Review

Chemical equilibrium analysis of hydrogen production from shale gas using sorption enhanced chemical looping steam reforming

Zainab Ibrahim S G Adiya *, Valerie Dupont, Tariq Mahmud

School of Chemical and Process Engineering (SCAPE), The University of Leeds, Leeds LS2 9JT, UK

A R T I C L E I N F O

Article history:
Received 21 July 2016
Received in revised form 14 January 2017
Accepted 16 January 2017
Available online xxxx

Keywords:
Shale gas
Steam reforming
Chemical looping
Sorption enhancement

A B S T R A C T

Detailed chemical equilibrium analysis based on minimisation of Gibbs Energy is conducted to illustrate the benefits of integrating sorption enhancement (SE) and chemical looping (CL) together with the conventional catalytic steam reforming (C-SR) process for hydrogen production from a typical shale gas feedstock. CaO(S) was chosen as the CO₂ sorbent and Ni/NiO is the oxygen transfer material (OTM) doubling as steam reforming catalyst. Up to 49% and 52% rise in H₂ yield and purity respectively were achieved with SE-CLSR with a lower enthalpy change compared to C-SR at S:C 3 and 800 K. A minimum energy of 159 kJ was required to produce 1 mol of H₂ at S:C 3 and 800 K in C-SR process, this significantly dropped to 34 kJ/mol of produced H₂ in the CaO(S)/NiO system at same operating condition without regeneration of the sorbent, when the energy of regenerating the sorbent at 1170 K was included, the enthalpy rose to 92 kJ/mol H₂, i.e., significantly lower than the Ca-free system. The presence of inert bed materials in the reactor bed such as catalyst support or degraded CO₂ sorbent introduced a very substantial heating burden to bring these materials from reforming temperature to sorbent regeneration temperature or to Ni oxidation temperature. The choice of S:C ratio in conditions of excess steam represents a compromise between the higher H₂ yield and purity and lower risk of coking, balanced by the increased enthalpy cost of raising excess steam.

© 2017 Published by Elsevier B.V.

Contents

1. Introduction .. 129
2. Process description ... 130
3. Methodology of the thermodynamic equilibrium calculation .. 132
4. Results and discussion ... 133
4.1. Effect of temperature and presence of C2-C3 feedstock on both C-SR and SE-SR processes .. 134
4.2. Effect of steam to carbon ratio on steam reforming processes .. 134
4.3. Sorption enhancement with CaO sorbent (SE-SR) .. 135
4.4. Chemical looping with NiO coupled with steam reforming (CL-SR) of shale gas .. 136
4.5. Sorption enhanced chemical looping steam reforming .. 138
4.5.1. H₂ yield, H₂ purity and selectivity to carbonate .. 138
4.5.2. Enthalpy balance of SE-CLSR .. 138
4.5.3. Effect of inert materials on enthalpy balance of the cyclic processes .. 140
4.6. Carbon product .. 140
4.7. Effect of pressure on C-SR and SE-CLSR .. 142
5. Conclusion and final remarks .. 142
Acknowledgments .. 142
Appendix A. Supplementary data .. 142
References .. 142

* Corresponding author.
E-mail addresses: pm12zisg@leeds.ac.uk (Z.I. S G Adiya), V.Dupont@leeds.ac.uk (V. Dupont).

http://dx.doi.org/10.1016/j.fuproc.2017.01.026
0378-3820/© 2017 Published by Elsevier B.V.
1. Introduction

Hydrogen is at present of enormous value in the production of synthetic fertilizers via ammonia manufacture, as well as an essential reagent in petroleum refinery operations [1,2]. Ammonia is the backbone of the fertilizer industry and is generated in industrial processes by reaction between hydrogen and nitrogen at medium temperature and high pressure. Although the use of high pressure in the industrial H₂ production process is detrimental to the equilibrium feedstock conversion and thus of the H₂ yield per mol of feedstock, it permits the utilization of more compact and thus less capital intensive plants. Ammonia production individually represents the largest H₂ consumption, with 50% of all the hydrogen produced in the globe [1–3]. Rapid growth in world population is generating increased demand for food and providing a continued need for agricultural chemicals, especially fertilizers [4]. World-wide ammonia capacity is anticipated to rise 16% (over/in comparison to 2013), reaching 245 Mt NH₃ in 2018 [5]. Hydrogen production, management and recovery within petroleum refineries is also increasing particularly in the production of low-sulphur and diesel fuels using hydrotreating and hydrocracking processes [6,7]. Perhaps hydrogen is the most significant utility in a modern petroleum refinery [8]. As more severe product specifications come into effect, a classic refinery is either ‘bottlenecked’ due to lack of hydrogen or will be in the future [9]. The increasing stringent requirements on refinery products quality have effect on hydrogen production and demand. Hydrogen at refineries is provided in part by catalytic reforming (main product: cracked fractions, by-product: hydrogen), the remainder being supplied on site or off site by steam reforming (main product: hydrogen, by-product: CO or CO₂), and, to a much smaller extent partial oxidation and autothermal reforming are used [6,9]. Steam reforming can also form the first step in Fischer Tropsch processes, which convert natural gas to gasoline-like liquid fuel [10] via ‘GTL’ technology. Feedstocks for steam reforming at refineries vary from gases (natural gas ‘NG’, but also, associated gases, flare gas) to naphtha [11,12]. A boom in shale gas production [13] and unconventional gas resources in the world (e.g. hydrates) foresees that gas will remain the main feedstock of steam reforming in the near term, in contrast to naphtha, which is declining due to high availability of natural gas [13,14]. ‘Shale gas is a natural gas found within shale formations’ [15] (a form of sedimentary rock). The recent development in oil and gas extraction e.g. drilling and fracking have made shale gas production economically viable. In 2013, the Annual Energy Outlook projected that the U.S (world largest producer of shale gas) natural gas production will increase an estimate of 44% over the next 30 years. Enormous amount of this projected increase is expected from shale gas extraction. Shale gas is also expected to grow from 7.8 million MMcf (million cubic feet) extracted in 2011, to 16.7 million MMcf in 2040. In future, shale gas production in the U.S is anticipated to rise, whereas all other extraction method are likely to remain steady or decline [15,16]. Furthermore, many developed countries have extensive natural gas distribution networks which can act as energy storage and transport facilities with lower losses than their electricity grids, which positions gas as an attractive energy carrier (e.g. UK). The use Natural Gas (NG) fuelled vehicles and NG power stations is also increasing in the world. Gas feedstock compositions are characterised by significant content in hydrocarbons with carbon number 2 to 6, in addition to the main component methane, as well as greatly varying contents in N₂, CO₂, H₂S according to their source [12]. Despite having reached technological maturity, steam reforming is one of the most energy consuming processes in hydrocarbon processing and ammonia production via its heating requirement, with additional disadvantages such as greenhouse gas and other air pollutants emission, high operational and maintenance cost [17].

Researchers are focusing on finding alternative energy efficient technologies that can mitigate the economic and environmental impacts of the forecasted large increases in hydrogen demand. Sorption enhancement (i.e. process with in situ CO₂ capture on a solid sorbent) which shifts favourably the chemical equilibria of H₂-producing reactions, and chemical looping (i.e. oxygen for oxidative heat is provided by a solid transfer material undergoing redox cycles at medium temperatures), have both drawn attention as promising modifications to the conventional steam reforming process. This is because of their potential for significant energy savings and lower environmental impacts brought about by process intensification features and milder reactive conditions [18]. Addition of ‘high temperature’ (as opposed to ‘flue temperature’) solid CO₂ sorbent in the reformer that captures CO₂, shifts the equilibrium of the steam reforming and water gas shift reaction towards maximum hydrogen yield and purity, as well as increasing feedstock conversion [19,20]. Moreover, CO₂ chemisorption is highly exothermic, providing energy directly into the reformer. Lyon and Cole [21] posed the coupling of sorption enhancement and chemical looping together for endothermic reactions such as steam reforming, the process first termed ‘unmixed’ reforming, was later termed ‘sorption enhanced chemical looping’ steam reforming (SE-CLSR). The process has been studied and analysed using variety of fuels, such as methane [18] and waste cooking oil [22], for hydrogen production using both the interconnected fluidised bed and the fixed bed reactors configurations, which both have their advantages and drawbacks. However, studies on the thermodynamic analysis and process simulation, which are relevant to both types of configurations are limited. Researchers have focused mainly on either the sorption enhanced process [23,24] or the chemical looping process [25] separately. Coupling of sorption enhanced water gas shift and chemical looping with partial oxidation has also been investigated [18]. Moreover, to date, the processes that use typical/actual gas composition containing higher hydrocarbons and inert have not been investigated.

