipedia

as a prominence source. Burstiness presents a

new way of looking at Prominence. While bursti-

ness (i.e. how many times in a year an entity had

pageviews significantly higher than its average) is

a reliable feature, current burst size (i.e. size of the

burst on the day before article publication) is not

significantly correlated with the gold standard.

NV2: Sentiment is among the most challeng-

ing news values to implement, since it is not typ-

ical for broadsheets and sentiment-charged lan-

guage in headlines does not always accurately re-

flect the true sentiment or emotion. Headlines

in broadsheet newspapers tend to be quite neutral

(median sentiment = -2; median polarity = 0.5).

This is also the case for the New York Times (senti-

ment = -2; polarity = 0). However, most headlines

contain at least one connotated or biased word

(connotations prevalence = 92%, bias prevalence

= 61%; slightly lower in NYT: 78% and 51%).

The IAA was fair, at κ=.22. The fact that many

headlines are neutral can explain the low agree-

ment, since the neutral cases are where experts

are more likely to disagree. Furthermore, while

manual annotation for one aspect of Sentiment like

positivity/negativity can achieve substantial agree-

ment (.76 agreement between experts in Snow et



Table 3: Examples of annotated headlines. Y/N: majority vote manual annotation. Below: automatically

extracted values aggregated via summation by feature group (cf. Table 2 for feature value ranges).
# Headline Prominence Sentiment Superlativeness Proximity Surprise

E1 “Getting really hung up on EE/Orange customer service” Y Y Y Y Y
0 3 0.125 0 3.23

E2 “Mount Everest avalanche leaves at least 12 Nepalese climbers dead” Y Y Y N N
13272 4.25 0.17 0 4.15

E3 “Huzzah for foreign experts. After all, they’re better than our own” N Y Y N Y
672 2.75 0.2 0 398

E4 “Rev; Martin Amis’s England; and A Very British Renaissance: TV review – video”’ Y N N Y N
36236 2.45 0.08 1 4.15

E5 “This week’s new live comedy’ N N N N N
0 3.25 0 0 102

al. (2008)), our definition of Sentiment is broader.

The annotators pointed out an interesting charac-

teristic of expressing Sentiment. On one hand,

there were highly evocative headlines that describe

some tragic news events (+sentiment, +emotion).

On the other hand, some headlines use sentiment-

charged language, but were not evocative to the

same extent (+sentiment, -emotion). For exam-

ple, comedy (E5 in Table 3) has positive senti-

ment, but does not evoke positive emotion. When

compared to the manual annotations, two out of

four Sentiment features reach significance levels,

so our implementation does capture some aspects

of Sentiment. Extracting Sentiment from head-

lines proves a challenge, since they are short texts

with limited context and often the sentiment is im-

plied or requires world knowledge to identify (e.g.

“Guinea’s Ebola outbreak: what is the virus and

what’s being done?”). Disentangling sentiment

and emotion might paint a clearer picture.

NV3: Superlativeness is rare, but reliably ex-

tracted. It is the least prevalent news value (be-

tween 4-10%; between 3-6% in NYT). The me-

dian values are also all zero. Our narrower defini-

tion of could be the reason, however we decided

to focus on explicit linguistic indicators of event

size (e.g. very, hardly) to keep the implementation

topic-independent and more easily generalisable.

The IAA was moderate (κ=.43). Two out of

three features were significant at p<0.001. This

confirms that our approach that relies on POS tags

and wordlists does capture this news value. The

only feature not to reach a significance level was

downtoners. Downtoners are a class of words

which aim to diminish the word they describe (e.g.

nearly, barely, just). They are not only rare (preva-

lence is 4%), but also require specific knowledge

to identify them (we identified 39 downtoners,

compared to 248 intensifiers). Bearing in mind

that downtoners might have more impact if their

coverage increases with a more comprehensive

wordlist, the other Superlativeness features (com-

parative/superlative and intensifiers) can be reli-

ably used for headlines.

NV4: Proximity is not frequent, but our ap-

proach using a wordlist and Wikipedia categories

proves very reliable. This news values occurs in

35% of headlines. This is not surprising, consider-

ing that The Guardian has a global audience, so

the majority of news is not UK-specific (preva-

lence in NYT is similar at 32%).

The IAA is moderate (κ=.55). The feature

reaches significance at p<0.001, so our method

of capturing Proximity is well-supported. Us-

ing entity categories ensures wider coverage and

less manual effort than just using a wordlist.

