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Abstract 

 

Stock prices in financial markets rise and fall, sometimes dramatically, thus asset returns exhibit 

volatility.  In finance theory, volatility is synonymous with risk and as such represents the 

dispersion of asset returns about their central tendency (i.e. mean), measured by the standard 

deviation of returns.  When individuals make investment decisions, influenced by perceptions of 

risk and volatility, they commonly do so by examining graphs of historic price sequences rather 

than returns.  It is unclear, therefore, whether standard deviation of return is foremost in their 

mind when making such decisions.  We conduct two experiments to examine the factors that 

may influence perceptions of financial volatility, including standard deviation along with a 

number of price-based factors.  Also of interest is the influence of price sequence regularity on 

perceived volatility.  While standard deviation may have a role to play in perception of volatility, 

we find evidence that other price-based factors play a far greater role.  Furthermore, we report 

evidence to support the view that the extent to which prices appear irregular is a separate aspect 

of volatility, distinct from the extent to which prices deviate from central tendency.  Also, while 

partially correlated, individuals do not perceive risk and volatility as synonymous, though they are 

more closely related in the presence of price sequence irregularity. 
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On Perceptions of Financial Volatility in Price Sequences 

1. Introduction 

Stock prices in financial markets rise and fall, sometimes dramatically, thus asset returns exhibit 

volatility.1  In standard finance theory, with its roots in portfolio theory (Markowitz, 1952), 

volatility is synonymous with risk and as such represents the dispersion of returns around their 

central tendency (i.e. mean) as measured by standard deviation (Schwert, 2011).  Such a view, 

however, has been challenged in recent years, not just by other academic disciplines but within 

finance itself.  Santos and Haimes (2004), for example, argue that equating risk with volatility can 

be problematic, particularly during periods of extreme market movements.  Similarly, Jones et al. 

(2004) call into question whether standard deviation of return is an adequate measure of volatility 

(viewed as synonymous with risk), finding that a simple measure based on extreme-day returns is 

a better metric of stock market risk than standard deviation, more accurately explaining investor 

behaviour. 2  Furthermore, Raghubir and Das (2010, p.975) note that “the statistical moments of 

a return distribution do not completely capture investor’s perceptions of risk” (a view supported 

by prior experimental evidence, e.g. Duxbury and Summers, 2004).  Finally, Goldstein and Taleb 

(2007) report that individuals, even those with a background in financial markets, err in their 

interpretation, misconstruing mean absolute return (a linear measure) to be equivalent to 

standard deviation of return (a non-linear measure).  They recommend the adoption of a more 

natural metric than standard deviation. 

                                                           

1 The study of volatility has long held academic interest and has witnessed many advances over the years, as 
exemplified by the rapidly growing literature on modelling and forecasting “realized volatility” using intra-day data 
to obtain more accurate and efficient forecasts.  See, for example, the many papers published in the “realized 
volatility” special issue of the Journal of Econometrics edited by Meddahi, Mykland, and Shephard (2011) and more 
recent studies including Fuertes et al. (2015), Andrada-Félix et al. (2016) and Kourtis et al. (2016), among others. 
2 Earlier, Parkinson (1980) and Kunitomo (1992) propose price-based, extreme value methods for estimating 
volatility.  Such models are shown to provide more efficient volatility estimators than commonly used return-based 
estimators such as standard deviation.   
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This paper contributes to the search for a more natural metric, providing insight into perceptions 

of financial volatility.  We address two questions: first, how do individuals perceive volatility, and 

second, do they perceive risk and volatility as synonymous? 3  To this end, we examine 

experimentally the factors that drive investors’ perceptions of financial volatility using stylised 

price sequences, comparing the explanatory powers of price-based measures of volatility to those 

of standard return-based measures.  We conduct two experiments; one where price sequences 

have systematic patterns (i.e. regularity) and a second where price sequences are irregular and 

without pattern.  In doing so, we are able to differentiate two aspects of volatility, the extent to 

which prices deviate from central tendency and the extent to which prices appear irregular or 

unpredictable (Pincus and Kalman, 2004), thus gaining further insight concerning perceptions of 

volatility and the synonymy between risk and volatility. 

To motivate our approach, we consider briefly recent developments in the financial markets, and 

the nature of the information investors typically use in their financial decision making, before 

turning to consider how volatility is portrayed in the financial media.  Over the 1990s, the 

number of individuals investing in the US stock market increased dramatically (Vogelheim et al., 

2001) and recent evidence suggests the numbers remain high.4  Vogelheim et al. (2001) put the 

high level of individual participation down to the bull market of the 1990s, the move away from 

defined benefit to defined contribution pension schemes5 and the rise of the Internet, offering 

individual investors access to a profusion of financial information and to relatively low cost 

trading.  While individual investors have a wealth of information available to them, via websites 

                                                           

3 While it is common to use the terms risk and volatility interchangeably in the finance literature, we do not do so 
here.  Our approach is not to adopt specific definitions of risk or volatility, but to let participants reveal, via their 
ratings of graphical price sequences, what these concepts mean to them.  That is, their perceptions of risk and of 
volatility, whatever they may be.  We are then interested in finding which characteristics of the price sequences, 
individually or in combination, best explain the experimental data.  Where no confusion arises we use the terms 
perception and rating interchangeably when discussing risk and volatility.  When reviewing other studies we adopt 
the nomenclature used in the original study. 
4 Gallup poll [http://www.gallup.com/poll/147206/stock-market-investments-lowest-1999.aspx, accessed on 05-
09-15] 
5 Comparable changes to pension systems have been witnessed in other developed countries such as the UK 
(Duxbury et al., 2013) 
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such as Yahoo! Finance, arguably the most prevalent and widely used is the historic price 

sequence, typically observed graphically.  Indeed, Duclos (2015, p.324) claims “[l]ike their 

professional counterparts, private investors rely on readily accessible graphs to interpret past 

market-performance and forecast future trends”, while Raghubir and Das (2010) report that 

individuals find graphical display of price sequences most useful. 

Popular representations of stock market volatility, such as those reported in the financial media 

or popular press, are commonly couched in terms stock prices not stock returns.  For example, 

discussing the likely impact of economic and political developments in Greece and China, The 

Motley Fool website states; “it’s quite possible that the situation will spark stock price volatility”.6  

Other examples abound to support this populist view of volatility.  For example, in evaluating 

the growth prospects of Royal Mail, an article on the Interactive Investor website states; “In the 

New Year, Royal Mail effused as high as 617p, turning volatile briefly in a 560p to 605p range”.7   

In light of the widespread use of price sequence graphs by investors and the populist depiction 

of volatility as related to stock prices, we examine experimentally the factors that drive investors’ 

perceptions of financial volatility when presented with sequences of historic prices.  In our first 

experiment, we use stylised price sequences, all with systematic patterns (i.e. regularity), to 

manipulate the dispersion of prices around the mean, along with a number of other price 

sequence characteristics.  We find that the mean absolute price change explains most of the 

variation in volatility perception, with standard deviation playing only a minor role.  While we 

find some evidence of a relationship between perceptions of risk and volatility, the two are not 

perfectly synonymous.  A second experiment, in which we introduce irregularity into the price 

sequences, supports the view that the extent to which prices appear irregular is a separate aspect 

                                                           

6 The Week Ahead: Greece, China, and the Fed, The Motley Fool, 
[http://www.fool.com/investing/general/2015/07/06/the-week-ahead-greece-china-and-the-fed.aspx, accessed 04-
09-15] 
7 Edmond Jackson’s Stockwatch: Is Royal Mail’s growth prospect limited?, Interactive Investor, 
[http://www.iii.co.uk/articles/168701/edmond-jacksons-stockwatch-royal-mails-growth-prospect-limited, accessed 
04-09-15] 
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of volatility, distinct from the extent to which prices deviate from central tendency.  

Furthermore, when irregularity is present we find that returns now play a role in risk perception 

and that risk and volatility ratings are more positively related, though still not perfectly so.  We 

conclude, therefore, that perceptions of volatility have more to do with price-based factors than 

the dispersion of returns around the mean.  Furthermore, investors do not perceive risk and 

volatility as synonymous.   

2. Related literature 

Given our interest in volatility perception in the presence of graphically depicted price 

sequences, we review briefly literature on sequences of outcomes, graphical presentation and 

prior studies of volatility, the findings from which inform our experimental approach. 