Global warming is presently one of the major concern in the world [26]. The conventional steam reforming (C-SR) process is one of leading causes of global warming; by increasing the CO₂ (the primary greenhouse gas bringing about global warming) concentration in the atmosphere. For every 4 mol of H₂ produced by complete steam methane reforming process for example, a mole of CO₂ is generated. In addition to tons of CO₂ generated and release into the atmosphere by furnace flue gas. SE-CLSR process aimed to overcome this by capturing the CO₂ during the steam reforming process [18,22,27] and eliminating the use of furnace flue gas at steady state operation.

Sorbent degradation is a major concern and drawback on sorption enhanced processes. To make things worse degradation cannot be studied via equilibrium thermodynamics. Researchers worldwide work towards understanding the reasons behind sorbents’ loss of CO₂ capacity with repeated cycling and increasing the durability of Ca based CO₂ sorbent [20,28].

In this study, a detailed thermodynamic equilibrium analysis of H₂ production from Marcellus shale gas (see composition in Table 1) using SE-CLSR with CaOₓSₙ Sorbent and NiO as both catalyst and oxygen transfer material (OTM), was conducted. The gas represents a typical composition of natural gas, containing roughly up to 80% of methane with roughly 20% higher hydrocarbons (> C3), CO₂ and inert gas [29], representing a mixture rich in ethane and propane. This composition can also be representative of typical composition of natural gases from Nigeria [30] and the North Sea [31], by containing up to 80% methane [31]. The effect of different input parameters such as temperature,

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Composition of shale gas used for stimulations [63].</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species</td>
<td>Shale gas (mole)</td>
</tr>
<tr>
<td>CH₄</td>
<td>79.4</td>
</tr>
<tr>
<td>C₂H₆</td>
<td>16.1</td>
</tr>
<tr>
<td>C₃H₈</td>
<td>4.0</td>
</tr>
<tr>
<td>CO₂</td>
<td>0.1</td>
</tr>
<tr>
<td>N₂</td>
<td>0.4</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
</tr>
</tbody>
</table>
pressure, and molar steam-to-carbon ratio were investigated on the main process outputs of hydrogen yield, purity, feedstock and steam conversion, and carbon formation. The purpose of the study is to demonstrate the effect of coupling SE and CL in C-SR process as well as identify optimum operating conditions of the studied processes using a realistic feedstock. Sorption enhanced reduction of the Nickel oxygen carrier catalyst is also report in the present study for the first time.

2. Process description

Steam methane reforming (SMR) is the most established and commonly used process to produce hydrogen on a large scale [32]. Approximately, 90% of the world’s overall hydrogen production is by SMR of fossils fuels [3,32,33]. Fig. 1 depicts a simplified schematic representation of the conventional SMR process henceforth termed ‘C-SR’.

Fig. 1. Schematic description of (a) C-SR, (b) SE-SR steps 1 & 2, (c) CL-SR steps 1 & 2 and (d) SE-CL-SR steps 1 & 2 processes. CaCO$_3$(S) regeneration occurs during step 2 (highlighted in black, using energy from the exothermic oxidation and gas turbine). Units in grey colour are not covered in our calculation. Blacked out valve symbols (if any) represent closed to flow. Size of flames in furnace are commensurate to heat input from relevant combustible flow (fresh fuel vs. separation unit tail gas).
The process (C-SR), consists of mainly two basic steps followed by separation. In the first stage; water (in the form of high-temperature steam) reacts with feedstock (mainly natural gas) to generate syngas (CO, CO₂, H₂O, H₂) in the presence of nickel oxide catalyst at an elevated temperature (almost 800–950 °C) and medium pressure (at 20–35 atm) [34,35]. In the second stage, the water gas shift (WGS) reaction runs at a lower temperature (almost 200–400 °C) [36,37]. Although the latter reaction is exothermic, the overall energy demand of the process is significantly endothermic, requiring part of the natural gas to be burnt in the reformer furnace. Separation of the H₂ from the syngas leaving the WGS reactor (mostly unreacted CH₄, CO, H₂O, and CO₂) is carried out in the final stage. Numerous techniques can be used to undertake separation. Three of the most common techniques used are; pressure swing adsorption (PSA), membranes, cryogenics [38,39]. Chemical absorption for example CO₂ scrubbing using methyltriethanolamine (MDEA) and monoethanolamine (MEA) are also used for separation [40]. However, the separation step is not covered in the present thermodynamic analysis. Fig. 1a represents the most common configuration in industrial H₂ production where a PSA unit performs the H₂ separation and the tail gas from the PSA is recycled to the furnace and contributes to meet the reformers heating load. The purpose of sorption enhanced steam reforming (SE-SR) is to enhance H₂ yield in the conventional steam reforming (C-SR) process [41]. In 1868, H₂ production from hydrocarbon in the presence of CaO sorbent reportedly took place [18]. A patent for hydrogen production using SE-SR process was issued as early as 1933 [18,42]. As mentioned earlier, the C-SR process route has at least three basic steps: SMR process, WGS and finally the separation/purification step. The logic behind SE-SR process is to perform all those three steps (SMR, WGS and CO₂ capture) simultaneously in a single reactor vessel, in the presence of a solid CO₂ sorbent. The role of CO₂ sorbent can be performed cheaply by the abundant calcium oxide or calcium hydroxide [18], but there are other suitable CO₂ sorbents such as hydroxalates (e.g. Mg₆Al₂(OH)₁₆(CO)₃ ×₄ H₂O/K₂CO₃) and Li-based sorbents (e.g. Li₅SiO₄). The process is usually configured either using two packed bed reactors operated in cyclic reforming/calcing mode achieved with alternating feed flows, or two fluidised bed reactors with circulating bed materials moving between the reformer (fuel reactor) and the calciner (air reactor). In both cases, the calcination conditions perform the regeneration of the CO₂ sorbent. Although, it is feasible to perform reforming and calcination semi-batch wise in a single reactor vessel, resulting in intermittent H₂ production, a continuous operating process using at least two reactor vessels seems to be more attractive [18]. The CO₂ produced during steam reforming is captured by the sorbent, which once nearly-saturated with CO₂, is regenerated in situ by temperature or pressure swing adsorption principle. For a Ca-based sorbent, as the CO₂ is captured CaCO₃(S), the equilibrium of the H₂–producing reactions is shifted towards the right, increasing hydrogen generation at fairly lower/medium temperatures (723–873 K) compared to the conventional (C-SR) process (1073–1300 K) [18,20,43,44,45]. Fig. 1b depicts a schematic of the two-step SE-SR process in a packed bed configuration, where step 1 is the H₂ producing step and step 2 the CO₂ sorbent regeneration step. The sorbents play a significant role in the SE-SR process. It is vital for the sorbent to have some certain basic characteristics such as; high selectivity and adsorption ability at operating temperature and pressure, good and steady adsorption capability of CO₂ after repeated adsorption and desorption cycles, and good mechanical strength of adsorbent particles after cyclic exposure to high pressure streams [45,46]. The most commonly used CO₂ sorbent is CaO [18], which is reduced with CO₂ in an exothermic reaction forming CaCO₃(S) [20]. The carbonated sorbent can be regenerated in order to be useable again by calcination [18,20].

The advantages of SE-SR over C-SR process are; potential to use a lower operating temperature, reduction of purification steps and extent of the reduction, minimisation of reactor size and decrease in the quantity of steam to be used as opposed to C-SR [45,46]. Brun-Tsekhovoi et al. [47] revealed that the SE-SR process is able to reduce the overall energy required by the system with a potential of saving up to 20–25% as opposed to the C-SR process. In addition to these benefits, the SE-SR process has the advantage of increasing feed conversion, producing high purity hydrogen with a minimum CO₂, proficient CO₂ capture from the product as CaCO₃(S), and potential to generate pure CO₂ during the sorbent calcination step that is suitable for subsequent use or sequestration [45,46,48]. These advantages are illustrated in Fig. 1b in contrast to Fig. 1a by the absence of WGS stage, a smaller PSA unit, and no large demand of fresh natural gas in the furnace. In the past few years, various SE-SR pilot plants with capacity of 2–20 MW were built in Sweden, Australia, and Germany [49–51]. However, all of the plants used wood chips or woods pellets as fuel for syngas production and the process was demonstrated during gasification [49]. Presently, numerous research groups, both at research institutes and university levels, are investigating the performance of the SE-SR process [41] using various/diverse fuel and feedstocks ranging from methane [24] to propane [23], including hydroxacetone [52], acetic acid [53], and urea [20].