This is turn depends on the reliability of the

NER/wikification tools. In some cases an en-

tity might be missed (cf. E1 in Table 3, where

EE/Orange was missed and consequently both

Prominence and Proximity scores are zero). It is

important to note that Proximity covers both ge-

ographic and cultural proximity. Our annotators

were UK residents, familiar with The Guardian,

but demographics of the reader will probably in-

fluence their familiarity with some entities. In our

future work we will include some demographics

data to deepen the implementation for Proximity.

NV5: Surprise is difficult to implement due

to peculiarities of headline text, but our ap-

proach which targets surprising phrasing using a

Wikipedia-based language model does capture it.

The median log-likelihood for this features is rel-

atively low (4.15; 4.04 for NYT), which means

that most headlines have fairly surprising phras-

ing. This might be because headlines do not tend

to strictly follow the conventions of everyday lan-

guage (e.g. frequent use of untensed verbs and



noun clusters). When using a corpus which is not

specifically for headlines (we used Wikipedia), the

log-likelihood will tend to be lower.

The IAA was moderate at κ=.48 and the fea-

ture is significant (p<0.05). This shows that using

a count-based method captures this news value.

In other genres where surprise might play a big-

ger role, this method can be extended by using

a headline-specific corpus or building language

model that takes into account syntactic structure.

NV6: Uniqueness, or rather a lack of it, is

fairly rare, but our implementation reliably iden-

tities such instances. The prevalence is quite low

(15%; but slightly higher at 34% in New York

Times), which follows the basic journalistic prin-

ciple that news have to be novel.

IAA was substantial with κ=.73 and the feature

was significant (p<0.05), so we can be sure that

any similar headlines are identified. An analysis

of headlines with non-zero Uniqueness values re-

veals that most of them are either part of a reg-

ular feature (e.g. “Reviews roundup”), or part of

continuing storylines about the same event (often

featuring some media like video).

Overall, the results of the evaluation are en-

couraging: for every news value the majority of

features significantly differentiates between the

manual annotation labels. This means that our

approach successfully identified and quantified at

least some aspects of every news value.

The study also indicated open issues requiring

further investigation. Firstly, the findings high-

light the importance of world knowledge when

analysing headlines. For example, for the well-

established NLP topic like sentiment analysis, we

find that although purely linguistic methods can

capture most phenomena in headlines, they fall

short to recognise sentiment within entities (e.g.

Ebola). Similarly, a more generic approach for

Proximity would require world knowledge to de-

tect that an entity is related to the reader’s loca-

tion. We are addressing this in our future work.

Secondly, it will be interesting to explore how the

proposed methods can be applied to other types of

news sources (e.g. tabloids) and to genres other

than news. With the exception of news source

prominence and uniqueness, our features are not

news-specific. Titles for other types of digital con-

tent (blogs, videos) also include prominent enti-

ties, sentiment or intensifiers. News values de-

tection offers a new perspective for their analysis.

Thirdly, our methods can be adapted to other lan-

guages, provided that certain NLP resources ex-

ist (POS tagger, NER, sentiment lexicon). This

would enable large-scale analyses of headlines

along multiple axes, like language and genre.

6 Do News Values Influence People’s

Choice of Headlines?

To show the importance of the automatic news

value extraction for a range of applications (cf.

Section 1), we examined whether news values

matter for general audiences. This was explored

with a crowdsourcing study.

Survey content. The survey consisted of

five short sections for news values NV1 to

NV5 (NV6:Uniqueness was not included, be-

cause we decided to focus on news values which

are expressed within a single headline, whereas

the Uniqueness feature requires comparing head-

lines). In each section participants were presented

with a short definition and several examples. Then

they were asked the following: ”I personally con-

sider this news value when clicking on headlines”

and given five Likert scale responses (cf. Figure

2). Standard demographics information (age, gen-

der, country of residence, native language, news

reading habits) was collected.

Participants. The crowdsourcing platform

CrowdFlower was used to recruit participants for

the survey, allowing us to collect responses glob-

ally, thus reflecting the global nature of audiences

of online news outlets. The survey took approx-

imately 10 minutes to complete and participants

were paid $2 for taking part. Out of 100 collected

responses, 96 were recorded as complete. While

quality of responses was generally quite high, we

carried out some quality control. We removed any

responses where more than 75% of answers were

neutral, as well as responses where time to com-

plete was in the bottom quartile (to ensure that

participants had taken time to understand the con-

cepts). After the quality control measures, 71 re-

sponses were selected: 48 participants were 34 or

younger and 23 were 35 or older; 17 were female,

54 were male; 30 were native English speakers and

41 were non-native English speakers; 44 partici-

pants read news daily, 27 weekly.