In an early experiment, Lathrop (1967) examines notions of variability in groups of lines of 

varying length.  Of interest is the impact of line sequence, holding constant mean and standard 

deviation.  The results support the view that perceptions of variability are influenced not just by 

a mathematical definition of variability (i.e. standard deviation), but by sequence or order effects, 

which persist even in the face of instructions to ignore.  Lathrop (1967, p.502) concludes; 

“Events do not normally occur as distributions defined by a mean and standard deviation, but 

rather occur in sequences.”  These findings provide strong motivation for our focus on 

perception of volatility in stock price sequences, in particular the impact of the size and direction 

of change between consecutive prices. 

Evidence suggests individuals have a preference for sequences of outcomes such that utility 

(disutility) is increasing (decreasing) over the sequence (e.g., Kahneman et al., 1993; Loewenstein 

and Prelec, 1991, 1993; Redelmeier and Kahneman, 1996; Varey and Kahneman, 1992).  In the 

context of monetary outcomes, as is the case with stock prices, the evidence also indicates a 

preference for improving sequences albeit with some exceptions (Chapman, 1996; Guyse et al., 

2002; Hoelzl et al., 2011).  Dolansky and Vandenbosch (2012) compare sequences with identical 
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variance, but where one is the mirror image of the other thus changing sequence directionality.  

They find that sequences of increasing utility are judged to be less variable than sequences of 

decreasing utility, suggesting there may be an impact of trend on perceptions of stock price 

volatility whereby falling prices are perceived as more volatile. 

Turning to presentational format, Weber et al. (2005) investigate the extent to which the format 

in which returns are presented, either by way of historical sequence or probability density 

function, influences expectations and investment decisions.  The two formats make salient 

different facets of the same past-return information, with the time-series highlighting trends in 

returns, while the probability density function emphasizes distributional features.  While 

presentation format impacted volatility forecasts, with return-distributions eliciting higher 

volatility forecasts than time-series, there was no effect on perceived risk.  Though not a direct 

test of whether risk and volatility are synonymous, the evidence suggests this may not be the 

case.  We investigate this directly by first examining the price-based factors that influence 

volatility perceptions and then evaluating the relationship between perceptions of volatility and 

risk. 

While Weber et al. (2005) vary mode of graphical presentation format, they do so only for 

returns.  In contrast, Diacon and Hasseldine (2007) examine differences in risk perception when 

information is presented in the form of price sequences or returns.  They find a discernible 

impact on perceptions of risk and return, with respondents exhibiting heightened risk perception 

for returns than prices.  More recently, Stössel and Meier (2015) investigate differences in 

perceptions of risk, which they take as being synonymous with volatility, when information is 

graphically presented as price-levels, returns or a combination of the two, while also examining 

the effect of direction of the past performance path.  They report a framing effect whereby 

participants who view returns report lower levels of volatility than those viewing price sequences. 
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Despite the wide spread use of graphical information as a basis of investment decisions, it is 

likely that investors are unable to absorb fully the wealth of information that such charts depict 

and as such focus on perceptually salient points to simplify the information-processing task 

(Raghubir and Krishna 1996, 1999).  The question, of course, is what information is most salient 

in a price sequence chart and how does this influence perceptions, and so inform expectations, 

of risk and return?  Mussweiler and Schneller (2003) conjecture that the extreme points on a 

price chart are likely to be highly influential, acting as comparison standards when forming 

expectations of future stock prices.  They find that investor expectations are related to salient 

highs or lows, with extreme highs (lows) leading to expectations of higher (lower) future 

performance.   

Noting that the two main summary features of price sequences are i) the trend or pattern and ii) 

the noise or dispersion around the trend or pattern, Raghubir and Das (2010) suggest that 

individuals sample the local maxima and minima of a price sequence to infer variation around 

the trend and use this to estimate risk.  They conjecture, the higher the run length in stock prices 

(i.e. consecutive price changes in the same direction), the more extreme the local maxima and 

minima, thus the higher the estimate of noise and hence the higher the perception of risk.  In 

line with their theorizing, Raghubir and Das (2010) find that stocks with shorter run lengths are 

perceived as less risk, and so preferred by investors, than those with longer run lengths. 

Continuing the search to identify salient features of graphical price sequences, Duclos (2015) 

investigates end-anchor effects, examining whether recent price changes exert undue influence 

on forecasts and investment decisions.  In a between-subjects experiment, participants view one 

of four graphs of stock prices with the same mean, standard deviation, kurtosis, skewness, and 

run-length, but that differ with respect to last trade direction (downward vs. upward) and 

uncertainty level (standard deviation low vs. high).  Forecasts of future performance and levels of 

investment were higher for stocks ending on an upward move than for those ending on a 
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downward move.  Surprisingly, from a finance perspective, there was no effect of uncertainty 

(i.e. standard deviation) on either forecasts or levels of investment.   

There has been an upsurge in interest in financial volatility, perhaps in part fuelled by recent 

market events, and we turn now to briefly review recent survey and experimental findings.  

Examining investors’ risk taking behaviour, Nosic´ and Weber (2010) contrast subjective 

measures of volatility (risk) and returns with objective, or historical, measures.  Faced with 

historical price charts, subjective expectations are constructed by asking individuals to specify a 

median stock price forecast, along with upper and lower bounds for 90% confidence intervals.  

While treating risk and volatility as synonymous, Nosic´ and Weber (2010, p.296) find that risk 

taking can be explained more by investors’ subjective risk attitudes and perceptions, than by 

objective return and volatility measures.  They also report very low levels of correlation between 

participants’ risk perceptions and their subjective expected volatility.  Employing a similar 

approach, Weber et al. (2013) survey UK investors from September 2008 to June 2009.  They 

too find low correlations between objective and subjective measures of risk and return 

expectations, concluding that risk taking is better predicted by subjective than by objective 

expectation measures.   

In an experiment requiring participants to divide their investment between a risk-free asset and a 

risky asset, Ehm et al. (2014) modify the risk-return profile of risky assets across three conditions 

in such a way that they have comparable Sharpe ratios and so define the same capital market line 

in combination with the risk-free asset.  The experimental design is such that volatility and return 

differ across the risky asset conditions, but the optimal risk–return trade-off is independent of 

treatment condition.  While mean allocations to the risky asset across the three conditions of 

51.7% (basic), 56.3% (low risk), and 54.8% (high risk) do not differ statistically, the resulting 

portfolio volatilities of 11.5%, 6.4% and 15.9%, respectively, do.  Ehm et al. (2014) conclude 

their evidence supports the view that investors adopt two mental accounts, a risk-free account 
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and a risky account, allocating a fixed percentage to each and disregarding portfolio volatility.  In 

a similar vein, Heuer et al. (2015) present survey-based evidence that individuals fail to take 

account of volatility (risk) when evaluating past performance of fund managers and are, 

therefore, likely to confuse risk taking with fund manager skill. 

Noting that financial price series have a fractal structure, Sobolev and Harvey (2016) use real 

price data to experimentally investigate sensitivity to the Hurst exponent, H, which is negatively 

correlated with standard deviation.  Participants either observe graphs of price sequences alone 

or graphs of both price sequences and price changes.  In the price sequence only condition 

participants fail to distinguish between the risk inherent in price series with different Hurst 

exponents, despite being perceptive to the degree of randomness in the prices series (confirmed 

by a discrimination task), perhaps suggesting they did not see connections between risk and 

randomness (volatility).  In the prices sequences and price changes condition, however, 

participants are able to differentiate between graphs of different Hurst exponent, interpreting 

this in the context of risk.  Sobolev and Harvey (2016) also report that risk perceptions were 

driven more by the Hurst exponents than by other common measures of financial volatility, 

including standard deviation. 