The chemical looping steam reforming (CL-SR) is a special case which combines chemical looping combustion (CLC) and steam reforming. A metal oxide is used as an intermediate to transport oxygen from air to fuel in order to provide heat of oxidation to the endothermic H₂ production process. This necessitates keeping the air to fuel ratio low to avoid the fuel from been oxidised completely to H₂O and CO₂ [18]. Fig. 1c depicts a schematic of the CL-SR process, step 1 representing the OTM reduction combined with H₂ production, and step 2 corresponding to the oxidation of the OTM. The process gas is fed into the reactor where both reduction of OTM and steam reforming occur simultaneously. A fraction of the feedstock is expected to be used as reductant in the metal oxide reduction to produce H₂O and CO₂ but the remainder would then reform to CO₂/CO and H₂ by the catalytically active reduced metal. The second step involves oxidation of the OTM back to its initial state. A best choice of OTM for CL-SR is nickel, as it not only an excellent steam reforming catalyst when reduced by hydrocarbon flow (or NH₃, or H₂) [54] but is readily oxidised (mainly to NiO) using air, thus an ideal OTM for the CL-SR process. However, the heats of reactions are dependent on oxygen carrier and fuel type [55,56]. The large scale application of CLC and CL-SR is still reliant upon the obtainability of appropriate oxygen carriers. The most commonly studied OTMs are oxides of nickel, copper, iron and manganese. Nickel has been the most used oxygen carrier and considered as state of the art [57,58] because of its high reactivity, negligible volatility, and thermal steadiness which are favourable factors for elevated temperature and high gas turbine CLC [55,56,59,60]. Nevertheless, nickel in particulate form is toxic upon inhalation, and has a thermodynamic constraint of 99–99.5% fuel conversion, conditional on temperature and pressure [58]. Advantages of the CL-SR process over conventional steam reforming are illustrated in Fig. 1c in comparison to Fig. 1a, where the overall surplus energy contained in the syngas and lack of external heating demand in the reformer would in theory permit operating a combustor/gas turbine/electrical generator system. As a result single ‘squat’ reformer units would be possible that would make the whole plant economical at smaller scales.

The combination of sorption enhancement and CL-SR in one single process and is called sorption enhanced chemical looping steam reforming (SE-CLSR). The material bed then consists of a mixture of particles comprising of solid oxygen carrier and CO₂ sorbent. The reforming reactor normally operates at a low/medium temperature, partially reducing the fuel with the oxygen provided by oxygen carrier and steam reforming most of the fuel, and at the same time any CO₂ produced during the process is captured by the CO₂ sorbent, causing sorption enhanced steam reforming. The overall reaction in the reduction/reforming reactor is thermos-neutral [18,61] owing to the strongly exothermic carbonation reaction. The SE-CLSR process could in principle be self-sufficient with regard to energy because the required heat for the
endothermic steam reforming and reduction reactions could be provided by the exothermic sorbent carbonation reaction, while the heat from re-oxidation of the OTM is utilized for sorbent regeneration [19] in a separate time step. Hence, this could mean near complete elimination of dependency on flue gas use to provide reformer heat at steady state operation. However, full benefits of the process are discussed in detail later. Fig. 1d depicts the SE-CLSR process, with step 1 consisting of the combined OTM reduction, H2 production under gas and steam flow with in situ CO2 capture by the sorbent, and step 2 carrying out the coupled OTM oxidation under air flow and CO2 sorbent calcination. It is suggested that a smaller scale separation process be used, owing to the fact that nearly pure H2 can be generated in step 1 of the process under well chosen operating conditions. Another capital cost reducing aspect is that instead of needing to use an assembly of many long thin reformer tubes exposed to harsh combustion environments, the reformer could be a single reactor making little use of external heat (e.g. for startup only). The benefits of intensifying the C-SR process by using SE-CLSR technology are pointed out in Fig. 1d in comparison to Fig. 1a, where the furnace and WGS reactor are no longer required, the energy content of the separation gases is used to run (as an example) a combustor/gas turbine-generator, the ‘squat’ reformer aspect and the reduced separation stage all permit economical downsizing and potentially co-generation.

3. Methodology of the thermodynamic equilibrium calculation

The CEA (Chemical Equilibrium and Applications) software by NASA [62] was used to perform the thermodynamic equilibrium calculations of the gas-water-solid (Ca-based CO2 sorbent/Ni-OTM) system of different processes as illustrated in Fig. 1 using a model composition of shale gas as the hydrocarbon feedstock. First, conventional steam reforming (C-SR), then sorption enhanced steam reforming (SE-SR), followed by chemical looping steam reforming (CL-SR) and finally, sorption enhanced chemical looping steam reforming (SE-CLSR) have been simulated. The program uses a solution procedure based on the minimisation of the Gibbs energy function of a feed mixture consisting of hydrocarbon gas, water and solids (Ca-sorbent/Ni-OTM) to calculate the mole fractions of the equilibrium mixture of products. The CEA calculations were conducted at isothermal and isobaric conditions given the endothermicity of the main reaction of steam reforming, permitting changes in volume of the system and representing a reactor mostly necessitating external heat. However, the energy balance of the combined processes will show exothermic balance in some cases, whereby the isothermal conditions would have represented a cooled reactor. Included in the program outputs were specific enthalpy, internal energy, entropy and molar masses of the initial and equilibrium mixtures.

The species considered at equilibrium in the gas-water system in addition to all the gaseous reactants (CH4, C2H6, C3H8, N2, CO2 and H2O) were: H2, CO, C(S), and NH3 when simulating the C-SR process. In addition, Ca containing solid species CaO(S) and Ca(OH)2(S) were included in the reactant mixtures of the sorption enhanced processes (SE-SR and SE-CLSR), with CaCO3(S) as additional product, while NiO(S) was included in the reactant mixture of the chemical looping processes (CL-SR and SE-CLSR), with Ni(S) as additional product species. Other related species such as CH2, CH3, CH2OH, CH4, C2H6 and CH3COOH to mention few, were also included in the equilibrium calculations but their molar fractions were <5 x 10^-6 and considered negligible.

The thermodynamic properties (specific heats, enthalpies, entropies) for the initial feed mixture and the equilibrium mixture of products were obtained from NASA [62] and the NIST (National Institute of Standards and Technology) database. The Aspen Plus software’s RGibbs model reactor with ideal as well as Peng-Robinson thermodynamic properties were also used for the verification of results. The selected feedstock model composition was based on values found in the literature [63]. A shale gas containing roughly up to 80% of methane with a significant quantity of higher hydrocarbons (>C1), CO2, and inert gas was simulated, representing a mixture rich in ethane and propane. Conditions at equilibrium were provided on the basis of moles of each hydrocarbon gas input (CH4, C2H6, C3H8), the molar steam-to-carbon ratio (S:C), the molar calcium-to-carbon ratio (Ca:C), and the molar nickel oxide-to-carbon ratio (NiO:C), as well as system pressure and temperature. The four S:C equilibrium conditions of 0, 1, 2, and 3 were calculated in the study, where ‘C’ represents ‘hydrocarbon’ moles of carbon in the gas feed, and S the moles of water feed, as steam. Their choice is justified as follows: S:C of 0 represents the thermal decomposition of the gas. S:C of 1 is the stoichiometric S:C ratio for complete conversion of CnH2n feedstock to CO and H2, hence it represents the minimum S:C ratio of practical operation for H2 generation. S:C of 2 is the condition of stoichiometry for complete conversion of CnH2n to CO2 and H2 formation, while S:C 3 is the condition of excess steam typically used in industrial steam methane reforming, aimed at H2 production rather than syngas generation [20]. The excess steam also increases the yield and purity of H2 via Le Chatelier’s principle, and in practice inhibits carbon deposition on the catalyst as well as consumes already formed carbon deposits, if any, via steam gasification.

The authors applied their own post processing procedures allowing the calculations of reactants conversions and molar yields of products. A carbon balance was used to facilitate the calculation of the equilibrium total moles produced for the initial mixture chosen (‘Neq’) and derive products yields and reactants conversions ‘X_j’ using Eqs. (1.1)–(7). Presentation and discussion of results was based on the following definitions:

$$N_{eq} = \sum_{i=1}^{m} \alpha_i n_{Ci,eq}$$

(1.1)

where n_j represents number of moles of carbon species represented by the subscript indices i in the initial ‘in’ mixture, and j in the equilibrium ‘eq’ mixtures, α is the number of carbon atoms in the relevant carbon species. X_{eq,j} are the equilibrium mol fraction of carbon containing species j. Henceforth, molar amounts n_{eq,j} obey the equation:

$$n_{eq,j} = X_{eq,j} \times N_{eq}$$

(1.2)

where y stands for molar fraction of a particular species in the relevant mixture. Reactants gas and steam conversions (percent or fraction) were defined based on Eqs. (2)-(3)

$$X_{gas}^{(\%)} = 100 \times \frac{\sum_{i=1}^{m} \alpha_i n_{Ci,in} - \sum_{i=1}^{m} \alpha_i n_{Ci,eq}}{\sum_{i=1}^{m} \alpha_i n_{Ci,in}}$$

(2)

$$X_{H2O} = \frac{n_{H2O,in} - n_{H2O,eq}}{n_{H2O,in}}$$

(3)

where n is the number of moles of the relevant species (e.g. ‘H2O’ is the sum of moles of water) in the relevant conditions (e.g. ‘in’ or ‘eq’). In Eq. (2) subscript i is relevant only to the hydrocarbon species present in the feed mixture.