Results and discussion. Results are presented

in Fig. 2. The overall impact that news values

have on survey participants has been indicated as

very positive. NV1:Prominence, NV4:Proximity,



Figure 2: Survey results to the question ”I per-

sonally consider this news value when clicking on

headlines” (N=71). Percentages show aggregated

positive, neutral, and negative responses.

and NV2:Sentiment had the highest proportions

of positive answers (77%, 76%, and 68%, re-

spectively). This follows the journalism stud-

ies literature, where these three news values at-

tract perhaps the most focus. Comparison with

the gold standard confirmed that our implementa-

tion for NV1:Prominence and NV4:Proximity re-

flects the experts’ judgments. Since this survey

highlighted the role of Sentiment, we are moti-

vated to develop it further to capture its full ex-

tent. NV3:Superlativeness had the most neutral

responses (37%). On one hand, this could be be-

cause this news value is slightly more difficult to

understand13. On the other hand, Superlativeness

might have been deemed to play a lesser role, since

its main function is more supportive (to embellish

or diminish content). Finally, NV5:Surprise had

the most negative responses (25%). This might be

because surprising headlines could be perceived as

less informative, or more ambiguous. As people

often read only headlines to get their news (Ga-

bielkov et al., 2016), surprise would not support

the headlines’ function as summaries.

Overall, results of this survey highlight the im-

portance of news values in headlines. We also

found that news values play a role for both native

and non-native speakers of English (our sample

has roughly equal numbers of both). This is im-

portant, since most major news outlets nowadays

have a more global reach.

7 Conclusions and Future Work

The work presented here is the first step in a larger

project to predict the popularity of news articles

using headlines. Our focus on headlines is moti-

vated by their role in the everyday online experi-

ence, characterised by limited audience attention

1357% of native English speakers judged Superlativeness
positively compared to 44% of non-native speakers.

and the frequent use of social media websites.

We proposed an automatic extraction method

for news values, which have been posited in jour-

nalism studies and offer a new perspective on

characterising digital content. We broke novel

ground by developing fully automatic and topic-

independent methods for identifying news values

in headlines. An evaluation using manual annota-

tions shows that for all news values the output of

the automatic extraction corresponds to the gold

standard. The results from a crowdsourced sur-

vey indicated that news values influence people’s

decisions to click on a headline. This supports

the wider adoption of the automatic method of

analysing headlines in a range of applications con-

cerning human choices (e.g. prediction models,

recommender systems, intelligent assistants).

Our current and future work includes several

stages. Firstly, we have collected a second cor-

pus (New York Times) to apply our news values

extraction methods. Secondly, the extracted news

values scores are being correlated with popularity

of headlines on social media and applied in a pop-

ularity prediction model using machine learning

methods. The results from the manual annotations

and the crowdsourced survey will also be used to

inform the weights of features in the prediction

model. Furthermore, another survey will target the

direct engagement with headlines (i.e. whether a

reader would click the headline) and compare it

to the social media popularity metrics we have al-

ready collected. Finally, using both data from the

crowdsourced surveys and publicly available Twit-

ter data we will look at whether demographics, in

particular the country of residence, have impact on

the news values of Prominence and Proximity. We

will use the data on the entities we identified from

knowledge bases like Wikidata and BabelNet to

enrich the implementations of these news values.
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A Supplementary Material: Feature

Extraction on New York Times

Table 4: Feature extraction statistics on New York

Times corpus. Notation is explained in Table 1.

Reported measures: median and maximum val-

ues, prevalence (proportion of non-zero scores).

WP=Wikipedia.

Feature name Median Max Prevalence

NV1: Prominence
Number of entities 1 4 100%
WP current burst size 0 57.18 10%
WP burstiness 15 166 66%
WP long-term promi-
nence

626 65,327 66%

WP day-before promi-
nence

773 467,458 66%

News source recent
prominence

0 70 32%

NV2: Sentiment
Sentiment -2 -1 100%
Polarity 0 1.88 43%
Connotations 0.25 1 78%
Bias 0.11 1 51%

NV3: Superlativeness
Comparative/superlative 0 1 3%
Intensifiers 0 0.33 6%
Downtoners 0 0.33 3%

NV4: Proximity
Proximity 0 1 32%

NV5: Surprise
Surprise 4.04 2,724,886 100%

NV6: Uniqueness
Uniqueness 0 1 34%


