
This is a repository copy of From Imperative to Rule-based Graph Programs.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/110721/

Version: Accepted Version

Article:

Plump, Detlef orcid.org/0000-0002-1148-822X (2017) From Imperative to Rule-based
Graph Programs. Journal of Logical and Algebraic Methods in Programming. pp. 154-173.
ISSN 2352-2216

https://doi.org/10.1016/j.jlamp.2016.12.001

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long
as you credit the authors, but you can’t change the article in any way or use it commercially. More
information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Accepted Manuscript

From Imperative to Rule-based Graph Programs

Detlef Plump

PII: S2352-2208(16)30167-5

DOI: http://dx.doi.org/10.1016/j.jlamp.2016.12.001

Reference: JLAMP 157

To appear in: Journal of Logical and Algebraic Methods in Programming

Received date: 23 January 2015

Revised date: 10 May 2016

Accepted date: 5 December 2016

Please cite this article in press as: D. Plump, From Imperative to Rule-based Graph Programs, J. Log. Algebraic Methods Program. (2017),

http://dx.doi.org/10.1016/j.jlamp.2016.12.001

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing

this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is

published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all

legal disclaimers that apply to the journal pertain.

Highlights

• Translation of high-level random access machines to rule-based graph programs.

• Proof that the translation is correct.

• Every computable graph function is directly computable by a GP 2 program.

• GP 2 without conditional rules and rule sets is computationally complete.

From Imperative to Rule-based Graph Programs

Detlef Plump

University of York, United Kingdom

Abstract

We discuss the translation of a simple imperative programming language, high-
level random access machines, to the rule-based graph programming language
GP 2. By proving the correctness of the translation and using GP 2 programs for
encoding and decoding between arbitrary graphs and so-called register graphs,
we show that GP 2 is computationally complete in a strong sense: every com-
putable graph function can be directly computed with a GP 2 program which
transforms input graphs into output graphs. Moreover, by carefully restricting
the form of rules and control constructs in translated programs, we identify
simple graph programs as a computationally complete sublanguage of GP 2.
Simple programs use unconditional rules and abandon, besides other features,
the non-deterministic choice of rules.

Keywords: Graph Programs, GP 2, Rule-based Programming, Computational
Completeness, Random Access Machines, Graph Transformation

1. Introduction

The use of graphs to model dynamic structures is ubiquitous in computer
science; prominent example areas include compiler construction, pointer pro-
gramming, natural language processing, and model-driven software develop-
ment. The behaviour of systems in such areas can be naturally captured by
graph transformation rules specifying small state changes which are typically of
constant size. Domain-specific languages based on graph transformation rules
include AGG [21], GReAT [1], GROOVE [11], GrGen.Net [14] and PORGY [9].
This paper focusses on the graph programming language GP [18, 19] which aims
to support formal reasoning on programs (see [20] for a Hoare-logic approach to
verifying GP programs).

In this paper, we discuss the translation of a simple imperative programming
language to GP 2. The motivation for this is threefold:

1. To prove that GP 2 is computationally complete, in the strong sense that
graph functions are computable if and only if they can be directly computed
with GP 2 programs which transform input graphs into output graphs.

2. To identify a computationally complete sublanguage of GP 2, by restricting
the form of rules and control constructs in the target code.

Preprint submitted to Elsevier January 11, 2017

3. To demonstrate in principle that imperative languages based on registers
and assignments can be smoothly translated to a language based on graph
transformation rules and pattern matching.

We use a prototypical imperative language called HIRAM, for high-level
random access machines. The language differs from standard random access
machines [2, 16] in that it provides while loops, if-then-else commands, and reg-
isters containing integer lists. HIRAM programs are translated into equivalent
GP 2 code working on edge-less graphs with register-like nodes. In addition,
target programs contain subprograms for encoding graphs as register graphs
and decoding register graphs into normal graphs.

The rest of this paper is structured as follows. Section 2 briefly reviews
the language GP 2. In Section 3, we introduce HIRAM as our prototypical
imperative language. The translation of HIRAM to GP 2 is presented in Section
4, along with a correctness proof and the definition of simple graph programs.
Section 5 gives GP 2 programs for encoding and decoding graphs, and states the
main result of the paper, viz. that simple graph programs are computationally
complete in a strong sense. Related work is discussed in Section 6. In Section
7, we consider future work and conclude. Appendix A defines GP 2 labels
and rule conditions, Appendix B reviews the operational semantics of GP 2,
and Appendix C shows the translation of HIRAM assignments with repeated
addresses (which is omitted in Section 4 for readability reasons).

2. The Graph Programming Language GP 2

This section provides a brief introduction to GP 2, a domain-specific lan-
guage for graphs. The syntax and semantics of GP 2 are defined in [19] (see
also Appendix A and Appendix B). The language currently has two implemen-
tations, a compiler generating C code [4] and an interpreter for exploring the
language’s non-determinism [3].

GP 2 programs transform input graphs into output graphs, where graphs
are labelled and directed and may contain parallel edges and loops.

Definition 1 (Graph). Let L be a set of labels. A graph over L is a system
〈V,E, s, t, l,m〉, where V and E are finite sets of nodes (or vertices) and edges,
s : E → V and t : E → V are source and target functions for edges, and l : V → L
and m : E → L are labelling functions for nodes and edges.

The principal programming construct in GP 2 are conditional graph trans-
formation rules labelled with expressions. For example, Figure 1 shows the
declaration of the rule bridge which has six formal parameters of various types,
a left-hand graph and a right-hand graph which are specified graphically, and a
textual condition starting with the keyword where. The small numbers attached
to nodes are identifiers, all other text in the graphs are labels.

The set of GP 2 labels is given by the syntactic category Label in the gram-
mar of Figure A.12. Labels consist of an expression and an optional mark
(explained below). Expressions are of type int, char, string, atom or list,

2

bridge(a : atom; x, y : list; m, n : int; s : string)

a:x

1

s

2

y

3

m n
⇒ a

1

s

2 3

n ∗ n

3

m:n

m n

where (a = 0 or a = “?”) and not edge(1, 3, m:n)

Figure 1: Declaration of a conditional rule

where atom is the union of int and string, and list is the type of a (possibly
empty) list of atoms. Lists of length one are equated with their entries and
hence every expression can be considered as a list. The subtype hierarchy of
GP 2 is shown in Figure 2 (both syntactically and semantically).

list

atom

int string

char

⊆

⊆

⊆
⊇

(Z ∪ Char∗)∗

Z ∪ Char∗

Z Char∗

Char

⊆

⊆

⊆
⊇

Figure 2: Subtype hierarchy

The concatenation of two lists x and y is written x:y1, the empty list is
denoted by empty. Character strings are enclosed in double quotes. Composite
arithmetic expressions such as n ∗ n must not occur in the left-hand graph, and
all variables occurring in the right-hand graph or the condition must also occur
in the left-hand graph.

Besides carrying list expressions, nodes and edges can be marked. In Fig-
ure 1, the outermost nodes are marked by a grey shading and the dashed arrow
between nodes 1 and 3 in the right-hand graph is a marked edge. Marks are con-
venient to highlight items in input or output graphs, and to record visited items
during a graph traversal. For example, a graph can be checked for connectedness
by propagating marks along edges as long as possible and subsequently testing
whether any unmarked nodes remain. Note that conventional graph algorithms
are often described by using marks as a visual aid, see for example [7].

1Not to be confused with Haskell’s “:” which adds an element to the beginning of a list.

3

Rules operate on host graphs which are labelled with constant values (lists
containing integer and string constants). Applying a rule L ⇒ R to a host graph
G works roughly as follows: (1) Replace the variables in L and R with constant
values and evaluate the expressions in L and R, to obtain an instantiated rule
L̂ ⇒ R̂. (2) Choose a subgraph S of G isomorphic to L̂ such that the dangling
condition and the rule’s application condition are satisfied (see below). (3)
Replace S with R̂ as follows: numbered nodes stay in place (possibly relabelled),
edges and unnumbered nodes of L̂ are deleted, and edges and unnumbered nodes
of R̂ are inserted.