Two definitions of H2 yield were used: on mass basis, expressed as % mass of fuel feed (Eq. (4)), and on an absolute molar basis (Eq. (5))

$$H_2 \text{ yield (wt.\%)} = \frac{100 \times 2.02 \left(\frac{g \text{ of } H_2}{mol \text{ of } H_2} \right) \times n_{H2,eq}}{MW_{gas} \left(\frac{g \text{ of gas}}{mol \text{ of gas}} \right) \times N_{gas} \text{ in}}$$

(4)

$$H_2 \text{ yield (mole basis)} = X_{H2,eq} \times N_{eq}$$

(5)
And H₂ purity was defined using Eq. (6).

\[H₂ \text{ purity (dry basis)} = \frac{n_{H₂,eq}}{\sum n_{H₂}} × 100 \]

\[\text{(6)} \]

A Ca:C ratio of 1 was used in the SE processes, representing the stoichiometry of the calcium oxide and calcium hydroxide carbonation reactions. The regeneration temperature of 1170 K (~900 °C) was selected to represent temperatures used in practice for decarbonation (calcination) of calcium carbonate in mixtures that may have significant CO₂ content [20,64]. Calculations were made based on the following outputs, where \(T_R \) is the reaction temperature:

- Carbon products selectivity to CaCO₃:
 \[S_{C\text{ to CaCO₃}} = \frac{n_{\text{CaCO₃,eq}}}{n_{\text{CaO,eq}}} × 100 \]
 \[\text{(7)} \]

The enthalpy balances were performed by summing up the ‘reactants’ terms to the ‘reaction’ terms according to the relevant step in the process covered. ‘Reactants’ term is the enthalpy change of bringing individual reactants from ambient temperature (25 °C) and in their natural phase to a given reaction temperature and potentially new phase (e.g. liquid water to water vapour). ‘Reaction’ term is the enthalpy change of conversion to products isothermally at the given reaction temperature for the process step considered. Thermal efficiency of the process is assessed via the \(\Delta H \) factor. \(\Delta H \) factor is the ratio of the total enthalpy change of generating 1 mol of \(H₂ \) via the equilibrium steam reforming process under consideration (e.g. C-SR, SE-SR, etc.) to that of generating 1 mol of \(H₂ \) via thermal water splitting. Total enthalpy change assumes reactants in their natural state at 298 K (25 °C) and ending with products at reaction temperature. \(\Delta H \) ratios below the value of 1 showcase a \(H₂ \) production process that is thermodynamically advantageous to water splitting. Furthermore, a negative \(\Delta H \) ratio is obtained for an overall exothermic \(H₂ \) production process. Two scenarios were considered in the processes that featured solids: ‘A’ is used for a total energy balance which does not account for the energy of regeneration of the CO₂ sorbent while ‘B’ includes the sorbent regeneration energy. The enthalpy terms with the index ‘1’ apply to step 1 of the process considered (fuel and steam feed), and ‘2’ to step 2 (air feed). These terminologies are used in the figures legends and their relevant equations are provided in the supplementary data section.

4. Results and discussion

In this section the effects of nine system conditions on the equilibrium process outputs are discussed, namely: varying temperature, varying S:C ratio, reforming with or without Ca-based CO₂ sorbent, when using CaO, reforming with Nickel Oxygen Transfer Material, reforming with both Ca-based CO₂ sorbent and Ni-OTM, effect of alumina (\(Al₂O₃ \)) support and degraded sorbent on enthalpy, solid carbon formation and finally pressure. The precise gas composition selected for this study is given in Table 1 and corresponds to Marcellus shale gas (North America). A comparison between C-SR of the shale gas with SE-SR followed by CL-SR and finally SE-CLSR was made to assess the effect on \(H₂ \) yield, purity and energy efficiency of the processes, bearing in mind that C-SR of natural gas is at present the industrial standard of \(H₂ \) generation. Figures and results at S:C ratio of 3 will be mainly used for illustrations.

The chemical reactions involved in C-SR, SE-SR, CL-SR- and SE-CLSR of shale gas are many and can be summarised by the global reactions R1–R17 (Table 2). Based on the molar inputs of Table 1 for the shale gas/water equilibrium system, the maximum theoretical outputs can be determined according to stoichiometry of the \(H₂ \) producing reactions listed in Table 2. Accordingly, the maximum \(H₂ \) yield is obtained via the complete reactions R3, R5, R6 (steam reforming of \(CH₄, C₂H₆, H₂ \) and \(C₂H₄ \) respectively) followed by complete R7 (WGS reaction). This would correspond to a \(H₂ \) yield of 49.0 wt. % of the shale gas feedstock using Eq. (4). Therefore chemical equilibrium calculations of \(H₂ \) yield cannot exceed this value. In the case of \(H₂ \) purity, the maximum could be obtained in two ways, the first of which by complete thermal decomposition of \(CH₄, C₂H₂, C₂H₄ \) and \(C₂H₆ \) (e.g. R1), which would achieve a nearly pure \(H₂ \) product. This, however, would be to the detriment of the amount of \(H₂ \) produced (yield). The second, more desirable way of obtaining a nearly pure gas product would be via complete reactions R3–R7 followed by complete carbonation via R8 or R10, after condensation of water product. The desirable outcomes of the equilibrium calculations are therefore first, a \(H₂ \) yield close to the maximum theoretical (stoichiometric) yield, followed by low energy cost, followed last by high \(H₂ \) purity. This is because due to stringent purity requirements of some commercial applications, such as in chemicals, pharmaceuticals and petroleum industries, food and beverages industries [2] as well as fuel cell technologies [2,17] a last purification stage may always be needed.

Table 2

<table>
<thead>
<tr>
<th>No.</th>
<th>Reaction</th>
<th>Reaction type</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>(CH_4 \rightarrow C + 2H_2)</td>
<td>Thermal decomposition</td>
</tr>
<tr>
<td>R2</td>
<td>(CH_4 + H_2O \rightarrow CO + 3H_2)</td>
<td>Steam methane reforming --/methanation (hydrogenation) of CO --</td>
</tr>
<tr>
<td>R3</td>
<td>(CH_4 + 2H_2O \rightarrow CO_2 + 4H_2)</td>
<td>Steam methane reforming --/methanation (hydrogenation) of CO₂ --</td>
</tr>
<tr>
<td>R4</td>
<td>(CH_4 + nH_2O \rightarrow nCO + (n + 0.5m)H_2)</td>
<td>Hydrocarbon steam reforming</td>
</tr>
<tr>
<td>R5</td>
<td>(CH_4 + 2H_2O \rightarrow 2CO + (2 + 3)mH_2)</td>
<td>Ethanene steam reforming</td>
</tr>
<tr>
<td>R6</td>
<td>(CH_4 + 3H_2O \rightarrow 3CO + (3 + 4)mH_2)</td>
<td>Propane steam reforming</td>
</tr>
<tr>
<td>R7</td>
<td>(CO + H_2O \rightarrow CO_2 + H_2)</td>
<td>Water gas shift (CO-shift) --/reverse water gas shift --</td>
</tr>
<tr>
<td>R8</td>
<td>(CaO\rightarrow CaO_{(s)})</td>
<td>Carbonation of CaO₂ --/decarbonation or calcination of CaCO₂ --</td>
</tr>
<tr>
<td>R9</td>
<td>(CaO_{(s)} + H_2O \rightarrow Ca(OH)_2)</td>
<td>Hydration of CaO₂ --/dehydration of Ca(OH)$_2$ --</td>
</tr>
<tr>
<td>R10</td>
<td>(Ca(OH)2 \rightarrow CaO{(s)} + H_2O)</td>
<td>Carbonation of Ca(OH)$_2$ --</td>
</tr>
<tr>
<td>R11</td>
<td>(NiO + (n)CO \rightarrow (n)Ni + (0.5m)H_2)</td>
<td>NIO reduction by the fuel, producing CO</td>
</tr>
<tr>
<td>R12</td>
<td>(NiO + (2n + 0.5m)Ni \rightarrow nCO + (2 + 0.5m)Ni + (0.5m)H_2O)</td>
<td>NIO reduction by the fuel, producing CO₂</td>
</tr>
<tr>
<td>R13</td>
<td>(NiO + (n + 0.25m)Ni \rightarrow (n + 0.25m)H_2O \rightarrow (n + 0.25m)Ni + nCO₂ \rightarrow (n + 0.25m)H_2)</td>
<td>Combined NIO reduction and global steam reforming reaction of the gas</td>
</tr>
<tr>
<td>R14</td>
<td>(Ni + 0.5O_2 \rightarrow NO)</td>
<td>Ni oxidation to NO</td>
</tr>
<tr>
<td>R15</td>
<td>(CO + 2H_2 \rightarrow CH_4)</td>
<td>Carbon hydrogenation</td>
</tr>
<tr>
<td>R16</td>
<td>(2CO \rightarrow CO_2)</td>
<td>Boudouard reaction (CO disproportionation) --/reverse Boudouard reaction --</td>
</tr>
<tr>
<td>R17</td>
<td>(2H_2 + CO \rightarrow CO_2)</td>
<td>Steam gasification of carbon --</td>
</tr>
</tbody>
</table>
4.1. Effect of temperature and presence of C2-C3 feedstock on both C-SR and SE-SR processes