Pincus and Kalman (2004) distinguish between two ways in which price sequences may depart 

from constancy: i) the extent to which prices deviate from central tendency and ii) the extent to 

which prices appear irregular or unpredictable.  They propose an approximate entropy (ApEn) 

measure of irregularity or unpredictability, with higher (lower) values of the measure associated 

with greater irregularity (regularity) in the price sequence.  That irregularity of a price sequence 

captures a distinct aspect of notions of volatility plays an important role in our experimental 

approach, to which the discussion now turns. 
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3. Experiment One – Systematic Patterns 

3.1. Design 

We conduct an experiment to examine the factors that may influence perceptions of financial 

volatility, including standard deviation along with a range of price-based factors which are salient 

graphically (e.g. number of changes in direction, number of peaks and troughs, number of highs 

and lows, mean absolute price change etc.).  It is impossible to manipulate all price-based 

explanatory variables independently, hence a full factorial design is not possible.  We produce 16 

price sequences (graphs), each with 24 price observations that vary with respect to value and 

order to produce graphs that differ with respect to the above price-based factors, but all with an 

average price of 12.  See Table 1 for definitions of these price-based factors,8 along with two 

standard return-based measures, and a summary of their values in each of the 16 graphs.   

We present participants with graphs of price sequences that differ with respect to the above 

characteristics and ask them to rate the graphs for risk and volatility (0-10 scales).9  While other 

studies may assume, explicitly or implicitly, that risk and volatility are synonymous, in this paper 

we examine whether this is the case.  We employ a within-subjects design, with graph order 

randomised and counterbalanced.  A total of 78 students participated in the experiment, all 

drawn from a leading UK Business School and all with prior training in statistics. 

In using stylized price sequences in our experiment, we depart from the approach elsewhere of 

investigating volatility using real price or return data (e.g., Heuer et al. 2015; Nosic´ and Weber, 

2010; Sobolev and Harvey, 2016).  While it is conceivable that there may be some loss in realism 

associated with stylized price sequences, we believe the increased experimental control that this 

                                                           

8 Many of the price-based factors we examine have their roots in early work by Pinches and Kinney (1971). 
9 The exact phrasing used in the experiments was: “We would like you to tell us how risky you think these 
investments are. Please rate each graph on a scale from 0 (no risk at all) to 10 (highest possible risk).” and “We 
would also like you to tell us how volatile you think the investments are. Please rate each graph on a scale from 0 
(not at all volatile) to 10 (extremely volatile).”  Note also, the experimental instrument contained no mention of such 
terms as “dispersion”, “standard deviation”, “variance” or any other such statistical term associated with dispersion.  
Thus, participants were free to adopt their own interpretations of “risky” and “volatile”.  This was essential given 
our intention of examining factors that influence perceptions of risk and volatility.  
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affords is necessary to identify the factors that influence perceptions of volatility and risk.10  In 

designing the price sequences we are conscious of the fact that graphs convey such a large 

volume of data “that people simplify their task by sampling points from a financial instrument’s 

price history to estimate trend and noise” leading to perceptual biases (Raghubir and Das, 2010, 

p.965).  The use of long price sequences would require inference to be drawn about the salient 

information and heuristics used by participants to form their perceptions.  To avoid the need for 

such inference, we construct relatively short price sequences.  As such participants will likely 

have no need for sampling or using heuristics, thus removing the potential for visual and 

perceptual biases to distort risk and volatility perceptions.  Furthermore, Pincus and Kalman 

(2004) state that the extent to which prices appear irregular is a separate aspect of volatility, 

distinct from the extent to which prices deviate from central tendency.  In experiment one, we 

remove the influence of irregularity on volatility perception by constructing price sequences that 

follow clear and systematic patterns.  In doing so we avoid DeBondt’s (1998) concern that while 

investors attempt to spot trends and turning points in stock prices, they often see patterns where 

there are none.  We also eliminate the possibility that biases in judgmental forecasting of time 

series (e.g., Harvey, 1995; Harvey and Reimers, 2013; Reimers and Harvey, 2011) might distort 

volatility perception.   

Given our interest in perception of, and not preference for, volatility, we ask participants to rate 

the price sequence and not to choose between them, as such we cannot adopt standard incentive 

compatible financial rewards whereby participants play out their preferred price sequence for 

real.  The systematic patterns present in the price sequences would also make such an approach 

problematic.  To ensure participants engage meaningfully with the task, however, we employ a 

financial incentive that is in part related to their perceptions of the price sequences.  In addition 

                                                           

10 See Jiménez-Buedo and Miller (2010) for a convincing argument that the commonly held view of a trade-off 
between internal and external validity need not hold true.  Indeed, they conclude that problems of external or 
internal validity “do not necessarily nor crucially depend …. on the artificiality of experimental settings” (p.318).  It 
need not be the case, therefore, that external validity, or the generalisability of results, is compromised by the pursuit 
of experimental control (internal validity). 
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to rating risk and volatility, participants also rate the attractiveness of the price sequences.  We 

offer a cash prize draw whereby 1 in every 25 participants is selected at random to win a cash 

prize, the value of which is determined by selecting the graph they rate as most attractive and 

then drawing a random point from the 24-point price sequence and multiplying the selected 

point by £2 to determine the cash prize.  Participants are paid in cash at the end of the 

experiment. 

3.2. Results 

Table 2 reports descriptive statistics (mean and standard deviation) for the perceptions of 

volatility and risk for each of the graphs in experiment one (and two).  It is difficult to draw 

inference concerning the influence of the price sequence characteristics on participants’ ratings 

from the descriptive statistics.  To facilitate such an inference, Figure 1 presents an overview of 

volatility perception, depicting the groupings of graphs with no significant difference in volatility 

rating.  That it takes 9 areas of no significant difference to enclose all 16 graphs shows the high 

degree of differentiation between volatility rating across the price sequences.  The average mean 

volatility rating grouped by graphs in the same enclosed area ranges from 8.77 for graphs 1 and 

16 combined to 2.95 for graphs 11 and 15 combined.  Casual observation of Figure 1 reveals that 

those graphs where price swings are frequent and dramatic (e.g. graph 1, 16 etc.) are perceived to 

be more volatile than those where price changes from period to period are infrequent (e.g. graph 

11, 15 etc.).  It is also apparent that price sequences with the same price dispersion (StDev, see 

Table 1), are often viewed as differing with respect to volatility.  For example, graphs 2 and 11 

have the same StDev=7.66, but their volatility ratings differ significantly (7.06 vs 2.95, 

respectively, p<0.01, Bonferroni adjusted) and they are not enclosed in the same coloured area in 

Figure 1.  In contrast, there are instances, for example graph 2 and 12 , where price sequences 

with disparate price dispersion are viewed as equally volatile (7.06 vs 7.45, respectively, p=1.00, 

Bonferroni adjusted).  Clearly, there appears to be more to volatility than simply price dispersion. 
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Univariate correlations (Table 3) show that the standard deviation of returns (Returnsd) and its 

natural log (LnReturnsd) have the weakest correlation with volatility ratings and the second and 

third weakest correlations, respectively, for risk rating. Most price-based factors are significantly 

correlated to both dependent variables (NumAccelChg being the exception), although the 

correlation coefficients differ. With volatility perception, all of the significant price-based 

variables have a higher correlation coefficient than the returns variables with the largest 

correlations being with the mean absolute price change over the sequence (MeanAbsChg), the 

number of changes in direction over the sequence (NumChgD) and the number of peaks and 

troughs in the sequence (NumPeak and NumTrough).  

The price sequence characteristics also include the standard deviation of prices (StDev), which 

would be the usual statistical measure of price dispersion, but while this variable is significantly 

correlated to risk and volatility (with a correlation coefficient much higher than either returns 

variable, Returnsd or Lnreturnsd), it is not the most highly correlated variable. With volatility 

perception, 5 out of 7 significant variables have a higher correlation coefficient than StDev, with 

the largest correlations being with the mean absolute price change over the sequence 

(MeanAbsChg), the number of changes in direction (NumChgD) and the number of peaks and 

troughs (NumPeak and NumTrough). All these have correlation coefficients over twice that of 

StDev. For risk, MeanAbsChg again has a higher correlation coefficient than StDev, but Range is 

the only other price-based factor with a higher correlation. These results would support a view 

that volatility and risk are not synonymous, but also that the conventional measures of dispersion 

do not capture volatility.  

To explore volatility in more detail regression models were used. Correlations between 

independent variables (i.e. price sequence characteristics) are shown in Table 4, splitting the 

variables into two groups of characteristics; Directly Observable Characteristics, those that can be 

directly observed via visual inspection (e.g. number of changes of direction in the price 
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sequence), and Indirectly Observable Characteristics, those that cannot be directly observed, but that 

can be detected or perceived indirectly (e.g. standard deviation, which might be perceived as a 

form of spread). Many of the variables are significantly correlated with each other, some 

inevitably so (e.g., number of peaks and troughs with each other and with number of changes of 

direction), thus shaping the approach we take in the empirical analyses below.   