In this construction, the dangling condition requires that nodes in S cor-
responding to unnumbered nodes in L̂ (which should be deleted) must not be
incident with edges outside S. The rule’s application condition is evaluated af-
ter variables have been replaced with the corresponding values of L̂, and node
identifiers of L with the corresponding identifiers of S. For example, the term
not edge(1, 3, m:n) in the condition of Figure 1 forbids an edge in G from node
g(1) to node g(3) with label g(m):g(n), where g(1) and g(3) are the nodes in S

corresponding to 1 and 3, and g(m) and g(n) are the labels in S corresponding
to m and n.

Formally, GP 2 is based on a form of attributed graph transformation accord-
ing to the so-called double-pushout approach [13, 8]. The grammar in Figure 3
gives the abstract syntax of GP 2 programs (see Appendix A for the syntax of
graph labels). A program consists of declarations of conditional rules and proce-
dures, and exactly one declaration of a main command sequence. The category
RuleId refers to declarations of conditional rules in RuleDecl (whose syntax is
omitted). Procedures must be non-recursive, they can be seen as macros with
local declarations.

Prog ::= Decl {Decl}
Decl ::= RuleDecl | ProcDecl | MainDecl
ProcDecl ::= ProcId ‘=’ [‘[’ LocalDecl ‘]’] ComSeq
LocalDecl ::= (RuleDecl | ProcDecl) {LocalDecl}
MainDecl ::= Main ‘=’ ComSeq
ComSeq ::= Com {‘;’ Com}
Com ::= RuleSetCall | ProcCall

| if ComSeq then ComSeq [else ComSeq]
| try ComSeq [then ComSeq] [else ComSeq]
| ComSeq ‘!’ | ComSeq or ComSeq
| ‘(’ ComSeq ‘)’ | break | skip | fail

RuleSetCall ::= RuleId | ‘{’ [RuleId {‘,’ RuleId}] ‘}’
ProcCall ::= ProcId

Figure 3: Abstract syntax of GP 2 programs

The call of a rule set {r1, . . . , rn} non-deterministically applies one of the
rules whose left-hand graph matches a subgraph of the host graph such that the

4

dangling condition and the rule’s application condition are satisfied. The call
fails if none of the rules is applicable to the host graph.

The command if C then P else Q is executed on a host graph G by first
executing C on a copy of G. If this results in a graph, P is executed on the
original graph G; otherwise, if C fails, Q is executed on G. The try command
has a similar effect, except that P is executed on the result of C’s execution.

The loop command P ! executes the body P repeatedly until it fails. When
this is the case, P ! terminates with the graph on which the body was entered
for the last time. The break command inside a loop terminates that loop and
transfers control to the command following the loop.

A program P or Q non-deterministically chooses to execute either P or Q,
which can be simulated by a rule-set call and the other commands [19]. The
commands skip and fail can also be expressed by the other commands: skip
is equivalent to an application of the rule ∅ ⇒ ∅ (where ∅ is the empty graph)
and fail is equivalent to an application of {} (the empty rule set).

Example 1 (Recognising acyclic graphs). A graph is acyclic if it does not contain
a directed cycle. The program in Figure 4 checks whether a graph G is acyclic
and, if this is the case, executes program P on G; otherwise it executes program
Q on G. The absence of cycles is checked by deleting as long as possible edges
whose sources have no incoming edges, and testing whether any edges remain.
This is correct since, by the condition of delete, a step G ⇒delete H preserves
both the absence of cycles and the presence of cycles. Moreover, a graph to which
delete is not applicable is acyclic if and only if it is edge-less (every acyclic
graph with edges must contain an edge to which delete is applicable).

Main = if Cyclic then Q else P

Cyclic = delete!; {edge, loop}

delete(a, x, y : list)

x y

1 2

a
⇒ x y

1 2

where indeg(1) = 0

edge(a, x, y : list) loop(a, x : list)

x y

1 2

a
⇒ x y

1 2

a
x
1

a ⇒ x
1

a

Figure 4: A program for recognising acyclic graphs

In general, the execution of a program on a host graph may result in different
graphs, fail, or diverge. Let G be the set of all host graphs and G⊕ = G ∪
{⊥, fail}. The semantics of a program P is the function �P � : G → 2G

⊕

, defined
in Appendix B, which maps each host graph to the set of all possible outcomes.

5

3. HIRAM: High-level Random Access Machines

This section introduces a simple imperative programming language called
HIRAM, for high-level random access machines. We define HIRAM by extend-
ing random access machines (RAMs), a computational model inspired by the
von Neumann architecture of computers. RAMs represent real computers more
accurately than Turing machines in that their operations resemble the instruc-
tions of real machines. In particular, all memory locations of a RAM can be
accessed in constant time whereas the time needed to access a cell of a Turing
machine grows with the distance of the cell from the tape head.

RAMs are used in algorithm analysis and complexity theory [2, 16], but there
is no uniform model in the literature. The characteristic feature of a RAM is an
infinite sequence of registers each of which can be randomly accessed. Typically,
each register can hold an arbitrarily large integer.

In HIRAM, registers hold lists of integers and the language has operations for
list manipulation. The conditional jump in conventional RAM models has been
replaced with an if-then-else statement and a while loop. This does not affect
the computational power since any program with jumps can be transformed
into an equivalent jump-free program by using branching and loop statements
[5]. Our enhancement of the RAM model with high-level constructs results in
a simple programming language which is similar in flavour to the ALGOL 60
derivatives RAM-ALGOL [6] and Pidgin ALGOL [2].

The syntax of HIRAM is given in Figure 5, together with an explanation of
the commands’ effects on a state s (see also below). Integers are considered as
lists of length one, and the colon operator is list concatenation. For example,
1:empty:− 2 denotes the same list as 1:− 2. Registers are identified by non-
negative integers called addresses. In Figure 5, the letters R, S and T stand for
fixed addresses. Each register can hold an arbitrary list of integers.

HIRAM programs operate on an infinite memory of registers. Computations
start with all registers empty (i.e., containing the empty list) with the possi-
ble exception of a finite number of input registers. Hence, at any stage of a
computation, only finitely many registers will be non-empty.

Definition 2 (State). A state is a mapping s : N0 → Z
∗ with s(n) = λ for all

but finitely many addresses n.

Here λ is the empty list which is represented by the keyword empty. Given
an address r, we say that s(r) is the contents of register r. Let S be the set of
all states. The result of executing a HIRAM program P is given by the semantic
function �P � : S → S⊕ which maps an initial state either to a final state, to ⊥
in case P diverges, or to the special element fail in case P fails.2 We do not
define �P � formally, the comments in Figure 5 and the following remarks should
be sufficient.

2Given a class A of states or graphs, we write A⊕ for A ∪ {⊥, fail}; functions f : A → B
are extended to f⊕ : A⊕ → B⊕ by f⊕(⊥) = ⊥ and f⊕(fail) = fail.

6

Syntax Comments

Int ::= . . . Integer numerals
R,S,T ::= . . . Non-negative integer numerals
List ::= empty Empty list

| Int Integers are lists of length 1
| List ‘:’ List Concatenation

B ::= R ‘=’ S True if s(R) = s(S); false otherwise
| R ‘>’ S True if s(R), s(S) ∈ Z and

s(R) > s(S); false otherwise
Prog ::= Prog ‘;’ Prog Sequential composition

| if B then Prog else Prog Branching
| while B do Prog Loop
| R ‘:=’ ‘$’ List List → R
| R ‘:=’ S s(S) → R
| R ‘:=’ head S head(s(S)) → R (fails if s(S) = λ)
| R ‘:=’ tail S tail(s(S)) → R (fails if s(S) = λ)
| R ‘:=’ S ‘:’ T s(S):s(T) → R
| R ‘:=’ ‘∗’ S s(s(S)) → R (fails if s(S) �∈ N0)
| ‘∗’ R ‘:=’ S s(S) → s(R) (fails if s(R) �∈ N0)
| R ‘:=’ inc S s(S) + 1 → R (fails if s(S) �∈ Z)
| R ‘:=’ dec S s(S)− 1 → R (fails if s(S) �∈ Z)

Figure 5: HIRAM programs

An assignment R := S copies the list contained in register S to register R. In
contrast, R := $List assigns the list following the dollar sign to R ($List indicates
not to use List as an address). The assignments R := ∗S and ∗R := S use indirect
addressing or pointers, that is, they interpret the contents of starred registers
as addresses. In Figure 5, the notation l → r means that list l is assigned to
register r.