H₂ yield and purity plots between 500 and 1200 K at S:C ratios of 1, 2, 3, 4, 5 and 6 are displayed in Fig. 2(a and b), respectively. These profiles illustrate a comparative analysis of C-SR and SE-SR of shale gas. In the absence of water (S:C = 0, not shown in Fig. 2), the gas required in excess of 900 K to undergo thermal decomposition and to begin converting significantly to H₂. For S:C of 1, 2, and 3, H₂ yield and purity increased steeply as temperature increased for both the processes. For C-SR, this was caused by conditions shifting from being favourable to methanation (main products CH₄ and CO₂ below 900 K) and other solid carbon forming reactions at a low temperature, to promoting steam methane reforming (main products H₂ and CO₂). This occurred up to roughly 1100 K, where H₂ yield and purity declined and a gentle dwindling in both hydrogen yield and purity was seen with further temperature increase, independent of the S:C ratio, and caused by reverse water gas shift. In the case featuring in situ CO₂ sorption (SE-SR), the H₂ yield and purity profiles with temperature showed a much sharper rise with a wider range of plateau of maximum H₂ yield and purity with temperature, exhibiting the sorption enhancement effects; this is discussed in more detail in Section 4.3. In the low temperature range (<720 K), the presence of C₂ and C₃ species in the reactant gas increases CH₄ yield significantly resulting from the cracking of those species and methanation as further confirmed by the negative CH₄ conversion from 500 to 720 K for C-SR process and from 500 to 540 K for SE-SR process (not shown). The latter resulted from the exothermicity of methanation, favoured at low temperature. Sorption enhancement results in reducing the equilibrium concentration of CH₄ in favour of the process at a higher temperature, thus the higher yield and purity than the conventional processes. Modelling the conditions S:C = 3 with Aspen Plus V8.8 (reactor option RGibbs, properties method Peng Robinson) resulted in an excellent agreement with the results derived from CEA. However, for the SE-SR process a slight difference (decreased in H₂ purity and selectivity of carbon to calcium carbonate) was observed at 1000 K, which might result from the difference in thermodynamic properties of the programmes (ideal in CEA, non-ideal in Aspen Plus). Nonetheless this is relatively insignificant since Ca-sorption enhancement wanes at such high temperature. Similar thermodynamic studies were also conducted with or without Ca sorbent (C-SR and SE-SR process) using several fuels including methane [24], propane [23], hydroxyacetone [52], acetic acid [53], and urea [20]. These results showed a similar trend to those of shale gas (this paper) with regards to H₂ yield and purity and the effect of S:C ratio to be discussed later.

4.2. Effect of steam to carbon ratio on steam reforming processes

For the C-SR process, H₂ yield and purity behaviour with respect to S:C ratio follows Le Chatelier’s principle, whereby an increase in the water reactant concentration in the system moves the equilibrium towards higher water conversion, thus causing higher H₂ yield and purity (Fig. 2). However, operating at a large S:C ratio requires higher reactor volume, as well as high operational expenditure for raising steam [20, 23, 53]. The effect of S:C ratio levels off at higher values (above S:C 4 and 700–1200 K approximately) [65] as depicted in Fig. 2. The slight increase in the temperature range of 500–700 K in both H₂ yield and purity (above S:C 4) is reasonably insignificant, as industrial steam reforming plant operate around 1073–1273 K roughly [36,37]. Furthermore, higher S:C ratio is known to cause catalyst and sorbent deactivation because of pore blocking [66,67]. Thus, S:C ratio of 3 typically used in industrial steam methane reforming will be focus on in the presence studies [20]. The curves of H₂ yield and purity against temperature for the varied S:C ratio demonstrate the benefits of operating with high S:C ratio. For example, at 800 K, with the C-SR process case at S:C ratio of 1, the equilibrium H₂ yield is 13.2 wt.% of fuel with 56.0% purity, but it becomes 24.3 wt.% of fuel with 65.4% purity at S:C ratio of 3. This is equivalent to 84% and 17% rises in H₂ yield and H₂ purity, respectively. The higher the S:C ratio, the closer the H₂ yield gets to the theoretical (stoichiometric) maximum of 49.0 wt.% as well as increasing H₂ purity. The use of high S:C ratio also prevents carbon product (potential deposition on the catalyst) through reaction (R17), however equilibrium carbon is discussed separately in Section 4.6.

Fig. 3(a) depicts the impact of S:C ratio through the value of the ΔH ratio for the C-SR process (2nd y axis). Recall that the furthest ΔH ratio below 1, the more thermally efficient the process is. The profiles in Fig. 3(a) indicate that the ΔH ratio of C-SR penetrated the <1 viability area at similar temperatures of 670 K for S:C ratio of 1, 2, and 3. For S:C ratio of 0 the process was viable at roughly 600 K. Representing a process where H₂ is only a minor product, this is confirmed by the growing energy costs of operating at increasing S:C ratio, e.g. minimum ΔH ratio of 0.41 was obtained at stoichiometric S:C ratio of 1 and 800 K, but minimum ΔH ratio became 0.51 at the same temperature at S:C ratio of 3.

The energy balance for molar inputs of shale gas composition in Table 1 is further analysed with the help of Fig. 3 (b) which depicts individual enthalpy terms profiles against temperature. The scales shown on the y axis of Fig. 3 (b) in [kJ] are not particularly significant because they depend on the molar inputs chosen for the system, however what is significant is the relative positions of each enthalpy term profiles in the figure. The total enthalpy change of the process, and consequently the ΔH ratio, is seen to be dominated by the enthalpy change terms of...
4.3. Sorption enhancement with CaO sorbent (SE-SR)

Several benefits of in situ CO\textsubscript{2} sorption are identifiable in the temperature zone of the highest CaCO\textsubscript{3(s)} yield (500–990 K) on the gas water system at equilibrium. Firstly, H\textsubscript{2} yield increased, bringing it closer to theoretical maximum as depicted by Fig. 2(a). The effects of the CaO\textsubscript{(s)} sorbent on the H\textsubscript{2} yield in the low temperature range was brought about by the shift in equilibrium favouring the two H\textsubscript{2} generating reactions (water gas shift and steam reforming), caused by removal of the CO\textsubscript{2} from the syngas product (see diagram Fig. 1(b)). This would have increased both H\textsubscript{2} yield and purity simultaneously as seen in Fig. 2. For instance, the H\textsubscript{2} purity increased from 65.4% without Ca sorbent in the system to 98.0% with CaO\textsubscript{(s)} sorbent, at S:C ratio of 3 and temperature of 800 K. This is equivalent to 50.0% rise in purity between the two processes (at about 40% H\textsubscript{2} yield, shifted towards lower temperature, as depicted by Fig. 2(a)).

Two regions of temperature were observed in the trends of the process, that result from the sudden drops of Ca(OH)\textsubscript{2(s)} and CaCO\textsubscript{3(s)} product yield to zero. This was expected because at temperatures higher than 700 K, thermal decomposition of Ca(OH)\textsubscript{2(s)} occurs, while that of CaCO\textsubscript{3(s)} happens at temperatures higher than 1000 K (Fig. 3(c)). In addition, the presence of CaO\textsubscript{(s)} lowered the energy demand of H\textsubscript{2} generation from the gas-water system. This can be seen in the ΔH ratio farther from 1 for the system with CaO compared to the system without CaO, as shown in Fig. 4(a), due to the lower total change in enthalpy obtained with CaO (Fig. 4b).

Another benefit is reduced energy demand, as shown by the ΔH ratio notably below that of the sorbent-free system, even when accounting for regeneration of the CaCO\textsubscript{3(s)} back to CaO\textsubscript{(s)} through a decarbonation step conducted at 1170 K, as represented by case ‘B’ (Fig. 4). Sorbent carbonation was reduced at S:C ratio of 0 and 1 due to low carbonate produced. Thus, the effect of sorption enhancement is not properly active at those conditions. For S:C of 2 and 3 the SE-SR process was overall moderately endothermic without sorbent regeneration (case A), but became overall significantly endothermic when accounting for the regeneration step of the sorbent (case B). Regeneration enthalpy change dropped to zero above 1000 K for all the S:C ratios considered due to thermal decomposition of CaCO\textsubscript{3(s)}, and as a result, the ΔH ratio vs. temperature profiles of the C-SR and SE-SR processes (with and without regeneration) merged with each other, making the later equivalent to the typical C-SR process. The heating cost of the gas was the same for the four S:C ratios (0, 1, 2, and 3) as their molar input remained unchanged. The enthalpy change of raising steam increased with S:C ratio as expected. The energy of heating up the water further confirms the growing cost of operating at a high S:C ratio. The enthalpies of evaporating and superheating steam at the reaction temperature still dominated the energy balance of the process with sorption enhancement as well. The reaction enthalpy is the backbone of the major difference seen between the two processes (C-SR and SE-SR), illustrated in the ΔH ratios as depicted by Fig. 4(c). This no doubt can be accredited to the carbonation process which is strongly exothermic.