Running regression models11 on the two groups of variables separately shows that both sets of 

characteristics produce models with similar predictive powers, with Directly Observable 

Characteristics producing an adjusted r2 of 35.5% and Indirectly Observable Characteristics an 

adjusted r2 of 37.4%. Running a model with all characteristics included gives an adjusted r2 of 

39.6%. Although these models all have collinearity problems (identified by, for example, high 

VIF), with some variables inevitably highly correlated (see Table 4), and hence problems 

associated with coefficient interpretatation, they serve as an indication of the relative explanatory 

power of the two groups of variable, directly and indirectly observable. 

To identify the variables with best explanatory power, while addressing collinearity issues, 

stepwise procedures were used to identify the most parsimonious model (Table 5), with an 

adjusted r2 of 39.4% and variables entering in the order MeanAbsChg, Outside10pct, 

NumAccelChg, StDev and NumChgD. The only difference between the variables in this 

parsimonious model and the significant variables from the model including all variables is the 

inclusion of Outside10pct rather than Range. Outside10pct has a lower VIF than Range (1.083 

vs 2.640) making it more attractive for inclusion due to reduced collinearity issues.   The two 

variables clearly measure related aspects. 

As observed in Table 3, all variables in the most parsimonious model are significantly correlated 

with volatility perception except NumAccelChg. Investigation of this variable’s role shows that it 

                                                           

11 Results are untabulated, but are available from the authors on request. 
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produces an enhancement effect (see, for example, Currie and Korabinski, 1984) on 

MeanAbsChg and StDev,12 increasing their coefficients and improving explanatory power.     

We also investigated the relationship between MeanAbsChg, as the variable most highly 

correlated with volatility perception, and StDev, the classic measure of dispersion. MeanAbsChg 

is significantly correlated with StDev (see Table 4), so the relationship between these was 

therefore explored using hierarchical regression and analysis of shared and unique variance. The 

initial model introduced StDev at step 1, adding MeanAbsChg at step 2. This initial model 

shows13 that StDev has a significant positive coefficient, but only explains 4.2% of the variation 

in perceived volatility (as expected from the univariate correlation coefficient). The addition of 

MeanAbsChg at step 2 brings the variation explained to 33.9% (adjusted R2). This is, however, 

only 1% more than would be provided by MeanAbsChg alone (based on its correlation with 

perceived volatility), suggesting substantial shared variance, and indeed StDev moves to a 

negative sign in this model supporting such a conclusion. Analysis of shared and unique variance 

shows that for StDev the shared variance with MeanAbsChg represents 74% of the explanatory 

power it contributes to the model, whereas for MeanAbsChg the shared variance represents only 

10% of its contribution to explanatory power. When repeating the above with dispersion of 

returns replacing dispersion of prices, Returnsd is not significant in the two variable model, and 

the unique variance for MeanAbsChg is more than 99% of its contribution to the explanatory 

power. MeanAbsChg is therefore showing more unique explanatory power for perception of 

volatility than traditional types of dispersion measure based on either prices or returns. 

                                                           

12
 With enhancement the proportion of variation explained by a regression with a particular pair of independent 

variables is greater than the sum of the proportions of variation explained in regressions with each alone. The 
terminology in this area is somewhat confusing in that enhancement is also referred to in some literatures as 
suppression. The intuition behind this name is that the variable that gives rise to the enhancement acts to suppress 
variance in another variable (say, X1), enhancing its explanatory power. This comes about because the variable 
producing enhancement is correlated with elements of X1 which are not correlated with Y. NumAccelChg actually 
fulfils the requirement for a classic suppression effect (Horst, 1941), having no significant relationship with the 
outcome itself. 
13 Results are untabulated, but are available from the authors on request. 
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Moving on to consider risk perception, ratings for perceptions of volatility and risk are 

significantly correlated (0.567, p<0.001), indicating that each explains just over 32% of variation 

in the other. This contrasts with the assumption in finance theory that volatility and risk are 

synonymous. The univariate correlations in Table 3 provide further evidence, indicating that 

each has a different pattern of relationships with the price-based factors and the return-based 

measures in particular. 

Regression models14 on the Directly and Indirectly Observable characteristics separately again 

show that both sets of characteristics produce models with predictive powers in a similar range, 

with Directly Observable Characteristics giving an adjusted r2 of 17.3% and Indirectly 

Observable Characteristics giving an adjusted r2 of 19.0%. Running a model with all 

characteristics included gives an adjusted r2 of 22.4%. As with the volatility models, all these 

models have substantial collinearity problems. Using stepwise regressions to produce the most 

parsimonious model of risk produces a model that can explain 21.5% of variation in risk 

perception (Table 6a). The natural log of the returns is the only dispersion measure in the model, 

and it does not make a substantial contribution, adding less than 1% to variation explained when 

it enters the model. The most parsimonious model has fewer significant variables in common 

with the model including all variables than is the case for the volatility models. However, here 

significant variables in the “all variables” model include NumPeak, NumTrough and NumChgD, 

despite their fundamental correlation with one another, giving particular collinearity problems.  

Adding perception of volatility to the model improves the model substantially, with 37.6% of 

variability explained (Table 6b). The perceived volatility of the graph is therefore an important 

component in risk perception, despite the evidence that volatility and risk are not synonymous. 

Rerunning the model forcing volatility in initially as step 1 followed by a stepwise regression on 

the price sequence characteristics factors cannot improve on this explanatory power. 

                                                           

14 Results are untabulated, but are available from the authors on request. 
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4. Experiment Two – Irregularity 

4.1. Design 

As discussed above, Pincus and Kalman (2004) note that irregularity of a price sequence 

represents a unique aspect of volatility, distinct from the extent to which prices deviate from 

central tendency.  In experiment one, we removed this from consideration by constructing price 

sequences that follow clear and systematic patterns (i.e. regularity).  However, “if an investor 

were assured that future prices would follow a precise sinusoidal pattern, even with large 

amplitude, this perfectly smooth roller coaster ride would not be frightening, because future 

prices and resultant strategies could be planned” (Pincus and Kalman, 2004, p.13709).  In 

experiment two, we add back irregularity to the price sequences to further examine perceptions 

of volatility. 

The design of experiment two mirrors that of experiment one with a notable exception; we 

randomise the order of the prices in the original sequences so as to remove the systematic 

patterns, replacing regularity with irregularity.  In experiment one, six unique sets of price 

observations were used to construct the 16 price sequences.  Here we randomise the order of the 

each of the unique sets twice, hence the number of graphs in experiment two is 12 (6 pairs of 

random price sequences, with each pair from the same unique set of original price observations).  

Note, the new price sequences have the same mean and price-based standard deviation (StDev) 

as their experiment one counterparts, hence we are able to compare irregularity of price sequence 

while holding constant concepts of classical variability (Pincus and Kalman, 2004).  See Table 1 

for a summary of the values of the price sequence characteristics in each of the 12 graphs.15 

                                                           

15 As the graphs had been numbered consecutively from 1 in each experiment, numbers for the graphs in 
experiment two were adjusted to give unique references by adding 20 to each value (so 1 becomes 21, etc.). 
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We employ the same financial incentive mechanism as in experiment one and a total of 67 

students, again drawn from a leading UK Business School and all with prior training in statistics, 

participated in experiment two. 

4.2. Results 

Table 2 reports descriptive statistics (mean and standard deviation) for the perceptions of 

volatility and risk for each of the graphs in experiment two.  Again, it is difficult to draw 

inference concerning the influence of the price sequence characteristics on participants’ ratings 

from the descriptive statistics.  To provide insight, Figure 2 depicts the groupings of graphs with 

no significant difference in volatility rating.  Relative to Figure 1, three observations emerge; i) 

the least volatile graphs (graphs 22 and 32 ) are rated as more volatile than the least volatile 

graphs in experiment one (note also from Table 2, that the average mean volatility rating across 

all graphs in experiment two is higher than that in experiment one – 6.50 vs 5.98, respectively), ii) 

there is less differentiation between volatility rating across the graphs as can be inferred from the 

fact that all graphs are enclosed by only 5 areas of no significant difference, while the number of 

equivalent areas in Figure 1 is 9 (while the number of graphs in experiment one is higher than in 

experiment two, this does not account for the near halving of the number of areas required to 

encompass all graphs), and iii) those graphs where price range is high (e.g. graphs 25, 28 etc.) are 

perceived to be more volatile than those where price range is low (e.g. graphs 22, 32 etc.).  This 

latter observation perhaps suggests participants adopt a range-based heuristic in the presence of 

price sequences with little discernible systematic pattern, thus supporting the descriptive validity 

of the price-based, extreme value methods of Parkinson (1980) and Kunitomo (1992). 