HIRAM programs can fail because of type errors. For example, the program
0 := inc 0 fails if s(0) is not an integer. Similarly, ∗0 := 1 fails if s(0) is not
an address. Failure of an assignment causes failure of the complete program so
that, for instance, the program 1 := empty; while 0 = 0 do 0 := inc 1 fails on
every state.

4. Translating HIRAM to GP 2

This section presents a translation of HIRAM to GP 2, where we are careful to
generate code belonging to the sublanguage of simple GP 2 programs. In the
next section, the translation will be used to show that every computable graph
function can be computed by a simple program.

We translate HIRAM programs into GP 2 programs operating on edge-less
graphs with register-like nodes. These nodes are marked grey to distinguish

7

them from ordinary nodes when arbitrary host graphs are encoded as register
graphs (see next section).

Definition 3 (Register graph). An edge-less graph in G is a register graph if
nodes are marked grey and have labels of the form r:l, where r is an address
and l a list, such that different nodes have different addresses.

Given a node v with label r:l in a register graph, we refer to r as the address
of v. The set of all register graphs is denoted by Greg and ̺ : Greg → S maps
register graphs to corresponding HIRAM states. A register graph with labels
r1:l1, . . . , rn:ln is mapped by ̺ to the state s defined by

s(r) =

{

li if r = ri for some 1 ≤ i ≤ n,
λ otherwise.

For example, Figure 6 shows a register graph and the corresponding state. It is
easy to see that ̺ is surjective. Also, register graphs G and H with ̺(G) = ̺(H)
are isomorphic “up to nodes with empty registers”. (That is, there is a label-
preserving isomorphism G⊖ → H⊖ where G⊖ and H⊖ result from deleting all
nodes with empty registers.)

0:5

1:0:3

3:1:1:2

4

→
̺

0 5
1 0:3
2 λ

3 1:1:2
4 λ

5 λ
...

...

Figure 6: A register graph and the corresponding state

Since register graphs contain neither edges nor repeated node labels, they
can be regarded as sets of lists. Consequently, the graph programs resulting
from the following translation can be seen as rewrite programs for sets of lists.

The rest of this section presents the translation of HIRAM programs M to
corresponding graph programs PM = InitM ; τ�M�, where InitM generates
registers used in M that are not in the initial graph, and τ�M� simulates the
commands of M . The translation is based on the try command in GP 2 which,
alternatively, could be replaced with the if command. The resulting code would
look similar because the tests of try commands generated by the translation do
not modify host graphs.

4.1. Register generation

The HIRAM model of computation assumes the existence of infinitely many reg-
isters, but a graph program needs to generate all used registers that are missing
in the initial register graph. To avoid checking the existence of registers for ev-
ery translated HIRAM command, the procedure InitM given below generates

8

nodes for all fixed addresses in M whose registers are not present in the input
graph. This does not include addresses calculated in computations, which need
special treatment.

Definition 4 (HIRAM addresses). The set of addresses of a HIRAM program
is inductively defined as follows:

• Adr(M ;N) = Adr(M) ∪Adr(N)

• Adr(if B then M else N) = Adr(B) ∪Adr(M) ∪Adr(N)

• Adr(while B do M) = Adr(B) ∪Adr(M)

• Adr(R = S) = Adr(R > S) = {R, S}

• Adr(R := S) = Adr(R := ∗S) = Adr(∗R := S) = Adr(R := op S) = {R, S}
for op ∈ {head, tail, inc, dec}

• Adr(R := S:T) = {R, S,T}

• Adr(R := $List) = {R}

Given a HIRAM program M with Adr(M) = {R1, . . . ,Rn}, we define

InitM = try r1 else g1; . . . ; try rn else gn

where r1, . . . , rn and g1, . . . , gn are declared as follows:

ri(x : list)

Ri:x ⇒ Ri:x

gi

∅ ⇒ Ri

For each address Ri in Adr(M), InitM checks whether there is a correspond-
ing register node in the host graph; if this is not the case, rule gi generates that
node (note that Ri = Ri:empty).

4.2. Translation of control constructs

In this subsection and the next, the commands of M are translated to corre-
sponding GP 2 code. This subsection gives the translation of sequential compo-
sition, the if-then-else construct and the while loop; the next subsection treats
assignment statements. The translation is presented as an operation τ which is
inductively defined on the structure of HIRAM programs. We use R and S as
placeholders for distinct addresses.

• τ [M ;N] = τ [M]; τ [N]

• τ [if B then M else N] = try τ [B] then τ [M] else τ [N]

9

• τ [R = S] = eqR,S with rule declaration

eqR,S(x, y : list)

R:x
1

S:y
2

⇒ R:x
1

S:y
2

where x = y

• τ [R = R] = skip

• τ [R > S] = gtR,S with rule declaration

gtR,S(m, n : int)

R:m
1

S:n
2

⇒ R:m
1

S:n
2

where m > n

• τ [R > R] = fail

• τ [while B do M] =

(try τ [B] then τ [M] else fail)!; try τ [B] then fail else skip

In the translation of the while loop, the second try command is needed in case
τ [M] fails. In this case the !-loop terminates with the graph with which the
loop’s body was entered for the last time, hence we have to enforce failure.

4.3. Translation of assignments

This subsection shows the translation of assignment commands containing dis-
tinct addresses; the translation of assignments with repeated addresses is given
in Appendix C. To demonstrate the treatment of indirect addressing, this sub-
section includes the slightly lengthy translation of ∗R := S. The assignment
R := ∗S has an analogous translation which is omitted.

• τ [R := $L] = asR,$L with rule declaration

asR,$L(x : list)

R:x
1

⇒ R:L
1

• τ [R := S] = asR,S with rule declaration

asR,S(x, y : list)

R:x
1

S:y
2

⇒ R:y
1

S:y
2

• τ [R := head S] = hdR,S with rule declaration

hdR,S(x, y : list; n : int)

R:x
1

S:n:y
2

⇒ R:n
1

S:n:y
2

10

• τ [R := tail S] = tlR,S with rule declaration

tlR,S(x, y : list; n : int)

R:x
1

S:n:y
2

⇒ R:y
1

S:n:y
2

• τ [R := S:T] = cncR,S,T with rule declaration

cncR,S,T(x, y, z : list)

R:x
1

S:y
2

T:z
3

⇒ R:y:z
1

S:y
2

T:z
3

• τ [R := inc S] = incR,S with rule declaration

incR,S(x : list; n : int)

R:x
1

S:n
2

⇒ R:n+1
1

S:n
2

• τ [R := dec S] = decR,S with rule declaration

decR,S(x : list; n : int)

R:x
1

S:n
2

⇒ R:n−1
1

S:n
2

• τ [∗R := S] = try adrR then As∗R,S else fail with rule declaration

adrR(n : int)

R:n
1

⇒ R:n
1

where n > −1

and procedure declaration

As∗R,S = try t1∗R,S then as1∗R,S

else try t2∗R,S then as2∗R,S

else try t3∗R,S else gen∗R,S

where the rules ti∗R,S, asi∗R,S and gen∗R,S are declared as follows:

t1∗R,S(a : int; x, y : list)

R:a
1

S:x
2

a:y
3

⇒ R:a
1

S:x
2

a:y
3

as1∗R,S(a : int; x, y : list)

R:a
1

S:x
2

a:y
3

⇒ R:a
1

S:x
2

a:x
3

t2∗R,S

R:R
1

⇒ R:R
1

as2∗R,S(x : list)

R:R
1

S:x
2

⇒ R:x
1

S:x
2

11

t3∗R,S

R:S
1

⇒ R:S
1

gen∗R,S(a : int; x : list)

R:a
1

S:x
2

⇒ R:a
1

S:x
2

a:x

The code for ∗R := S is lengthy because it does several checks on the contents
of register R: whether it is an address, happens to be R or S, or is an address
without corresponding register node. The latter is the case if neither t1∗R,S nor
t2∗R,S nor t3∗R,S is applicable. We do not use the shorter definition As∗R,S =
try as1∗R,S else try as2∗R,S else gen∗R,S because the code violates the format
of simple graph programs which will be introduced in Definition 5.