To illustrate the energy savings brought about by in situ CO\textsubscript{2} sorption using CaO\textsubscript{(s)} sorbent, the case of S:C ratio of 3 is used. The minimum energy required to bring the system at equilibrium, starting from feed materials of the gas and liquid water at 298 K, was 159 kJ per mol of produced H\textsubscript{2} at 800 K without CaO\textsubscript{(s)} in the system. This decreased to...
59 kJ/mol H₂ with CaO(s), without regeneration of the CaCO₃(s) (i.e. almost isenthalpic). When including the enthalpy of CaCO₃(s) regeneration back to CaO(s) performed at 1170 K, the total enthalpy change rose to 114 kJ per mol of produced H₂ at 800 K respectively, i.e. significantly lower than the sorbent-free system. It is noteworthy that the H₂ producing step (step 1) would be physically separate from the sorbent regeneration step (step 2), and thus during the H₂ production, near autothermal conditions would be reached in step 1 of the SE-SR process.

Accounting for Ca(OH)₂(s) and CaCO₃(S) as possible products of CaO(s) conversion had different effects on process outputs depending on the S:C ratio and temperature. In situ CO₂ capture by CaO(S) (R8) and hydration reaction of CaO to produce Ca(OH)₂(s) (R9) are active at low to intermediate temperatures (<700 K) and the latter competes with both steam reforming and water gas shift reactions for water usage. At temperature of maximum H₂ yield, 800 K approximately, removal of water by CaO was insignificant because thermal decomposition of Ca(OH)₂(s) occurred at around the same temperature. Hence CaO(s) was permitted to transform to CaCO₃(s) producing the desired sorption enhancement.

4.4. Chemical looping with NiO coupled with steam reforming (CL-SR) of shale gas

Fig. 5 summarises the outputs of steam reforming of shale gas when coupled with chemical looping (CL-SR) using NiO as the oxygen transfer material. For the purpose of comparison of processes, the outputs of C-SR are also included in the figure. The process was investigated by first varying the NiO:C ratio while maintaining S:C of 3 in Fig. 5(a and b), then followed by changing the S:C between 0 and 3 while maintaining NiO:C 1.0 constant, as depicted in Fig. 5(c and d).

In the CL-SR process, complete conversion of the gas and good selectivity towards the desired products was achieved. NiO reduction with the fuel is thermodynamically possible at temperatures as low as 400 K, as indicated by negative water conversion below 400 K. Increasing the NiO:C ratio decreases monotonically the H₂ yield and purity (Fig. 5a). The decrease in H₂ yield can be attributed to CL-processes using part of the fuel according to either R11 (co products CO and H₂) or R12 (co-products CO₂ and H₂O) to meet the energy demand of steam reforming, a role that is normally played by the gas fired furnace in the C-SR process (see Fig. 1a). H₂ purity also decreases with growing NiO:C ratio. This can be explained by concurrent CO₂ generation via the NiO reduction reaction (R12).

One significant benefit of coupling C-SR with chemical looping is the reduced energy demand of the overall H₂ production. This is evidenced by the ΔH ratio notably below that of the NiO-free system (Fig. 6). The reduced energy demand can be attributed to the strongly exothermic nickel oxidation process (one of the major difference between the CL-SR and C-SR process) as shown in Fig. 6(b). The ΔH ratio of the CL-SR process (steps 1&2) was fairly endothermic at low/medium temperature (700–850 K) but slightly decreases at higher temperatures (850–1200 K) with increase in operating temperature. The overall energy demand of the process decrease with increase in NiO:C ratio, making the process almost autothermal at the highest NiO:C ratio (1.0). However, even at the lowest NiO:C ratio energy demand of the CL-SR process was still significantly lower than that of the conventional process (see table SD4 in the supplementary data for ΔH total and ΔH ratio values with varying NiO:C ratios). As expected, the ΔH ratio increased with increasing S:C (0–3) due to the accrued cost of raising the excess steam, as explained earlier (figure not shown). This confirmed that the CL-SR process was also dominated by the cost of raising excess steam (S:C ratio in use). The energy demand of the whole process was dominated in the order of contributions of the following enthalpy terms: sum heating up reactants > sum reactions 1 & 2 as depicted in Fig. 6(b and c). The energy demand of heating up the reactants was in
Fig. 5. (a) H_2 yield vs temperature at 1 bar, S:C 3 and varied NiO:C (0.5–1.0) (b) H_2 purity vs temperature at 1 bar, S:C 3 and varied NiO:C (0.5–1.0) (c) H_2 yield vs temperature at 1 bar, NiO:C of 1.0 and varied S:C (0–3) (d) H_2 purity vs temperature at 1 bar, NiO:C of 1.0 and varied S:C (0–3) (note: NiO:C 0.0 denote C-SR process and the straight line in H_2 yield represents the theoretical maximum).

Fig. 6. (a) ΔH ratio of CL-SR vs. temperature at 1 bar, S:C 3 and NiO:C 0.0–1.0 (b) reaction enthalpy terms and (c) sensible enthalpy terms (gases: 298 K \rightarrow T(K) under stage 1, solid: T(K) \rightarrow 1100 K under stage 2) vs. temperature at 1 bar, S:C 3 and NiO:C 1.0 (note: the numbers 1 and 2 denote reaction processes stages 1 (reductive & reforming under fuel and steam feed) and 2 (oxidative under air feed) respectively). Temperature T(K) refers to reforming temperature. (Oxidation temperature is assumed to be 1100 K in all CL-SR cases).
the order H$_2$O $>$ air $>$ shale gas. The cost of heating up the gas was relatively insignificant compared to those of raising steam from liquid water feed and preheating air.

4.5. Sorption enhanced chemical looping steam reforming

4.5.1. H$_2$ yield, H$_2$ purity and selectivity to carbonate

The effect of temperature on H$_2$ yield and purity is illustrated in Fig. 7 for the three processes (C-SR, SE-SR and SE-CLSR) in the particular case of Ni:C 1.0 and the two S:C of 2 and 3. Note that in the chemical looping processes CL-SR and SE-CLSR, some feedstock is consumed for NiO reduction according to R11 and R12, while for C-SR and SE-SR the fuel is fully available for the steam reforming process. The figure clearly portrays the significance of coupling sorption enhancement and chemical looping in steam reforming with both the superior H$_2$ yield ca. 700–850 K and H$_2$ purity ca. 700–1000 K obtained for SE-CLSR compared to the C-SR process (i.e. region of maximum CO$_2$ capture/efficient carbonation reaction). The presence of the CO$_2$ sorbent shifts the thermodynamic equilibria of both the steam reforming and the water gas shift reaction (R2 and R7) towards higher conversion to CO, then to CO$_2$, followed by capture of the CO$_2$ on the sorbent, with the carbon product becoming almost exclusively solid calcium carbonate. Subsequently, the presence of the nickel based OTM in SE-CLSR led to even greater H$_2$ yield (in region of effective carbonation) than C-SR, although part of the fuel was used for reduction. This is because the reduction of fuel by NiO (R12) produces total oxidation products CO$_2$ and H$_2$O, with the former being captured by the sorbent, and the latter increasing the water concentration of the system, effectively achieving a double or synergetic enhancement effect. The effect of coupling between C-SR and SE-SR on the H$_2$ purity in the low/medium temperature zone is explained by the efficiency of CO$_2$ capture by the Ca sorbent. At high temperatures (roughly above 1000 K), the efficiency of CO$_2$ capture declined rapidly and dropped to zero, hence the SE-SR process reverted back to C-SR, as conditions favoured CaCO$_3$ decomposition [18,19]. Regarding H$_2$ purity in the high temperature zone (above 1000 K), the inferiority of SE-CLSR process compared to C-SR and SE-SR was due to the additional CO$_2$ present at equilibrium resulting from the NiO reduction, while C-SR and SE-SR performed equally due to decomposition of the CaCO$_3$(S). On the other hand, the inferiority of the process (SE-CLSR) compared to SE-SR with regards to H$_2$ yield was due to the fact that part of fuel was used for NiO reduction while the fuel was completely available for steam reforming in the case of SE-SR process [68].

Therefore the optimal operating temperatures for both SE-SR and SE-CLSR at atmospheric pressure were around 700–850 K approximately, as illustrated in Fig. 7.

In practice, when using packed bed configuration used with alternating feed flows, it is envisaged that at least two packed bed reactors would be used in parallel, one undergoing the reductive stage with in situ CO$_2$ capture while the other is in oxidative stage with sorbent regeneration (and potentially carbon burn off), as shown in Fig. 1(d).