Univariate correlations of perceptions of volatility and risk with the independent variables (i.e. 

price sequence characteristics), reported in Table 7, show that a high percentage of the variables 

are correlated with risk and volatility, although the pattern of correlations differs from that in 

experiment one, and in this experiment the correlations coefficients across the two dependent 
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variables are more similar than was the case previously. Given that the correlations for volatility 

were higher than those for risk in experiment one, this suggests that the irregularity of the price 

sequences in experiment two is affecting risk perception.  Whether price sequences exhibit 

systematic patters or irregularity seems, therefore, to affect the extent to volatility and risk 

perception depart from one another. 

The correlation coefficients for usual measures of dispersion (Returnsd, Lnreturnsd, StDev) are 

also much higher in these results, with only Range having a stronger correlation. The correlation 

for Range is more than twice the size observed in experiment one, suggesting that if sequences 

are irregular then the range over which they seem to vary becomes more important. 

MeanAbsChg is still strongly correlated, however, with a correlation coefficient just below that 

of Returnsd. Models comparing the impact of Returnsd and StDev versus MeanAbsChg, as 

expected from the findings above, show both variables are now significant in a 2 variable model 

(p<0.01), but the additional impact of MeanAbsChg is low, suggesting more shared variation.   

Correlations between the independent variables in this experiment are shown in Table 8. While 

the patterns of correlation differ from experiment one due to the random ordering, many are still 

high and significant.  A model16 using the Directly Observable Characteristics as independents 

gives an adjusted r2 of 27.7%, while using the Indirectly Observable Characteristics produces a 

model with an adjusted r2 of 33.8%. The Indirectly Observable Characteristics show a higher 

explanatory power in experiment two, to a greater extent than was the case in experiment one. A 

model containing all potential independent variables gives an adjusted r2 of 37.4%. As in 

experiment one all models have collinearity problems, so a stepwise regression was again used to 

develop a parsimonious model of volatility perception, while addressing collinearity issues, 

producing the model reported in Table 9, with 35.7% of variation explained by, in order of 

entering the model, Range, NumAccelChg, MeanAbsChg, Lnreturnsd and NumChgD.  

                                                           

16 Results are untabulated, but are available from the authors on request. 
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To evaluate the explanatory power of the two parsimonious models (Tables 5 and 9), we conduct 

out-of-sample tests by running the experiment one model on the experiment two data and vice 

versa.  The experiment one model explains 34.7% of variation in the experiment two data.  

While this is a lower explanatory power than the model had in experiment one, 39.4%, the 

reduction is not large.  The experiment two model explains 34.1% of variation in the experiment 

one data.  Overall the models are not as dissimilar in performance as might be expected and 

while the variables in both models differ, there are some similarities, with both containing 

MeanAbsChg and a measure of dispersion (LnReturnsd or StDev), along with NumChgD 

(changes of direction) and a measure related to range (Range or Outside10pct). It seems, 

however, that models built on more systematic patterns can exploit the regularity in the price 

sequences to achieve better predictive performance.  

Moving on to risk, ratings for perceptions of volatility and risk are significantly correlated (0.595, 

p<0.001), as in experiment one, with each explaining 35.4% of variation in the other. This is 

comparable to the variation explained in the experiment one results, again suggesting risk and 

volatility are less than perfectly synonymous, though, as can be seen in comparison with the 

univariate correlations in Table 7, there is a greater degree of similarity in the pattern of 

correlations across risk and volatility ratings in experiment two than was observed in experiment 

one. 

Individual models using the Directly and Indirectly Observable characteristics as independents 

give adjusted r2 values of 19.3% and 21.8%, respectively, while a model including all potential 

independents gives an adjusted r2 of 24.4%.17 Using stepwise regressions to produce the most 

parsimonious model of risk indicates that price sequence characteristics can explain 30.7% of 

variation in risk perception (Table 10a), which is considerably more than the stepwise model 

produced on the experiment one data (Table 6a).  Two out of three variables are in both models, 

                                                           

17 Results are untabulated, but are available from the authors on request. 
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with StDev being the exception (although the experiment one model contains Lnreturnsd and 

MeanAbsChg by way of measures of dispersion). 

As before, adding perception of volatility as an independent variable improves the model, with 

41.8% of variability now explained (Table 10b), though the improvement is less than in the 

equivalent model in experiment one, presumably because the explanatory power of the model 

with price sequence characteristics alone is better.  As above, we conduct out-of-sample tests by 

running the experiment one model on the experiment two risk perception data and vice versa.  

The experiment one model explains 28.8% of the variation in the experiment two data, with 

MeanAbsChg being at the forefront. In stark contrast, the experiment two model explains only 

11.9% of the variation in the experiment one data, suggesting that models built on price 

sequences with systematic patterns have better explanatory power at different levels of regularity 

as found above.  

Overall, we find irregularity results not only in a higher correlation between perceptions of 

volatility and risk, but also in an increased similarity in the pattern of correlations with the 

independent variables, supporting the view that irregularity represents perhaps the risky aspect of 

volatility (Pincus and Kalman, 2004). Our models predicting volatility and risk indicate that 

models built on the more systematic data are more robust to variations in regularity, the less 

regular sequences perhaps suffering from decreased signal to noise ratio.18 

5. Analysis of Comparator Price Sequences across Experiments 

Pincus and Kalman (2004) advocate the separation of concepts of classical variability and 

irregularity in the context of volatility.  Given the experiment two price sequences are 

randomised versions of the experiment one sequences, they have the same mean and price-based 

standard deviation as their experiment one counterparts.  Comparisons of ratings for counterpart 

                                                           

18 Similar phenomena have been found in stock market data (Summers et al., 2004). 
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graphs across experiment one and experiment two, therefore, enables us to examine the 

influence of irregularity of price sequence on perceptions of volatility, while holding constant 

concepts of classical variability (i.e. price-based standard deviation).  In addition some graphs 

have direct counterparts in another set exhibiting the same systematic pattern, for example 

graphs which go from one extreme to another in consecutive periods, and these again can give 

insights.  

A univariate ANOVA was therefore run examining volatility perception across all graphs from 

experiments one and two, and the results are discussed below in the context of the sets of graphs 

containing the same price points, but in varying sequences. Significant differences in volatility 

rating were explored using pairwise comparisons with Games-Howell adjustment for multiple 

comparisons.  

5.1 Group 1 (Figure 3a) 

Graph 11, with its single change in level is seen as least volatile and is significantly different from 

all others in the group. Graphs 24, 27 and 2 form a group not seen as significantly different from 

each other. Two of these are from the random set of graphs, with 2 being regular but changing 

across the range of values with each time period. They are all significantly different from graphs 

7 and 11, the least volatile. Graphs 5 and 24 form another group of non-significance, as do 

graphs 5 and 7, following a pattern of consecutively ranked graphs with no significant 

differences.  

Overall the pattern in this group suggests that the number of changes of direction is driving 

volatility ceteris paribus. This value (NumChgD) is significantly correlated with MeanAbsChg, with 

both being significantly correlated with volatility.  

5.2 Group 2 (Figure 3b) 

Group 2 follows a similar pattern to group 1 with the most volatile graph having the most 

number of changes in level, and the least volatile graph the least. Only the least and most volatile 
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graphs are different from each other. The most volatile graph in this group (graph 9) is 

comparable to the most volatile graph in group 1 (graph 2), with consecutive changes in 

direction across the range of values (i.e. low run length), but with a lower amplitude to its 

changes in level. Graph 2 with its higher amplitude is seen as significantly more volatile than 

graph 9, indicating that amplitude of variation also contributes to perceptions of volatility.  