4.4. Correctness of the translation

Given a HIRAM program M , let PM be the graph program InitM ; τ [M]. We
show that this translation is correct in that executing PM on a register graph
G and interpreting the result in S⊕ has the same outcome as executing M

on the state corresponding to G. We start by observing that PM behaves
deterministically on register graphs.

Lemma 1 (PM is deterministic). For every HIRAM program M and register
graph G, �PM �G is a singleton set.3

Proof. It is easy to check that for each register graph G and each rule r in PM ,
with the exception of the rules gi in InitM and gen∗R,S and gen∗R,R in τ�M�,
applying r to G either fails or produces a unique register graph. The rules
gi, gen∗R,S and gen∗R,R are included in try commands which ensure that the
rules are applicable and produce unique register graphs. Moreover, PM does
not apply any rule sets with two or more rules. Since graph programs modify
host graphs only by rule applications, it follows that executing PM on a register
graph either results in a unique register graph, fails or diverges.

Since �PM � is single-valued on register graphs, we can consider it as a func-
tion Greg → G⊕

reg.

3The semantic function �PM � : G → 2G
⊕

is defined in Appendix B.

12

Theorem 1 (Correctness of PM). For every HIRAM program M and register
graph G, ̺⊕(�PM �G) = �M�̺(G).

Greg G⊕
reg

S S⊕

=

�PM �

�M�

̺ ̺⊕

Theorem 1 will be proved by induction on the structure of program M ,
where the induction base is given by assignment commands. The following
lemma establishes the correctness in this case.

Lemma 2 (Correctness of translated assignments). Let c be a HIRAM assign-
ment command and G a register graph such that for each r in Adr(c), G contains
a node with address r. Then ̺⊕(�τ [c]�G) = �c�̺(G).

Proof. We assume that c does not contain repeated addresses. The proof for
assignments with repeated addresses is omitted because it is similar.

If c has the form R := $L, R := S or R := S:T, then the rule τ [c] is applicable
to G and, by inspection, assigns the correct value to register R.

Next, suppose that c has the form R := head S or R := tail S. If the node
in G with address S holds a non-empty list, then rule τ [c] is applicable and has
the desired effect. If the node holds the empty list, then the left-hand graph of
τ [c] cannot be matched in G because variable n is of type int. Hence τ [c] fails
on G, as required by the definition of head and tail.

Let now c have the form R := inc S or R := dec S. If G’s node with address
S holds a single integer, then τ [c] is applicable and assigns the incremented resp.
decremented value to register R. If the node with address S holds the empty list
or a list of length greater than one, then the rule cannot be matched because
variable n is of type int. Hence τ [c] fails on G, as required by the definition of
inc and dec.

Finally, let c be of the form ∗R := S. Then τ [c] is the program

try adrR then As∗R,S else fail

where rule adrR has no effect on G if the node with address R holds a non-
negative integer, and fails otherwise. In the latter case, the else-branch of the
try command will cause τ [c] to fail (in accordance with the definition of ∗R := S).
The procedure As∗R,S is defined by

As∗R,S = try t1∗R,S then as1∗R,S

else try t2∗R,S then as2∗R,S

else try t3∗R,S else gen∗R,S.

13

Rule t1∗R,S checks whether G contains a node with the address a stored in
register R, such that a is different from R and S (the latter is ensured by injective
rule matching). If the rule succeeds, rule as1∗R,S copies the contents of register
S to register a. If t1∗R,S fails, then rule t2∗R,S checks whether a = R (register
R may contain its own address). If this is the case, then rule as2∗R,S copies
the contents of register S to register R. If t2∗R,S fails, then rule t3∗R,S checks
whether a = S. If the rule succeeds, then register R contains address S so that
G need not be modified. If t2∗R,S fails, then by the previous checks it is clear
that G does not contain a node with address a. Hence rule gen∗R,S generates
a new node with address a and copies the contents of register S to register
a. Thus, overall the program τ [∗R := S] correctly implements the assignment
∗R := S.

Proof of Theorem 1. We show that the graph program PM = InitM ; τ [M]
simulates the HIRAM program M , which amounts to prove that ̺⊕(�PM �G) =
�M�̺(G) for every register graph G. Let GM

reg be the set of register graphs G

such that for each r in Adr(M), G contains a node with address r. The proof
boils down to showing the commutativity of square (∗) below:

Greg GM
reg G⊕

reg

S S⊕

= (∗)

�InitM �

̺

�τ [M]�

�M�

̺ ̺⊕

This is because the left triangle is commutative: InitM merely adds nodes with
empty registers to a graph, which does not affect the corresponding state in S.

We proceed by induction on the structure of M . The induction base is given
by the HIRAM assignment commands, for which square (∗) is commutative by
Lemma 2. Let now M be a composite command.

Case 1: M has the form P ;Q for some HIRAM programs P and Q. Then
τ [M] = τ [P ;Q] = τ [P]; τ [Q]. Consider any graph G in GM

reg. By induction
hypothesis,

̺⊕(�τ [P]�G) = �P �̺(G). (1)

Case 1.1: �τ [P]�G is some graph H. Then H ∈ GM
reg because no rule in

M deletes any node or changes the address of any node. Hence, by induction
hypothesis,

̺⊕(�τ [Q]�H) = �Q�̺(H). (2)

14

Using (2) and (1), we obtain

̺⊕(�τ [M]�G) = ̺⊕(�τ [P]; τ [Q]�G)
= ̺⊕(�τ [Q]��τ [P]�G)
= ̺⊕(�τ [Q]�H)
= �Q�̺(H)
= �Q�̺⊕(H)
= �Q�̺⊕(�τ [P]�G)
= �Q��P �̺(G)
= �P ;Q�̺(G)
= �M�̺(G)

where the second and the last but one equality hold by the semantics of GP 2
and HIRAM, respectively.

Case 1.2: �τ [P]�G ∈ {fail, ⊥}. The semantics of GP 2 and HIRAM propa-
gate failure and divergence: if X;Y is a graph program such that fail ∈ �X�N
for some graph N , then fail ∈ �X;Y �N ; similarly, if X;Y is a HIRAM program
such that �X�N = fail, then �X;Y �N = fail. The same holds for divergence
(replacing fail with ⊥).

Hence, using (1), we get

̺⊕(�τ [M]�G) = ̺⊕(�τ [P]; τ [Q]�G)
= ̺⊕(�τ [P]�G)
= �P �̺(G)
= �P ;Q�̺(G)
= �M�̺(G)

where �P �̺(G) = ̺⊕(�τ [P]�G) ∈ {fail, ⊥} justifies the last but one equality.
Case 2: M has the form if B then P else Q for some HIRAM condition B

and programs P and Q. Then τ [M] = try τ [B] then τ [P] else τ [Q]. Consider
any graph G in GM

reg. By induction hypothesis, we have

̺⊕(�τ [X]�G) = �X�̺(G) for X = P,Q. (3)

With the definition of τ it is easy to check that

�B�̺(G) = true if and only if �τ [B]�G = G (4)

and
�B�̺(G) = false if and only if �τ [B]�G = fail. (5)

Case 2.1: �B�̺(G) = true. Then, by (4), �τ [B]�G = G and hence

̺⊕(�τ [M]�G) = ̺⊕(�try τ [B] then τ [P] else τ [Q]�G)
= ̺⊕(�τ [P]�G)
= �P �̺(G)
= �if B then P else Q�̺(G)
= �M�̺(G)

15

where the third equality holds by (3).
Case 2.2: �B�̺(G) = false. Then, by (5), �τ [B]�G = fail and hence

̺⊕(�τ [M]�G) = ̺⊕(�try τ [B] then τ [P] else τ [Q]�G)
= ̺⊕(�τ [Q]�G)
= �Q�̺(G)
= �if B then P else Q�̺(G)
= �M�̺(G)

where the third equality holds by (3).
Case 3: M has the form while B do P for some HIRAM condition B and

program P . Then

τ [M] = (try τ [B] then τ [P] else fail)!; try τ [B] then fail else skip.

By induction hypothesis, we have

̺⊕(�τ [P]�G) = �P �̺(G) (6)

for every graph G in GM
reg. Also, (4) and (5) are valid for each such graph.