Table 3 compares the equilibrium outputs of C-SR and SE-CLSR process using CaO as the CO$_2$ sorbents at 800 K.

![Fig. 7.](image-url) (a) H$_2$ yield vs temperature with CaO(s) sorbent at 1 bar, Ca:C 1, NiO:C 1.0 and S:C 2 and 3 (b) H$_2$ purity vs temperature with CaO(s) sorbent at 1 bar, Ca:C 1, NiO:C 1.0 and S:C 2 and 3 (note: the straight line in H$_2$ yield represent the theoretical maximum).

Fig. 8. Selectivity of carbon to calcium carbonate vs temperature at 1 bar, Ca:C 1, NiO:C 1.0 and S:C 2 and 3 with CaO(s) sorbent.

![Fig. 8.](image-url) Selectivity of carbon to calcium carbonate vs temperature at 1 bar, Ca:C 1, NiO:C 1.0 and S:C 2 and 3 with CaO(s) sorbent.
and SE-SR process, even when accounting for complete regeneration of the CaCO$_3$(S) back to CaO(S) via a decarbonation step conducted at 1170 K. The ΔH ratio without regeneration was slightly endothermic (overall autothermal process) at low/medium temperature range (700–900 K) for S:C 2 but moderately endothermic (almost autothermal process) at S:C 3 with CaO(S) sorbent. When the enthalpy of regenerating the CaO(S) sorbent at 1170 K was included, the ΔH ratios became significantly endothermic (positive) but remained significantly lower than the C-SR process, thus more energetically favourable. The heating demand of the gas and air was the same for the S:C 2 and 3 as their molar input remained unchanged. On the other hand, the heating demand of water increased with increase in S:C ratio (discussed earlier) i.e. S:C 2 < S:C 3. Although steam reforming and NiO reduction are endothermic processes, the total reaction enthalpy of the two-step cyclic process (stage 1 + stage 2) was overall exothermic, with the exothermicity decreasing with increase in stage 1 reaction temperature. We chose to show how this excess energy could be used by including a combustor/gas turbine/generator system in Fig. 1(d), as it is the most flexible way to utilise the enthalpy of combustible as well as non-combustible streams via by-passing the combustor. The overall exothermicity resulted from the strongly exothermic Ni oxidation process, as shown in Fig. 9. Both Ni oxidation and carbonation reactions have significantly lowered the energy demand of the hydrogen production. The ΔH ratio of the two processes (C-SR and SE-CLSR) did not merge when decarbonation process stopped (at roughly 1000 K) like the SE-SR process, this effect can be explained by the activity of chemical looping and no doubt can be accredited to the strongly exothermic nickel oxidation. The total energy cost of the process was, again, dominated by water enthalpy change followed by the reaction enthalpy (Fig. 9(c)).

The results of the chemical looping processes (CL-SR and SE-CLSR) were further verified by the authors with Aspen plus ‘Rigibs’ reactor modelling and were in good agreement to those of CEA. Previous studies were conducted on CL-SR process by [25] and SE-CLSR process by [18, 19,65,69]. The results are in good agreement to those of the present study with regards to H$_2$ yield and purity, selectivity of carbon to calcium carbonates (SE-CLSR process only) as well as reduced energy requirement of the processes when compared to the conventional process. Optimum operating conditions for SE-CLSR also happen to be in the same range to those reported in the present study 700–850 K, 1–4 bar pressure, S:C 3 and Ca:C 0.8–1 [19]. Zhu and Fan, 2015 [69] analysed the influence of Ca:M ratio, M(fuel):M ratio and Ni:M ratio on SE-CLSR process using equilibrium calculations, they found Ca:M = 1, M(fuel):M of 0.2 and Ni:M of 0.8 were optimum operating condition. Their conclusion (production of high purity hydrogen in the lower operating temperature range compared to CL-SR process) is in good agreement with the present study. Fan and Zhu, 2015 [70] investigated the performance of a novel polygeneration system driven by methane aimed at producing high-purity H$_2$ through chemical looping combustion thermally coupled with CaO sorption enhanced methane steam reforming (they termed it CLC-SEMSR) combined with power generation through combined cycle. They stimulated the process using Aspen Plus exiting functions and build in functions. They found that the novel polygeneration system can achieve higher exergy efficiency of 83.1% compared to 68.7% in the C-SR process. Their conclusion that polygeneration systems for H$_2$ production and power generation simplifies the overall process with a more reasonable utilization of fuel, in addition to CLC-SEMSR process potential to produce higher H$_2$ yield and purity with reduced energy consumption for CO$_2$ separation is in good agreement with the present study. However, all of the thermodynamic studies (on SE-CLSR process) focussed pure methane as fuel in previous literature and most of the previous studies such as [69,70] used fluidised bed reactor (air and fuel reactor separate). Researchers also investigated the performance of Ca-supported sorbent on the SE-CLSR process. For example, Fernandez et al. [71], modelled the SE-CLSR process using a Ni based (9% on Al$_2$O$_3$ support) OTM/catalyst and a Ca/Cu sorbent with pure methane feedstock. They investigated the effect of catalyst/sorbent ratio, space velocity, S:C ratio, temperature and pressure. They found the optimum operating condition in the temperature range of 923–1023 K, at low-medium pressures (5–15 bar) and high S:C ratio of 3–6. The differences in the optimum operating condition with the present study could be attributed to differences in operating conditions, model used for stimulation and most likely differences in CO$_2$ sorbent used in addition to the fact that temperatures lower than 873 K were not investigated. Martinez et al. [72] performed a detailed
and complete process design of a H₂ generation plant using natural gas as feedstock, Ni based OTM/catalyst and a novel Ca/Cu CO₂ sorbent as well. Their findings, compact design and the use of cheaper materials compared to C-SR process is in good agreement with the present study (Table 4).

4.5.3. Effect of inert materials on enthalpy balance of the cyclic processes

The presence of inert solid materials in the reactor bed does not affect the equilibrium materials balances (i.e. H₂ yield and purity are the same with inert materials compared to without inert materials), as they do not affect the gas phase equilibrium reactions. However, inert materials would require heating or cooling as required during the cycles of the CL processes. There are two types of inert materials that may be present at any time in the reactor: the oxygen transfer catalyst support, and the degraded CO₂ sorbent material. During cyclic operation, the bed materials require heating from reaction temperature to regeneration temperature (SE-SR with regeneration, and SE-CLSR) or to oxidation temperature (CL-SR), and the active part of the sorbent undergoes decarbonation during regeneration. In the SE-CLSR process, Ni oxidation and decarbonation reactions occur together at sorbent regeneration temperature, 1170 K. In the following section, the individual effects of catalyst support and of degraded sorbent on the total enthalpy change of the cyclic processes are discussed.

4.5.3.1. Oxygen transfer catalyst support. In practice, oxygen transfer materials as well as solid phase catalysts are structured so that a significant part of the material does not participate in the reactions (or it does in a minimal way), but imparts desirable properties to the reactor bed, e.g. morphological (high surface area), mechanical (strength) and thermal (phase stability), so they act as 'support' to the chemically active component [56]. Thus NiO is not used on its own in the reactor, but as part of NiO on a support. To represent this effect on the enthalpy balance, an 18 wt.% NiO on α-Al₂O₃ support (typical commercial steam reforming catalyst) [73] was simulated for the CL-SR and the SE-CLSR processes (Fig. 10). This introduced α-Al₂O₃ (corundum) as an additional 'inert reactant' in the molar ratio of Al₂O₃: NiO of 3.34, and the cases are described as either 'with support' or 'without support'. Typically it was found that a cyclic process with support in proportions of Al₂O₃: NiO of 3.34 saw its ΔH ratio increase by about 0.2 compared to the same process without support, although the gap between the two reduced as reforming temperature increased. For instance, at the reforming temperature of 800 K, CL-SR without support had a ΔH ratio of 0.33 compared to 0.54 with support. For the SE-CLSR, at 800 K, ΔH ratio was 0.30 without support but 0.45 with support. By comparison C-SR at 800 K had a ΔH ratio of 0.51. Here the CL-SR appears at disadvantage compared to the conventional process for reforming temperatures below 840 K, which was caused by the assumption that the nickel oxidation step was carried out at 1100 K. When reducing the oxidation temperature to 1050 K, which is sufficient to completely oxidise carbon black deposits on an 18 wt.% NiO/α-Al₂O₃ catalyst [74], the ΔH ratios of the CL-SR with support and the C-SR processes were the same at a reforming temperature of 800 K.

This implies that heat recuperation from the solids and gases from the regeneration step, not represented here, could play a crucial role in making the CL-SR viable when using a highly supported catalyst. The incentive is thus to minimise the amount of support required for the bed materials to maintain the right properties.