5.3 Group 3 (Figure 3c) 

This group contains the three most volatile graphs in the design; the most volatile graph in the 

systematic sequences (graph 1) and two random re-orderings (graphs 25 and 28). These three are 

not significantly different from each other, although the two graphs with some static values 

across 2-3 periods do get lower volatility ratings. Graph 1 is comparable to Graphs 2 and 9 in the 

previous groups, with all graphs having values that go from one extreme to the other in 

consecutive periods (low run length). Inspection shows that these three (graphs 1, 2 and 9) are all 

significantly different, with amplitude of variation driving perceptions of volatility.  

5.4 Group 4 (Figure 3d) 

This group has points varying across three levels. The only significant difference here is between 

the least and most volatile graphs (29 and 23). Although both are random sequences, graph 29 

does have a separation of two groups of points, one group oscillating between the middle and 

lowest values and a second group oscillating between middle and highest values, giving the look 

at a systematic change. Graph 23 is much less predictable looking, so this would seem to provide 

evidence for the impact of predictability/ pattern. 

5.5 Group 5 (Figure 3e) 

This group has points varying across 4 levels. Comparing graph 10 and 12, which are 

significantly different, supports the importance of the number of changes of direction put 

forward for group 1.  
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5.6 Group 6 (Figure 3f) 

This group has four subsets of no significant difference, with three of these overlapping, and 

contains systematic graphs which address trend. Graphs 15 and 13, and graphs 3 and 8 are 

upward trending and downward trending versions of a pattern. In both cases the volatility of the 

downward trending item is rated more highly, but the difference is not significant. Graphs 15 

and 13 have the value moving from one level to the next, with values forming three horizontal 

runs. These two graphs are judged as significantly less risky than all the others. Graph 26 is a 

random version which has visual similarities to graphs 3 and 8, with points tending to move 

between two values at a higher level for part of the pattern and at a lower level for the rest 

(similar to graph 29, though with a higher range overall). The random graph follows a generally 

upward trend and is ranked between the two systematic graphs, although the differences are not 

significant. The two graphs rated as most volatile are a random sequence with no clear pattern 

and a systematic graph which moves up and down across the full range. This latter would 

support the importance of amplitude of change, and indeed the three most volatile graphs 

involve several movements across the full range in one or two steps.  

6. Discussion and conclusions 

In our first experiment, we use stylised price sequences that follow systematic patterns and 

manipulate the dispersion of prices around the mean, along with a number of other price 

sequence characteristics.  While standard deviation may have a role to play in perception of 

volatility, we find evidence that other price-based factors, for example mean absolute price 

change, play a far greater role.  Also, while partially correlated, individuals do not perceive risk 

and volatility as synonymous. 

While our second experiment, in which we remove regularity of the price sequence via random 

ordering of the price observations, supports the robust nature of our initial results, we find that 

returns now play a role in risk perception and that risk and volatility are more positively related.  
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In addition, we are able to examine the influence of regularity vs irregularity of the price 

sequence, by examining perceptions of volatility between comparator graphs from across the two 

experiments.  On average, price sequences with systematic patterns are viewed as less volatile 

than comparator price sequences in which irregularity is present, supporting Pincus and Kalman 

(2004) in their view that irregularity plays a distinct role in volatility, above and beyond concepts 

of classical variability related to price dispersion, such as standard deviation.  Irregularity results 

not only in a higher correlation between perceptions of volatility and risk, but also in an 

increased similarity in the pattern of correlations with the independent variables, suggesting 

irregularity represents perhaps the risky aspect of volatility, further supporting Pincus and 

Kalman (2004) in their view that investors would not see risk in stocks that exhibit extreme price 

movements that follow perfectly smooth roller coaster rides (i.e. systematic patterns). 

Our results also shed light on findings in other recent studies.  For example, the evidence that 

standard deviation of prices plays little or no role in perceptions of volatility may explain the lack 

of effect of uncertainty (i.e. standard deviation) on either forecasts or levels of investment 

reported by Duclos (2015) when participants are presented with graphs of stock prices.  Also, 

the low correlations between numeric and subjective measures of risk and return expectations 

reported in Weber et al. (2013) may be explained by our findings that volatility perception is little 

influenced by standard deviation and that perceptions of risk and volatility not highly correlated.  

A possible explanation for the apparent disregard of volatility reported in Ehm et al. (2014) and 

Heuer et al. (2015) might also be that perceptions of risk and volatility bear little relation to 

mathematical measures of dispersion. 

Volatility remains a key concept in finance (Kourtis et al., 2016) and understanding it has 

implications for many important applications, including, for example, portfolio selection and 

option pricing.  We find that when individuals make investment evaluations informed by 

graphical displays of historic price their perceptions of volatility have more to do with price-
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based factors, along with the regularity of patterns in the price sequence, than the dispersion of 

returns around the mean.  Goldstein and Taleb (2007, p.86) suggest “[e]ither we have the wrong 

intuition about the right volatility, or the right intuition but the measure of volatility is the wrong 

one”.  Our evidence suggests that the search for such intuitive metrics should begin with price-

based characteristics, as opposed to traditional return-based ones, and that there is more to 

volatility than dispersion around central tendency, with irregularity associated closely with 

perceptions of volatility.  Periods of financial crises are characterised by heightened uncertainty 

(Schwert, 2011) and hence with price sequences exhibiting greater irregularity.  As such, our 

findings help explain the drop in predictive ability of traditional volatility forecasting models 

during periods of financial crises (Kourtis et al., 2016).  Future developments in volatility 

forecasting might usefully augment traditional models by incorporating measures of irregularity 

or unpredictability. 
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Table 1: Experimental Parameters – Price Sequence Characteristics 

 

Exp 
Graph 
Num 

St 
Dev 

Mean 
AbsChg 

Num 
ChgD 

Num 
Accel 
Chg 

Num 
Peak 

Num 
Trough 

Range 
Outside 

10pct 
Return 

sd 

Ln 
Return 

sd 

One 1 11.24 22.00 22 0 11 11 22 24 11.73 3.20 
 2 7.66 15.00 22 0 11 11 15 24 2.10 1.50 
 3 7.95 10.52 22 2 10 10 22 12 5.02 1.81 
 4 7.95 11.00 18 15 6 5 22 12 7.22 1.97 
 5 7.66 7.83 22 22 6 5 15 24 1.65 1.08 
 6 5.42 7.50 11 0 6 5 15 12 0.93 0.78 
 7 7.66 4.57 14 14 3 3 15 24 1.36 0.82 
 8 7.95 10.52 22 2 10 10 22 12 4.77 1.81 
 9 4.09 8.00 22 0 11 11 8 24 0.77 0.71 
 10 4.89 5.00 7 0 4 3 15 8 0.58 0.52 
 11 7.66 0.65 2 2 0 0 15 24 0.70 0.31 
 12 4.89 6.52 14 14 7 7 15 8 0.70 0.68 
 13 7.95 0.96 4 4 0 0 22 12 0.21 0.53 
 14 4.09 1.04 6 6 1 1 8 24 0.31 0.25 
 15 7.95 0.96 4 4 0 0 22 12 2.29 0.53 
 16 7.95 11.00 11 0 6 5 22 12 5.04 1.82 

Two 21 4.89 4.79 17 14 5 3 15 8 0.58 0.60 
 22 4.09 4.00 20 14 3 3 8 24 0.58 0.53 
 23 5.42 5.30 18 14 4 4 15 12 1.03 0.77 
 24 7.66 7.50 21 11 4 6 15 24 1.85 1.25 
 25 11.24 11.00 20 14 3 3 22 24 10.06 2.41 
 26 7.95 7.78 20 11 4 6 22 12 4.33 1.61 
 27 7.66 7.50 20 14 3 3 15 24 1.67 1.13 
 28 11.24 11.00 21 11 4 6 22 24 10.97 2.67 
 29 5.42 5.30 20 9 5 7 15 12 0.81 0.71 
 30 7.95 7.78 18 14 4 4 22 12 6.04 1.80 
 31 4.89 4.79 19 17 4 6 15 8 0.99 0.73 
 32 4.09 4.00 21 11 4 6 8 24 0.65 0.59 

 

Notes:   