We first show that for every n ≥ 0 such that �P �n̺(G) is well-defined (mean-
ing that �P �i̺(G) ∈ S for i = 0, . . . , n− 1), �τ [P]�nG is also well-defined and

�P �n̺(G) = ̺⊕(�τ [P]�nG). (7)

We proceed by induction on n. If n = 0 then �P �n̺(G) = ̺(G) = ̺⊕(G) =
̺⊕(�τ [P]�nG). The case n = 1 is given by (6). If n > 1 then, by induc-
tion hypothesis, �τ [P]�n−1G is well-defined and �P �n−1̺(G) = ̺⊕(�τ [P]�n−1G).
Moreover, since �P �n−1̺(G) is a state, ̺⊕(�τ [P]�n−1G) is a graph in GM

reg. Thus

�P �n̺(G) = �P ��P �n−1̺(G)
= �P �̺⊕(�τ [P]�n−1G)
= �P �̺(�τ [P]�n−1G)
= ̺⊕(�τ [P]��τ [P]�n−1G)
= ̺⊕(�τ [P]�nG)

where the last but one equality holds by (6).
Next, we consider the possible outcomes of executing M on ̺(G).
Case 3.1: �M�̺(G) ∈ S. Then, by the semantics of HIRAM, there is some

n ≥ 0 such that

�M�̺(G) = �while B do P �̺(G) = �P �n̺(G) (8)

and

�B��P �i̺(G) = true for i = 0, . . . , n− 1 and �B��P �n̺(G) = false. (9)

Applying (7) to (8) gives

�M�̺(G) = ̺(�τ [P]�nG). (10)

16

Using (4) and (5), (9) implies

�τ [B]��τ [P]�iG = G for i = 0, . . . , n− 1 and �τ [B]��τ [P]�nG = fail. (11)

We show that
�τ [P]�nG = �τ [M]�G. (12)

Let τ [M] = Loop; Test with

Loop = (try τ [B] then τ [P] else fail)!

and
Test = try τ [B] then fail else skip.

By the semantics of GP 2 and (11),

�Loop�G = �τ [P]�nG and �Test��τ [P]�nG = �τ [P]�nG

and hence �τ [M]�G = �Loop; Test�G = �τ [P]�nG, proving (12). Combining
(10) and (12), we obtain

�M�̺(G) = ̺(�τ [P]�nG) = ̺(�τ [M]�G).

Case 3.2: �M�̺(G) = fail. Then, by the semantics of HIRAM, there is some
n ≥ 1 such that

�P �i̺(G) ∈ S for i = 0, . . . , n− 1 and �P �n̺(G) = fail (13)

and
�B��P �i̺(G) = true for i = 0, . . . , n− 1. (14)

Applying (7) to (13) gives ̺⊕(�τ [P]�iG) ∈ S for i = 0, . . . , n−1 and ̺⊕(�τ [P]�nG) =
fail, and hence

�τ [P]�iG ∈ Greg for i = 0, . . . , n− 1 and �τ [P]�nG = fail

and applying (4) to (14) gives

�τ [B]��τ [P]�iG = G for i = 0, . . . , n− 1.

Thus, by the semantics of GP 2,

�Loop�G = �τ [P]�n−1G and �Test��τ [P]�n−1G = fail

and hence �Loop; Test�G = fail. It follows

�M�̺(G) = fail = ̺⊕(fail) = ̺⊕(�Loop; Test�G) = ̺⊕(�τ [M]�G).

Case 3.3: �M�̺(G) = ⊥. By the semantics of HIRAM, M diverges either
because the loop body P is executed infinitely often or because at some point,
P diverges.

17

Case 3.3.1: For every i ≥ 0, �B��P �i̺(G) = true and �P �i̺(G) ∈ S. Then
(4) and (7) imply that

for every i ≥ 0, �τ [B]��τ [P]�iG = G and �τ [P]�iG ∈ Greg.

With the semantics of GP 2 follows �Loop�G = ⊥ = �Loop; Test�G. Thus

�M�̺(G) = ⊥ = ̺⊕(⊥) = ̺⊕(�Loop; Test�G) = ̺⊕(�τ [M]�G).

Case 3.3.2: There is some n ≥ 1 such that �P �n̺(G) = ⊥ and for i =
0, . . . , n− 1, �P �i̺(G) ∈ S and �B��P �i̺(G) = true. Using (7) and (4), and the
fact that ̺⊕ maps ⊥ to ⊥ and graphs to states, we obtain

�τ [P]�nG = ⊥

and
for i = 0, . . . , n− 1, �τ [P]�iG ∈ Greg and �τ [B]��τ [P]�iG = G.

Then, by the semantics of GP 2,

�Loop�G = ⊥

because Loop “gets stuck” from �τ [P]�n−1G (see the definition of the semantic
function in Appendix B). Thus

�M�̺(G) = ⊥ = ̺⊕(⊥) = ̺⊕(�Loop�G) = ̺⊕(�Loop; Test�G) = ̺⊕(�τ [M]�G).

This concludes the proof of Theorem 1.

4.5. Restricted graph programs

In this subsection, we define the GP 2 sublanguage of simple programs and the
even more restricted class of basic programs:

Basic programs ⊂ Simple programs ⊂ GP 2

Program PM as defined in Subsections 4.1 to 4.3 is up to syntactic sugar a basic
program. Hence, by Theorem 1, basic graph programs are computationally
complete in the sense that they can simulate HIRAM programs. However, the
rules of basic programs neither contain edges nor delete nodes, and thus there are
graph functions f : G → G that are computable in an intuitive sense but cannot
be directly computed by basic programs. For example, the function mapping
every graph to the empty graph is of this kind: there is no basic program that
transforms non-empty input graphs into the empty graph.

Therefore we consider a stronger notion of computational completeness in
the next section, namely that every computable graph function can be directly
computed by some graph program. We will show that simple GP 2 programs
enjoy this property. The proof uses subprograms for encoding and decoding
graphs which require some non-basic rules.

18

Definition 5 (Simple graph program). Simple GP 2 programs adhere to the
following grammar:

Prog ::= main ‘=’ ComSeq {RuleDecl}
ComSeq ::= Com {‘;’ Com}
Com ::= UncondRuleId | ComSeq ‘!’ | fail

| try TestRuleId then ComSeq else ComSeq

Here UncondRuleId is the call of an unconditional rule and TestRuleId is the call
of a rule L ⇒ L that possibly has a condition of the form x = y or m > n, where
L is an edge-less graph of at most three nodes which are preserved (numbered).

Hence, simple programs abandon rule sets and if-then-else statements, and
modify graphs by unconditional rules. The test T of any command try T then

P elseQmerely checks the occurrence of at most three nodes, without changing
the host graph.

Definition 6 (Basic graph program). A simple GP 2 program is basic if all
rules consist of edge-less graphs of at most three nodes and do not delete nodes.

The translation of HIRAM programs defined in Subsections 4.1 to 4.3 pro-
duces basic graph programs, possibly with some syntactic sugar added. The
resulting programs can easily be desugared so that they conform to Definition
6: a phrase try T else P is equivalent to try T then erule else P , where
erule is declared as ∅ ⇒ ∅; the skip command is equivalent to a call of erule;
and the procedures in the code for assignments with starred registers can be
dropped if procedure calls are replaced with the command sequences they stand
for.

In view of Theorem 1, it is clear that basic graph programs inherit some
undecidability results from random access machines.

Corollary (Undecidable properties of basic programs). The following problems
are undecidable in general:

Divergence: Given as input a basic graph program P and an edge-less host
graph G, can P diverge from G?

Reachability: Given as input a basic graph program P and edge-less host
graphs G and H, is H contained in �P �G?

Proof. If either of these properties were decidable, Theorem 1 would allow to
decide the corresponding property for random access machines (with graphs
replaced by states). But both properties are known to be undecidable for RAMs.

5. Computational Completeness of Simple Graph Programs

To define computable graph functions, we represent host graphs as HIRAM
states. A function f on graphs will be considered as computable if there exists

19

a HIRAM program that transforms each state representing a graph G into a
state representing f(G).

In representing graphs as states, we face the problem of what to do with
character strings in labels (as HIRAM is based on integer lists). One could
either encode strings as integer lists or, more in line with our overall approach,
replace HIRAM lists with GP 2 lists and add some string operations. Both
options would result in extra technicalities though, without providing new in-
sights. Hence, for simplicity, we will restrict ourselves to functions on graphs
labelled with integer lists.