4.5.3.2. Degraded CO₂ sorbent. Similarly, another potential additional energy cost can be brought about by the deactivation of the CO₂ sorbent. Over many cycles, natural Ca-based sorbents typically stabilise to ca. 8–10% of their ‘fresh’ CO₂ capacity [75]. Sorbent materials such as limestone would then contain 90–92 wt.% of inert sorbent. The latter would also present a sensible enthalpy burden when bringing the bed materials to regeneration temperature (here assumed 1170 K). The effect of degraded sorbent in the bed was represented by introducing in the reactants the equivalent of 90 wt.% of the total molar calcium in the feed as inert CaO. The Ca:C ratio of 1 quoted in the figures refers to the active CaO.

The ΔH ratios of the SE processes (SE-SR and SE-CLSR with and w/o support) were seen to also increase by around 0.2 at 800 K for the cases with degraded sorbent compared to the active sorbent, with a narrowing gap as the reforming temperature approached the regeneration temperature of 1170 K. Note that above 880 K, the sorption enhancement gradually disappeared as a result of decarbonation of the sorbent. This meant that, typically for reforming temperatures above 800 K, the SE-SR with 90% degraded sorbent and the SE-CLSR with support and 90% degraded sorbent both became less energetically viable than the conventional C-SR process. For the SE-CLSR process with support and 90% degraded sorbent to become more energetically viable than the C-SR process, reforming temperatures would have to reach 720 K, which is the equilibrium lower limit for sorption enhancement as per Figs. 7 and 8. This would imply the use of a very active steam reforming catalyst. At lower temperatures, energetics would be favourable but selectivity to hydrogen product would drop (lower yield and lower purity).

With regards to environmental aspects; SE-CLSR process could be an effective and eco-friendly way of generating H₂ if the challenges associated with the energy costs of heating the bed materials to regeneration/oxidation temperature were to be addressed. The overall GWP of a C-SR plant is 11.888 g CO₂ equivalent/kg of H₂ from which Hydrogen plant operation only account for 78.8% (8895 g CO₂ equivalent/kg of H₂) [76]. SE-CLSR would also have to address the issues of life cycle analysis brought about by the use, operation lifetime and recyclability of the OTM catalyst and sorbent materials. As the majority of the world’s hydrogen is generated through steam reforming of fossil fuels, there will be no elimination of greenhouse gases till CO₂ is sequestered at the source [77].

4.6. Carbon product

Generally, operating at a high S:C ratio inhibits solid carbon formation, as gasification reactions are promoted. This is one of the reasons steam reforming plants aim to operate with some excess of steam.

<table>
<thead>
<tr>
<th>Conditions</th>
<th>ΔH total (kJ/mol H₂)</th>
<th>ΔH ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-SR S:C = 2</td>
<td>150</td>
<td>0.49</td>
</tr>
<tr>
<td>SE-CLSR S:C = 2 With CaO A</td>
<td>12</td>
<td>0.04</td>
</tr>
<tr>
<td>SE-CLSR S:C = 2 With CaO B</td>
<td>71</td>
<td>0.23</td>
</tr>
<tr>
<td>C-SR S:C = 3</td>
<td>159</td>
<td>0.51</td>
</tr>
<tr>
<td>SE-CLSR S:C = 3 With CaO A</td>
<td>34</td>
<td>0.11</td>
</tr>
<tr>
<td>SE-CLSR S:C = 3 With CaO B</td>
<td>92</td>
<td>0.30</td>
</tr>
</tbody>
</table>

Fig. 10. SE-CLSR: process 2 at 1170 K, active Ca:C = 1, CL-SR: process 2 at 1100 K, S:C = 3, NiO:C = 1, “no support”: NiO 100 wt.% “with support”: 18 wt.% NiO/Al₂O₃, “active sorbent”: 100% CaO, “degraded sorbent”: 10% active CaO and 90% inert CaO.

Table 4. Equilibrium outputs at 800 K (ΔH total and ΔH ratio at 1 bar, Ca:C 1, NiO:C 1.0, and S:C 2 and 3. A and B mean without sorbent regeneration and with sorbent regeneration respectively).
Solid carbon in the equilibrium products not only deactivates catalyst by covering its active sites but also reduces H₂ yield and purity because it represents carbon that does not react with steam to generate H₂. Solid carbon product is completely prevented at equilibrium conditions of S:C 2 and 3 in all the processes via steam gasification of carbon (R17) [78]. As shown in Fig. 11, solid carbon product mainly occurs at S:C between 0 and 1, with the quantity of carbon product depending on the process in use. As expected, enormous carbon was generated at S:C ratio of 0 in both the Ca free and CaO(s) sorbent system. No doubt this resulted from the absence of steam reactant in the system which lowered the amount of CO₂ product to be generated and thus to be adsorbed. Hence, the process behaves like C-SR, consequently the outputs of the SE-SR and C-SR processes at S:C 0 merge with each other. For S:C 1 in the Ca-free and CaO(s) sorbent system, solid carbon equilibrium product was significantly low (nearly zero) in the low temperature range (500–650 K) but rose in the region of maximum H₂ yield before exhibiting a gentle dwindling that approaches zero at higher temperatures (1000–1200 K). The sub stoichiometric conditions (limited water in the system) again are the reason behind this observation. As depicted in Fig. 11(b), solid carbon product is significantly low in the CL-SR system compared to C-SR system at same operating conditions. This stems from the fact that water can be a product in the NiO reduction process (R12), thus, favours suppression of equilibrium solid carbon. At S:C 1 in the CL-SR system, solid carbon formation declines gradually and approaches 0 significantly owing to the increase in water concentration in the system as mentioned previously. This further portrayed the positive impacts of operating at super-stoichiometric S:C ratio. In the SE-CLSR process, formation of solid carbon was completely eliminated not only at S:C ratio of 2 and 3 but also at S:C ratio 0 and 1 as well. This no doubt is attributed to effectively achieving sorption enhancement of the NiO reduction reaction, which is identified here for the first time, and the sorption enhanced steam reforming reaction.

Fig. 11. Carbon yield at 1 bar and S:C 0 and 1, (a) Ca free and Ca sorbent systems, (b) Ca free and CL-SR system at NiO:C 1.0.

Fig. 12. Effect of pressure at NiO:C 1.0 and S:C 3 (a) H₂ yield vs temperature with CaO sorbent (b) H₂ purity vs temperature with CaO sorbent (c) selectivity of carbon to calcium carbonate vs temperature with CaO sorbent.
4.7. Effect of pressure on C-SR and SE-CLSR

Although steam reforming is affected by pressure negatively in accordance with Le Chatelier’s principle due to volumetric increase, it is highly desirable to operate under elevated pressures in industrial plants, which enables higher throughputs, flows over large piping distances, sorption processes, and reduces reactors and gas storage volumes. The effect of pressure on steam reforming is investigated at S:C ratio of 3 because it is the condition of excess steam typically used in industrial steam reforming [20] aimed at hydrogen generation rather than syngas production. Each of the studied processes. Temperature range between 20 and 40 bars represents typical pressure values used in commercial steam reforming operations [79].

The effect of pressure on both the Ca-free system and that with a Ca sorbent in the system follows Le Chatelier’s principle. When the pressure was increased to above atmospheric pressure, the H2 reactions equilibrium shifted to H2 consumption to a very large extent to counteract product volume expansion, resulting in low H2 yield and purity as depicted in Fig. 12. H2 yields of the C-SR and SE-CLSR processes decreased with increase in operating pressure. However, above 900 K, H2 purity of the SE-CLSR process slightly increased with pressure. This occurred as partial pressure of CO2 favoured the carbonation reaction leading to higher H2 purity [80].

In order to increase the partial pressure of CO2 in the stripping gas, the temperature of the adsorption step will always be lower than that of the desorption step. Furthermore, low/medium temperatures limit the maximum partial pressure of CO2 that can be recovered from the sorbent. Similarly, it is desirable that regeneration of sorbent (CO2 desorption) be conducted at as lower total pressure as possible, to increase the quantity of CO2 desorbed [43,65,81]. Thus, thermal swing is acknowledged for the scholarship of Zainab Ibrahim S. G. Adiya, and we would like to thank the UKCCSRC EPSRC consortium (EP/K000446/1) for support or degraded CO2 sorbent introduce a very substantial heating burden to bring these materials from reforming temperature to sorbent regeneration temperature or to Ni oxidation temperature, if different. Motivation for future research in the SE-CLSR process ought to focus on these two issues in order to maintain the theoretical advantages of SE-CLSR over the conventional steam reforming process.

Acknowledgments

The Petroleum Technology Development Fund (Nigeria) is gratefully acknowledged for the scholarship of Zainab Ibrahim S. G. Adiya, and we would like to thank the UKCCSRC EPSRC consortium (EP/K000446/1) for call 2 grant ‘Novel Materials and Reforming Process Route for the Production of Ready-Separated CO2/N2/H2 from Natural Gas Feedstocks’.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.fuproc.2017.01.026.

References