Exp = Experiment identifier 

GraphNum = Graph identifier – to differentiate graphs across experiments we start numbering at 21 (i.e. 20+n) 

in experiment two, hence identifiers 17-20 are not used 

StDev = Standard deviation of prices over the sequence 

MeanAbsChg = Mean absolute price change over the price sequence 

NumChgD = Number of changes in direction over the price sequence 

NumAccelChg = Number of acceleration changes over the price sequence, i.e. change in the rate of change 

NumPeak, NumTrough = Number of peaks or troughs, respectively, over the price sequence 

Range = Range of the price sequence - i.e. max-min 

Outside 10pct = Number of observations in the extremes of the price sequence, i.e. within 10% of min/max 

Returnsd = Standard deviation of returns 

LnReturnsd = Standard deviation of natural log returns 
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Table 2: Mean and Standard Deviation of Volatility and Risk Rating by Graph 

 

    Volatility   Risk   

Experiment 
Graph 
Num Mean S.D.  Mean S.D. N 

One 1 8.77 1.746  7.90 1.991 77 

 2 7.06 1.831  6.11 1.740 76 

 3 6.60 1.640  6.00 1.967 77 

 4 7.29 1.668  6.96 1.848 78 

 5 5.90 1.619  5.79 1.533 77 

 6 5.95 1.603  5.65 1.510 78 

 7 5.58 1.791  5.69 1.731 78 

 8 6.87 1.797  6.76 1.722 78 

 9 5.55 2.562  4.17 2.206 78 

 10 5.79 1.783  5.51 1.756 78 

 11 2.95 2.063  3.88 2.486 78 

 12 7.45 1.877  6.01 1.848 78 

 13 4.32 1.903  6.60 2.281 78 

 14 4.14 1.734  4.37 1.766 78 

 15 3.46 2.106  3.95 2.496 78 

 16 7.95 1.72  7.27 1.726 78 

Two 21 6.39 1.585  5.96 1.561 67 

 22 4.31 1.588  4.25 1.795 67 

 23 6.37 1.465  5.93 1.480 67 

 24 6.69 1.690  6.01 1.796 67 

 25 8.03 1.696  7.81 1.828 67 

 26 6.78 1.496  6.42 1.339 67 

 27 6.82 1.230  6.36 1.544 67 

 28 8.09 1.621  7.57 2.304 67 

 29 5.49 1.364  5.28 1.265 67 

 30 7.51 1.397  7.01 1.387 67 

 31 6.87 1.313  5.99 1.376 67 

 32 4.64 1.649  4.03 1.595 67 

 

Notes:   

GraphNum = Graph identifier – to differentiate graphs across experiments we start numbering at 21 (i.e. 20+n) 

in experiment two, hence identifiers 17-20 are not used 

S.D. = Standard deviation 

N = Number of observations 
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Table 3: Correlations of the Price Sequence Characteristics with Perceptions of Volatility 

and Risk – Experiment One 

 

 Volatility p Risk p 

Directly Observable Characteristics 
NumChgD 0.461 0.000 0.236 0.000 
NumAccelChg 0.010 0.729 0.023 0.418 
NumPeak 0.510 0.000 0.241 0.000 
NumTrough 0.485 0.000 0.223 0.000 
Range 0.214 0.000 0.325 0.000 
Indirectly Observable Characteristics 
StDev 0.206 0.000 0.299 0.000 
MeanAbsChg 0.574 0.000 0.372 0.000 
Outside10pct -0.112 0.000 -0.135 0.000 
Returnsd -0.059 0.038 0.056 0.048 
LnReturnsd -0.003 0.915 0.101 0.048 

 
Notes:  

Directly Observable Characteristics  

NumChgD = Number of changes in direction over the price sequence 

NumAccelChg = Number of acceleration changes over the price sequence, i.e. change in the rate of change 

NumPeak, NumTrough = Number of peaks or troughs, respectively, over the price sequence 

Range = Range of the price sequence - i.e. min-max 

Indirectly Observable Characteristics  

StDev = Standard deviation of the prices over the sequence 

MeanAbsChg = Mean absolute price change over the price sequence 

Outside 10pct = Number of observations in the extremes of the price sequence, i.e. within 10% of min/max 

Returnsd = Standard deviation of returns 

LnReturnsd = Standard deviation of natural log returns 

Dependent Variables 

Volatility = Volatility perception 

Risk = Risk perception 

 

p = Statistical significance level 
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Table 4: Pearson Correlations between Price Sequence Characteristics – Experiment One 

  
Num 
ChgD 

Num 
AccelChg 

Num 
Peak 

Num 
Trough Range StDev 

Mean 
AbsChg 

Outside 
10pct 

Return 
sd 

LnReturn 
sd  

Directly Observable Characteristics        

NumChgD 1 .152** .913** .906** .066* .246** .782** .229** -.025 .085** 

NumAccelChg .152** 1 -.188** -.210** -.076** -.006 -.173** .097** -.275** -.212** 

NumPeak .913** -.188** 1 .993** .052 .147** .850** .084** .022 .119** 

NumTrough .906** -.210** .993** 1 .041 .158** .831** .121** .034 .120** 

Range .066* -.076** .052 .041 1 .775** .319** -.503** .265** .310** 

Indirectly Observable Characteristics        

StDev .246** -.006 .147** .158** .775** 1 .518** .132** .066* .156** 

MeanAbsChg .782** -.173** .850** .831** .319** .518** 1 .135** -.099** -.002 

Outside10pct .229** .097** .084** .121** -.503** .132** .135** 1 -.305** -.263** 

Returnsd -.025 -.275** .022 .034 .265** .066* -.099** -.305** 1 .952** 

LnReturnsd  .085** -.212** .119** .120** .310** .156** -.002 -.263** .952** 1 

* <= 0.05, ** <= 0.01 (2-tailed). 

Notes:  

Directly Observable Characteristics  

NumChgD = Number of changes in direction over the price sequence 

NumAccelChg = Number of acceleration changes over the price sequence, i.e. change in the rate of change 

NumPeak, NumTrough = Number of peaks or troughs, respectively, over the price sequence 

Range = Range of the price sequence - i.e. min-max 

Indirectly Observable Characteristics 

StDev = Standard deviation of the prices over the sequence 

MeanAbsChg = Mean absolute price change over the price sequence 

Outside 10pct = Number of observations in the extremes of the price sequence, i.e. within 10% of min/max 

Returnsd = Standard deviation of returns 

LnReturnsd = Standard deviation of natural log returns 
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Table 5: Most Parsimonious Model of Volatility Perception – Experiment One 

 

  B 
Std. 

Error Beta t Sig, 

(Constant) 6.046 0.272  22.199 0.000 
MeanAbsChg 0.341 0.022 0.782 15.628 0.000 
Outside10pct -0.071 0.009 -0.191 -8.296 0.000 
NumAccelChg 0.063 0.010 0.176 6.667 0.000 
StDev -0.197 0.038 -0.148 -5.203 0.000 
NumChgD -0.032 0.015 -0.098 -2.193 0.028 

Adjusted R2 = 0.394 

Notes:  

StDev = Standard deviation of the prices over the sequence 

MeanAbsChg = Mean absolute price change over the price sequence 

NumChgD = Number of changes in direction over the price sequence 

NumAccelChg = Number of acceleration changes over the price sequence, i.e. change in the rate of change 

NumPeak, NumTrough = Number of peaks or troughs, respectively, over the price sequence 

Range = Range of the price sequence - i.e. min-max 

Outside 10pct = Number of observations in the extremes of the price sequence, i.e. within 10% of min/max 

B = Unstandardized regression coefficients 

Std. Error = Standard error 

Beta = Standardized regression coefficients 

t = t-value 

Sig = Statistical significance level 
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Table 6: Models of Risk Perception – Experiment One 

 

6a) Most parsimonious model from price sequence characteristics  

  B 
Std. 

Error Beta t Sig, 

(Constant) 5.121 0.218  23.447 0.000 
MeanAbsChg 0.279 0.020 0.691 14.137 0.000 
NumAccelChg 0.041 0.009 0.124 4.713 0.000 
Outside10pct -0.062 0.009 -0.180 -6.812 0.000 
NumPeak -0.183 0.028 -0.324 -6.596 0.000 
LnReturnsd  0.345 0.078 0.120 4.398 0.000 

Adjusted R2=0.215 

 

6b) Most parsimonious model plus volatility  

  B 
Std. 