We represent graphs as sketched in Figure 7. Register 0 holds the size of
the graph and is followed by node registers and edge registers. The entries of
node registers start with 0 while the entries of edge registers start with 1 (to
distinguish nodes and edges). Edge registers contain, besides the label, the
addresses of the edge’s source and target.

0 m+ n graph size

1 0 : 〈label〉 node 1

2 0 : 〈label〉 node 2

...
...

...
m 0 : 〈label〉 node m

m+ 1 1 : 〈source〉 : 〈target〉 : 〈label〉 edge 1

m+ 2 1 : 〈source〉 : 〈target〉 : 〈label〉 edge 2

...
...

...
m+ n 1 : 〈source〉 : 〈target〉 : 〈label〉 edge n

m+ n+ 1 λ
...

...

Figure 7: HIRAM representation of a graph with m nodes and n edges

Definition 7 (Graph state). A state s is a graph state if there are m,n ≥ 0 (the
numbers of nodes and edges) such that (1) s(0) = m + n, (2) for i = 1, . . . ,m,
s(i) = 0:l with l ∈ Z

∗, (3) for i = m + 1, . . . ,m + n, s(i) = 1:a:b:l with
a, b ∈ {1, . . . ,m} and l ∈ Z

∗, and (4) s(i) = λ for all i > m+ n.

We write Sgra for the set of all graph states and GZ for the set of all host
graphs labelled with integer lists. The function γ : Sgra → GZ maps graph states
to corresponding graphs. For example, Figure 8 shows a graph state in the
middle and the corresponding graph on the right. Note that γ is surjective if
we consider graphs up to isomorphism. More precisely, for every graph G in GZ

there is a graph state s such that γ(s) is isomorphic to G.

Definition 8 (Computable graph function). A function f : GZ → G⊕

Z
is com-

putable if there exists a HIRAM program M such that for all s ∈ Sgra, �M�s ∈
S⊕
gra and γ⊕(�M�s) = f(γ(s)). See Figure 9.

20

0:5

1:0:3

2:0:4:1

3:1:1:2:5

4:1:2:1:6:0

5:1:2:2:-2

→
̺

0 5
1 0:3
2 0:4:1
3 1:1:2:5
4 1:2:1:6:0
5 1:2:2:-2
6 λ
...

...

→
γ

3

4:1

5 6:0

-2

Figure 8: A graph state (in the middle) and the corresponding graph (on the right)

In particular, this requires M to fail on all graphs G with f(G) = fail, and to
diverge on all G with f(G) = ⊥.

GZ G⊕

Z

Sgra S⊕
gra

=

f

�M�

γ γ⊕

Figure 9: Computable graph function

The main result of this paper will show that f can be computed by a graph
program Enc; PM ; Dec, where Enc encodes graphs as register graphs, PM simu-
lates M , and Dec decodes register graphs back to graphs. First, we present the
programs Enc and Dec.

Graph encoding. The procedure Enc in Figure 10 nondeterministically picks
nodes and edges to convert them into register nodes.

Let G = ̺−1(Sgra) be the set of register graphs representing graph states.
It is easy to see that Enc transforms graphs in GZ into graphs in G, hence �Enc�
can be considered as a relation between GZ and G. It is not a function because
the assignment of nodes and edges to registers is nondeterministic. However,
graph states representing the same graph are identified by γ.

Lemma 3. For every graph G in GZ, γ(̺(�Enc�G)) = G.

Graph decoding. The procedure Dec in Figure 11 decodes register graphs back
into unique graphs. Note that after termination of the loop regtoedge!, all
registers representing non-loop edges have been converted to edges and hence
regtoloop! only converts registers representing loops.

21

Enc = reg0; nodetoreg!; edgetoreg!; looptoreg! with rule declarations

reg0

∅ ⇒ 0:0

nodetoreg(m : int; x : list)

0:m
1

x

2

⇒ 0:m+1
1

m+1:0:x
2

edgetoreg(m, i, j : int; x, y, z : list)

0:m
1

i:x
2

j:y
3

z ⇒ 0:m+1
1

i:x
2

j:y
3

m+1:1:i:j:z

looptoreg(m, i : int; x, y : list)

0:m
1

i:x
2

y ⇒ 0:m+1
1

i:x
2

m+1:1:i:i:y

Figure 10: Procedure Enc for graph encoding

Since Dec transforms register graphs into unique graphs in GZ, �Dec� can be
considered as a function G → GZ. We write �Dec�⊕ for its extension to G

⊕ and
G⊕

Z
.

Lemma 4. For every register graph G in G, �Dec�G = γ(̺(G)).

Dec = 0reg; regtoedge!; regtoloop!; regtonode! with rule declarations

0reg(m : int)

0:m ⇒ ∅

regtoedge(i, j, k : int; x, y, z : list)

i:x
1

j:y
2

k:1:i:j:z ⇒ i:x
1

j:y
2

z

regtoloop(i, j, k : int; x, y : list)

i:x
1

k:1:i:j:y ⇒ i:x
1

y

regtonode(i : int; x : list)

i:0:x
1

⇒ x

1

Figure 11: Procedure Dec for graph decoding

For readability reasons, we have introduced Enc and Dec as procedures. But
their command sequences adhere to the restrictions of simple programs and
hence simple programs with these procedure calls can easily be transformed to
obey Definition 5. We now state our main result.

Theorem 2. For every computable function f : GZ → G⊕

Z
there exists a simple

graph program P such that for all G in GZ, �P �G = f(G).

22

Note that this is a strong form of completeness: program P computes f

directly, not just a corresponding function on register graphs. This is an instance
of Weihrauch’s abstract concept of strong relative computability [24].

Proof of Theorem 2. Consider the following diagram:

GZ G G
⊕

Sgra S⊕
gra

G⊕

Z

=

�Enc�

γ

�PM �

�M�

̺ ̺⊕

�Dec�⊕

γ⊕

f

By Definition 8 there exists a HIRAM program M whose semantics can be
restricted to �M� : Sgra → S⊕

gra, satisfying γ
⊕(�M�s) = f(γ(s)) for each s ∈ Sgra.

Given any register graph G in G, Theorem 1 gives ̺⊕(�PM �G) = �M�̺(G) and
hence �PM � can be considered as a function from G to G

⊕.
The plan is to show that the program Enc; PM ; Dec computes f , that is,

that for every graph G in GZ, �Dec�⊕�PM ��Enc�G = f(G). Consider any G′ in
G such that �Enc�G = G′. Then, by Lemma 4, Theorem 1 and Definition 8,
�Dec�⊕�PM �G′ = γ⊕(̺⊕(�PM �G′)) = γ⊕(�M�̺(G′) = f(γ(̺(G′))). Thus, by
Lemma 3, �Dec�⊕�PM ��Enc�G = f(γ(̺(�Enc�G))) = f(G).

6. Related Work

Computability-theoretic aspects of unrestricted graph transformation ap-
proaches have received little attention in the literature. A fundamental result
due to Uesu is that in the double-pushout approach, every recursively enumer-
able set of graphs can be generated by some graph grammar [23]. Here a set
of graphs is said to be recursively enumerable if there exists a Turing machine
that enumerates all graphs in the set, using some fixed encoding of graphs as
strings.

As to the computability of functions or relations on graphs, it is folklore
in the field of graph transformation that every Turing machine can be simu-
lated by a set of double-pushout graph transformation rules. Such a simulation
is presented, for example, in [15]. However, the ability to simulate a Turing
machine on graphs representing machine configurations does not imply that
every computable graph function can be directly computed by a set of graph
transformation rules. We refer to the discussion in Subsection 4.5.

To the author’s best knowledge, [12] has been the only paper so far prov-
ing the computational completeness of a graph transformation language in the
strong sense of the present paper. In that paper, a rudimentary language based
on graph transformation rules is used to encode input graphs as string-like

23

graphs, simulate a Turing machine on the latter, and decode the resulting
graphs. The language’s control constructs are application of a set of rules,
sequential composition, and as-long-as-possible iteration. It is also shown that
without sequential composition, the language is not complete in the strong sense.