Error Beta t Sig, 

(Constant) 2.725 0.236  11.524 0.000 
MeanAbsChg 0.166 0.019 0.412 8.896 0.000 
NumAccelChg 0.019 0.008 0.056 2.359 0.018 
Outside10pct -0.024 0.008 -0.069 -2.858 0.004 
NumPeak -0.210 0.025 -0.371 -8.464 0.000 
LnReturnsd  0.407 0.070 0.141 5.807 0.000 
Volatility 0.473 0.026 0.511 17.872 0.000 

Adjusted R2=0.376 

Notes:   

StDev = Standard deviation of prices over the sequence 

MeanAbsChg = Mean absolute price change over the price sequence 

NumAccelChg = Number of acceleration changes over the price sequence, i.e. change in the rate of change 

NumPeak, NumTrough = Number of peaks or troughs, respectively, over the price sequence 

Outside 10pct = Number of observations in the extremes of the price sequence, i.e. within 10% of min/max 

LnReturnsd = Standard deviation of natural log returns 

Volatility = Perceived volatility rating 

B = Unstandardized regression coefficients 

Std. Error = Standard error 

Beta = Standardized regression coefficients 

t = t-value 

Sig = Statistical significance level 
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Table 7: Correlations of the Price Sequence Characteristics with Perceptions of Volatility 

and Risk – Experiment Two 

 

 Volatility p Risk p 

Directly Observable Characteristics   
NumChgD -0.066 0.061 -0.063 0.073 
NumAccelChg 0.116 0.001 0.084 0.017 
NumPeak -0.054 0.125 -0.075 0.033 
NumTrough -0.043 0.222 -0.085 0.016 
Indirectly Observable Characteristics   
StDev 0.512 0.000 0.500 0.000 
MeanAbsChg 0.460 0.000 0.436 0.000 
Range 0.544 0.000 0.522 0.000 
Outside10pct -0.039 0.273 -0.017 0.636 
Returnsd 0.464 0.000 0.459 0.000 
LnReturnsd 0.497 0.000 0.484 0.000 

 
Notes:  

Directly Observable Characteristics  

NumChgD = Number of changes in direction over the price sequence 

NumAccelChg = Number of acceleration changes over the price sequence, i.e. change in the rate of change 

NumPeak, NumTrough = Number of peaks or troughs, respectively, over the price sequence 

Range = Range of the price sequence - i.e. min-max 

Indirectly Observable Characteristics  

StDev = Standard deviation of the prices over the sequence 

MeanAbsChg = Mean absolute price change over the price sequence 

Outside 10pct = Number of observations in the extremes of the price sequence, i.e. within 10% of min/max 

Returnsd = Standard deviation of returns 

LnReturnsd = Standard deviation of natural log returns 

Dependent Variables 

Volatility = Volatility perception 

Risk = Risk perception 

 

p = Statistical significance level 
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Table 8: Pearson Correlations between Price Sequence Characteristics – Experiment Two 

  
Num 
ChgD  

Num 
AccelChg  

Num 
Peak 

Num 
Trough  Range StDev 

Mean 
AbsChg  

Outside 
10pct 

Return 
sd  

Lnreturn 
sd  

Directly Observable Characteristics        

NumChgD  1 .335** .657** .747** -.007 .160** .675** .236** .033 .107** 

NumAccelChg  .335** 1 -.308** -.253** -.110** -.050* -.131** .050* -.135** -.122** 

NumPeak  .657** -.308** 1 .949** .069** .080** .715** -.003 -.027 .055* 

NumTrough  .747** -.253** .949** 1 .048* .099** .734** .060** .009 .088** 

Range -.007 -.110** .069** .048* 1 .793** .404** -.379** .481** .497** 

Indirectly Observable Characteristics        

StDev  .160** -.050* .080** .099** .793** 1 .610** .240** .490** .499** 

MeanAbsChg  .675** -.131** .715** .734** .404** .610** 1 .225** .189** .229** 

Outside10pct .236** .050* -.003 .060** -.379** .240** .225** 1 -.029 -.038 

Returnsd  .033 -.135** -.027 .009 .481** .490** .189** -.029 1 .955** 

Lnreturnsd  .107** -.122** .055* .088** .497** .499** .229** -.038 .955** 1 

* <= 0.05, ** <= 0.01 (2-tailed). 

Notes:  

Directly Observable Characteristics  

NumChgD = Number of changes in direction over the price sequence 

NumAccelChg = Number of acceleration changes over the price sequence, i.e. change in the rate of change 

NumPeak, NumTrough = Number of peaks or troughs, respectively, over the price sequence 

Range = Range of the price sequence - i.e. min-max 

Indirectly Observable Characteristics  

StDev = Standard deviation of the prices over the sequence 

MeanAbsChg = Mean absolute price change over the price sequence 

Outside 10pct = Number of observations in the extremes of the price sequence, i.e. within 10% of min/max 

Returnsd = Standard deviation of returns 

LnReturnsd = Standard deviation of natural log returns 
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Table 9: Most Parsimonious Model of Volatility Perception – Experiment Two 

 

  B 
Std. 

Error Beta t Sig, 

(Constant) 3.802 2.050  1.855 0.064 

Range 0.168 0.030 0.430 5.558 0.000 

NumAccelChg  0.159 0.033 0.178 4.828 0.000 

MeanAbsChg  0.406 0.064 0.686 6.349 0.000 

Lnreturnsd -1.191 0.329 -0.445 -3.624 0.000 

NumChgD  -0.196 0.087 -0.131 -2.260 0.024 

Adjusted R2 = 0.357 

Notes:  

MeanAbsChg = Mean absolute price change over the price sequence 

NumChgD = Number of changes in direction over the price sequence 

NumAccelChg = Number of acceleration changes over the price sequence, i.e. change in the rate of change 

Range = Range of the price sequence - i.e. min-max 

LnReturnsd = Standard deviation of natural log returns 

B = Unstandardized regression coefficients 

Std. Error = Standard error 

Beta = Standardized regression coefficients 

t = t-value 

Sig = Statistical significance level 
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Table 10: Models of Risk Perception – Experiment Two 

 

10a) Most parsimonious model from price sequence characteristics factors 

  B 
Std. 

Error Beta t Sig, 

(Constant) 2.366 0.453  5.221 0.000 
StDev  0.483 0.026 0.594 18.741 0.000 
NumAccelChg 0.108 0.028 0.117 3.847 0.000 
Outside10pct -0.059 0.009 -0.206 -6.341 0.000 

Adjusted R2=0.307 

 

10b) Most parsimonious module plus volatility  

  B 
Std. 

Error Beta t Sig, 

(Constant) 1.265 0.425  2.977 0.003 
StDev  0.277 0.029 0.340 9.562 0.000 
NumAccelChg  0.053 0.026 0.057 2.015 0.044 
Outside10pct -0.032 0.009 -0.112 -3.64 0.000 
Volatility 0.425 0.034 0.410 12.344 0.000 

Adjusted R2=0.376 

Notes:   

StDev = Standard deviation of prices over the sequence 

NumAccelChg = Number of acceleration changes over the price sequence, i.e. change in the rate of change 

Outside 10pct = Number of observations in the extremes of the price sequence, i.e. within 10% of min/max 

Volatility = Perceived volatility rating 

B = Unstandardized regression coefficients 

Std. Error = Standard error 

Beta = Standardized regression coefficients 

t = t-value 

Sig = Statistical significance level 
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Figure1: Overview of Experiment One Results for Volatility Perception 

 
Notes: Average mean volatility rating = mean volatility rating across participants, averaged across graphs enclosed in the area 

No significant difference = based on Bonferroni adjusted pairwise comparisons where p>0.10 
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Figure2: Overview of Experiment Two Results for Volatility Perception 

 
Notes: Average mean volatility rating = mean volatility rating across participants, averaged across graphs enclosed in the area 

No significant difference = based on Bonferroni adjusted pairwise comparisons where p>0.10 
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Figure 3: Comparisons across Graphs with the Same Data Points 

Figure 3a: Group 1 

 

 

 

Figure 3b: Group 2 

 

 

 

 

  



43 

 

Figure 3c: Group 3 

 

 

 

 

Figure 3d: Group 4 
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Figure 3e: Group 5 

 

 

 

Figure 3f: Group 6 

 

 

 