The main differences to the present work are as follows. Our completeness
results (Theorem 1 & 2) hold for programs with rules of very restricted shape
and size. In contrast, almost all of the rules in [12] contain both nodes and
edges, many of them delete nodes, and some of the rules contain comparatively
large graphs (up to 15 items). Also, the present programs for encoding and
decoding graphs are much simpler than those in [12], in terms of the number
and size of rules, and number of control constructs. To be fair, however, the
present paper exploits the greater expressiveness of attributed rules compared
with the standard graph transformation rules of [12]. For example, rules such
as asR,S or cncR,S,T (Subsection 4.3) copy lists of unbounded length in a single
step, and the rules regtoedge and regtoloop (Section 5) use repeated integer
variables in their left-hand sides to check the equality of addresses.

The most significant difference between the present work and [12] is the focus
on translating an imperative programming language. HIRAM can be seen as
a simple C-like language when register addresses are considered as variables.
It has realistic data types (integers, lists and pointers) and high-level control
constructs (if-then-else branching and while-loop). Viewed from this angle, our
results prove the correctness of a source-to-source compiler which bridges the
gap between an imperative language based on assignments and a rule-based
graph programming language.

7. Conclusion and Future Work

Simple GP 2 programs can directly compute all computable graph functions,
by transforming input graphs into output graphs. Simple programs contain only
unconditional rules, abandon non-deterministic rule selection, and use branching
commands which only test for the occurrence of graph patterns. Basic GP 2
programs are even more restricted in that rules consist of edge-less graphs and
do not delete nodes. These rules resemble rewrite rules operating on sets of
lists. Basic programs are sufficient to simulate arbitrary HIRAM programs but
cannot directly compute all computable graph functions.

An aspect of the translation of HIRAM to GP 2 not discussed yet is that
the number of rule applications by program PM is linear in the number of
operations performed by the source program M . Future work should focus on
this linear relationship. It appears that the simple graphs occurring in rules
can be matched in linear time within host graphs, and that any application
conditions (such as m = n in the rule eqR,S) are not more expensive to check
than corresponding HIRAM operations. Hence PM appears to simulate M with
a quadratic time overhead at most.

Given that GP 2 is a non-deterministic language, it makes sense to consider
the translation of a non-deterministic version of HIRAM to GP 2. There exist
a few non-deterministic RAM models in the literature which could be adapted

24

to HIRAM. For example, one could introduce a guess command which assumes
that register 0 holds a non-negative integer n and replaces n with some integer
x such that 0 ≤ x ≤ n [10]. Alternatively, and more suitable for a translation to
GP 2, one could add a command choice(c1, . . . , cn) which non-deterministically
selects one of the commands c1, . . . , cn and executes it [2]. It is straightforward
to translate such a statement by using GP 2’s or command.

Finally, an ambitious project would be to extend HIRAM to a full-blown
programming language, say a large subset of C, and extend the translation and
its correctness proof accordingly. This would allow an automatic and correct
translation of conventional graph algorithms to GP 2. For example, suppose
that the C programs in [22] are covered by an extended HIRAM language.
Then the translation would provide a GP 2 library of graph algorithms which
could be used in future program developments.

Appendix A. Labels and Conditions in GP 2

Figure A.12 and Figure A.13 give grammars in Extended Backus-Naur Form
defining the abstract syntax of labels and conditions of GP 2 rules. These gram-
mars are ambiguous; in examples we use parentheses to disambiguate expres-
sions if necessary.

Label ::= List [Mark]

List ::= empty | Atom | List ‘:’ List | Var

Atom ::= Integer | String | Var

Integer ::= [‘–’] Digit {Digit} | ‘(’Integer‘)’

| Integer (‘+’ | ‘-’ | ‘∗’ | ‘/’) Integer

| (indeg | outdeg) ‘(’NodeId‘)’

| length ‘(’Var‘)’ | Var

String ::= ‘“ ’{Character}‘ ”’ | String ‘.’ String | Var

Mark ::= red | green | blue | grey | dashed | any

Figure A.12: Abstract syntax of labels

The binary arithmetic operators ‘+’, ‘-’, ‘∗’ and ‘/’ expect integer expressions
as arguments while ‘.’ is string concatenation. Variables in category Var are
typed by their declarations and can be used as expressions of supertypes. For
example, integer variables can be used as lists of length one. The operators
indeg and outdeg denote the number of ingoing respectively outgoing edges of
a node, their arguments must be node identifiers of the left graph of the rule
declaration in which the operators are used. The length operator returns the
length of a list or string represented by a variable.

Marks are represented graphically in rule declarations, where grey is re-
served for nodes and dashed is reserved for edges. Mark any can only be used
in rule schemata and matches arbitrary marks in host graphs.

25

Conditions are Boolean combinations of subtype assertions, applications of
the edge predicate to left-hand node identifiers, or relational comparisons of
expressions (where = and != can be used for arbitrary expressions).

Condition ::= (int | char | string | atom) ‘(’Var‘)’

| List (‘=’ | ‘!=’) List

| Integer (‘>’ | ‘>=’ | ‘<’ | ‘<=’) Integer

| edge ‘(’ NodeId ‘,’ NodeId [‘,’ Label] ‘)’

| not Condition

| Condition (and | or) Condition

| ‘(’ Condition ‘)’

Figure A.13: Abstract syntax of conditions

Appendix B. Operational Semantics of GP 2

This appendix reviews the semantics of GP 2 (except for the definition of
rule applications) in the style of structural operational semantics [17]. In this
approach, inference rules inductively define a small-step transition relation →
on configurations. In the setting of GP 2, a configuration is either a command
sequence together with a host graph, just a host graph or the special element
fail:

→ ⊆ (ComSeq× G)× ((ComSeq× G) ∪ G ∪ {fail}).

Configurations in ComSeq×G, given by a rest program and a host graph, repre-
sent states of unfinished computations while graphs in G are final states or results
of computations. The element fail represents a failure state. A configuration γ

is said to be terminal if there is no configuration δ such that γ → δ.
Figure B.14 shows the inference rules for the core commands of GP 2. The

rules contain meta-variables for command sequences and graphs, where R stands
for a call in category RuleSetCall (as defined by the grammar in Figure 3),
C,P, P ′, Q stand for command sequences in category ComSeq, and G,H stand
for graphs in G. The transitive and reflexive-transitive closures of → are written
→+ and →∗, respectively. We write G ⇒R H if H results from host graph G

by applying the rule set R, while G �⇒R means that there is no graph H such
that G ⇒R H (application of R fails).

The inference rules for the remaining GP 2 commands are given in Figure
B.15. These commands are referred to as derived commands because they can
be defined by the core commands.

The meaning of GP 2 programs is summarised by the semantic function
� � which assigns to each command sequence P the function �P � mapping an
input graph G to the set �P �G of all possible results of executing P on G. The
value fail indicates a failed program run while ⊥ indicates a run that does not
terminate or gets stuck. Program P can diverge from G if there is an infinite

26

[call1]
G ⇒R H

〈R, G〉 → H
[call2]

G �⇒R

〈R, G〉 → fail

[seq1]
〈P, G〉 → 〈P ′, H〉

〈P ;Q, G〉 → 〈P ′;Q, H〉
[seq2]

〈P, G〉 → H
〈P ;Q, G〉 → 〈Q, H〉

[seq3]
〈P, G〉 → fail

〈P ;Q, G〉 → fail

[if1]
〈C, G〉 →+ H

〈if C then P else Q, G〉 → 〈P, G〉

[if2]
〈C, G〉 →+ fail

〈if C then P else Q, G〉 → 〈Q, G〉

[try1]
〈C, G〉 →+ H

〈try C then P else Q, G〉 → 〈P, H〉

[try2]
〈C, G〉 →+ fail

〈try C then P else Q, G〉 → 〈Q, G〉

[alap1]
〈P, G〉 →+ H

〈P !, G〉 → 〈P !, H〉
[alap2]

〈P, G〉 →+ fail
〈P !, G〉 → G

[alap3]
〈P, G〉 →∗ 〈break, H〉

〈P !, G〉 → H
[break]

〈break;P, G〉
〈break, G〉

Figure B.14: Inference rules for core commands

[or1] 〈P or Q, G〉 → 〈P, G〉 [or2] 〈P or Q, G〉 → 〈Q, G〉

[skip] 〈skip, G〉 → G [fail] 〈fail, G〉 → fail

[if3] 〈if C then P, G〉 → 〈if C then P else skip, G〉

[try3] 〈try C then P, G〉 → 〈try C then P else skip, G〉

[try4] 〈try C else P, G〉 → 〈try C then skip else P, G〉

[try5] 〈try C, G〉 → 〈try C then skip else skip, G〉

Figure B.15: Inference rules for derived commands

27

sequence 〈P, G〉 → 〈P1, G1〉 → 〈P2, G2〉 → . . . Also, P can get stuck from G if
there is a terminal configuration 〈Q, H〉 such that 〈P, G〉 →∗ 〈Q, H〉.

The semantic function � � : ComSeq → (G → 2G
⊕

) is defined by

�P �G = {X ∈ (G ∪ {fail}) | 〈P, G〉
+
→X} ∪

{⊥ | P can diverge or get stuck from G}.

Getting stuck indicates a form of divergence that can happen with a command
if C then P else Q or try C then P else Q in case C can diverge from a
graph G and neither produce a graph nor fail from G, or with a loop B! whose
body B possesses the said property.

Appendix C. Translation of Assignments with Repeated Addresses

This appendix shows the translation of assignments containing repeated ad-
dresses.

• τ [R := R] = skip

• τ [R := head R] = hdR,R with rule declaration

hdR,R(x : list; n : int)

R:n:x
1

⇒ R:n
1

• τ [R := tail R] = tlR,R with rule declaration

tlR,R(x : list; n : int)

R:n:x
1

⇒ R:x
1

• τ [R := S : S] = cncR,S,S with rule declaration

cncR,S,S(x, y : list)

R:x
1

S:y
2

⇒ R:y:y
1

S:y
2

• τ [R := R : S] = cncR,R,S with rule declaration

cncR,R,S(x, y : list)

R:x
1

S:y
2

⇒ R:x:y
1

S:y
2

• τ [R := S : R] = cncR,S,R with rule declaration

cncR,S,R(x, y : list)

R:x
1

S:y
2

⇒ R:y:x
1

S:y
2

28

• τ [R := R : R] = cncR,R,R with rule declaration

cncR,R,R(x : list)

R:x
1

⇒ R:x:x
1

• τ [R := inc R] = incR,R with rule declaration

incR,R(n : int)

R:n
1

⇒ R:n+1
1

• τ [R := dec R] = decR,R with rule declaration

decR,R(n : int)

R:n
1

⇒ R:n−1
1

• τ [∗R := R] = try adrR then As∗R,R else fail4

with procedure declaration

As∗R,R = try t1∗R,R then as1∗R,R else try t2∗R,R else gen∗R,R

where the rules t1∗R,R, as1∗R,R, t2∗R,R and gen∗R,R are declared as fol-
lows:

t1∗R,R(a : int; x : list)

R:a
1

a:x
2

⇒ R:a
1

a:x
2

as1∗R,R(a : int; x : list)

R:a
1

a:x
2

⇒ R:a
1

a:a
2

t2∗R,R

R:R
1

⇒ R:R
1

gen∗R,R(a : int)

R:a
1

⇒ R:a
1

a:a

Acknowledgements. I am grateful to the anonymous referees of both the
26th Nordic Workshop on Programming Theory and this JLAMP issue. Their
comments helped to improve previous versions of this paper.

4See Subsection 4.3 for the declaration of rule adrR. The code for As∗R,R is equivalent to
try as1∗R,R else try t2∗R,R else gen∗R,R, which however is not simple GP 2 code.

29

References

[1] Aditya Agrawal, Gabor Karsai, Sandeep Neema, Feng Shi, and Attila
Vizhanyo. The design of a language for model transformations. Software
and System Modeling, 5(3):261–288, 2006.

[2] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and
Analysis of Computer Algorithms. Addison-Wesley, 1974.

[3] Christopher Bak, Glyn Faulkner, Detlef Plump, and Colin Runciman. A
reference interpreter for the graph programming language GP 2. In Proc.
Graphs as Models (GaM 2015), volume 181 of Electronic Proceedings in
Theoretical Computer Science, pages 48–64, 2015.

[4] Christopher Bak and Detlef Plump. Compiling graph programs to C. In
Proc. International Conference on Graph Transformation (ICGT 2016),
volume 9761 of Lecture Notes in Computer Science, pages 102–117.
Springer, 2016.

[5] Corado Böhm and Giuseppe Jacopini. Flow diagrams, Turing machines
and languages with only two formation rules. Communications of the ACM,
9(5):366–371, 1966.

[6] Stephen A. Cook and Robert A. Reckhow. Time bounded random access
machines. Journal of Computer and System Sciences, 7(4):354–375, 1973.

[7] Thomas H. Cormen, Charles E. Leiserson, Robert L. Rivest, and Clifford
Stein. Introduction to Algorithms. The MIT Press, third edition, 2009.

[8] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer. Fun-
damentals of Algebraic Graph Transformation. Monographs in Theoretical
Computer Science. Springer, 2006.

[9] Maribel Fernández, Hélène Kirchner, Ian Mackie, and Bruno Pinaud. Vi-
sual modelling of complex systems: Towards an abstract machine for
PORGY. In Proc. Computability in Europe (CiE 2014), volume 8493 of
Lecture Notes in Computer Science, pages 183–193. Springer, 2014.

[10] Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in
Theoretical Computer Science. Springer, 2006.

[11] Amir Hossein Ghamarian, Maarten de Mol, Arend Rensink, Eduardo Zam-
bon, and Maria Zimakova. Modelling and analysis using GROOVE. Inter-
national Journal on Software Tools for Technology Transfer, 14(1):15–40,
2012.

[12] Annegret Habel and Detlef Plump. Computational completeness of pro-
gramming languages based on graph transformation. In Proc. Foundations
of Software Science and Computation Structures (FOSSACS 2001), volume
2030 of Lecture Notes in Computer Science, pages 230–245. Springer, 2001.

30

[13] Ivaylo Hristakiev and Detlef Plump. Attributed graph transformation via
rule schemata: Church-Rosser theorem. In Software Technologies: Ap-
plications and Foundations – STAF 2016 Collocated Workshops, Revised
Selected Papers, volume 9946 of Lecture Notes in Computer Science, pages
145–160. Springer, 2016.

[14] Edgar Jakumeit, Sebastian Buchwald, and Moritz Kroll. GrGen.NET - the
expressive, convenient and fast graph rewrite system. International Journal
on Software Tools for Technology Transfer, 12(3–4):263–271, 2010.

[15] Hans-Jörg Kreowski. Translations into the graph grammar machine. In
Ronan Sleep, Rinus Plasmeijer, and Marko van Eekelen, editors, Term
Graph Rewriting: Theory and Practice, chapter 13, pages 171–183. John
Wiley, 1993.

[16] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley,
1994.

[17] Gordon D. Plotkin. A structural approach to operational semantics. Jour-
nal of Logic and Algebraic Programming, 60–61:17–139, 2004.

[18] Detlef Plump. The graph programming language GP. In Proc. Interna-
tional Conference on Algebraic Informatics (CAI 2009), volume 5725 of
Lecture Notes in Computer Science, pages 99–122. Springer, 2009.

[19] Detlef Plump. The design of GP 2. In Proc. Workshop on Reduction Strate-
gies in Rewriting and Programming (WRS 2011), volume 82 of Electronic
Proceedings in Theoretical Computer Science, pages 1–16, 2012.

[20] Christopher M. Poskitt and Detlef Plump. Hoare-style verification of graph
programs. Fundamenta Informaticae, 118(1-2):135–175, 2012.

[21] Olga Runge, Claudia Ermel, and Gabriele Taentzer. AGG 2.0 — new fea-
tures for specifying and analyzing algebraic graph transformations. In Proc.
Applications of Graph Transformations with Industrial Relevance (AG-
TIVE 2011), volume 7233 of Lecture Notes in Computer Science, pages
81–88. Springer, 2012.

[22] Robert Sedgewick. Algorithms in C. Part 5: Graph Algorithms. Addison-
Wesley, third edition, 2002.

[23] Tadahiro Uesu. A system of graph grammars which generates all recursively
enumerable sets of labelled graphs. Tsukuba Journal of Mathematics, 2:11–
26, 1978.

[24] Klaus Weihrauch. Computability. Springer, 1987.

31

