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Hierarchical Strategies for Efficient Fault
Recovery on the Reconfigurable PAnDA Device

Martin A. Trefzer, Senior Member, IEEE, David M. R. Lawson, Simon J. Bale,

James A. Walker, Senior Member, IEEE, and Andy M. Tyrrell, Senior Member, IEEE

Abstract—A novel hierarchical fault-tolerance methodology for reconfigurable devices is presented. A bespoke multi-reconfigurable

FPGA architecture, the programmable analogue and digital array (PAnDA), is introduced allowing fine-grained reconfiguration beyond

any other FPGA architecture currently in existence. Fault blind circuit repair strategies, which require no specific information of the

nature or location of faults, are developed, exploiting architectural features of PAnDA. Two fault recovery techniques, stochastic and

deterministic strategies, are proposed and results of each, as well as a comparison of the two, are presented. Both approaches are

based on creating algorithms performing fine-grained hierarchical partial reconfiguration on faulty circuits in order to repair them. While

the stochastic approach provides insights into feasibility of the method, the deterministic approach aims to generate optimal repair

strategies for generic faults induced into a specific circuit. It is shown that both techniques successfully repair the benchmark circuits

used after random faults are induced in random circuit locations, and the deterministic strategies are shown to operate efficiently and

effectively after optimisation for a specific use case. The methods are shown to be generally applicable to any circuit on PAnDA, and to

be straightforwardly customisable for any FPGA fabric providing some regularity and symmetry in its structure.

✦

1 INTRODUCTION

THE continuous scaling of transistors, now reaching
14 nm and below, has significantly increased the func-

tion density of modern digital systems and this has resulted
not only in a significant reduction in the cost per logic
function in an integrated circuit, but has also enabled un-
paralleled performance boosts with regards to computing
power per Watt. Over the past 50 years, clock speeds of
digital systems have increased from a few hundred kilohertz
to the gigahertz regime and the number of transistors per
die has increased from about a thousand to up to 6 billion.
The fact that silicon die sizes have only doubled (or tripled
at best) in the same time period, indicates a more than 1000-
fold increase in device density.

While these numbers are staggeringly impressive, a con-
sequence of fabricating transistors that small are structural
irregularities at the atomic scale, even with advanced pro-
cesses. For example, the presence or absence of single dop-
ing atoms affect device characteristics in random manner.
While scaling transistors can reduce the propagation delay,
power consumption and area of a device, this comes at the
cost of increased intrinsic variability [1], [2] and heat dissipa-
tion. At the same time the significantly increased complexity
of multi-billion-transistor devices makes designing a high
speed, high yield digital system with low supply voltages
and low power dissipation in ultra-deep sub-micron CMOS
technology a major challenge. Successful design is only
still feasible thanks to the existence of advanced electronic
design automation (EDA) tools.
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While noise and device mismatch have always been
present and have been posing major design challenges in
electronic systems, three new challenges are coming to-
gether in modern electronic devices and systems making the
requirement for cross-layer fault tolerance more paramount
than ever [3]: (a) the stochastic nature of the variations at
the nanoscale increasing reliability margins, (b) the drastic
increase in the number of individual devices on a chip
necessitating ever smaller per-device failure probabilities,
and (c) ageing and wear-out becoming more rapid. As a
result, faults and failure rates increase significantly and the
impact of these low-level effects propagates from device
level all the way up to the system level.

The greatest workload and responsibility remains to
date with chip manufacturers, who continuously improve
fabrication facilities and feed-back relevant design rules
for creating the physical layout to the designers in order
to ensure high yield figures. There are also certain post-
fabrication measures that can improve the performance of a
device or at least make it usable with reduced performance,
for instance, altering power-supply voltages, slowing down
clock-speed or disabling (redundant) parts.

However, when devices fail in fixed-function integrated
circuits there is usually nothing that can be done to recover
the functionality of a device. Even though the majority of
components may be fault-free, the failure of a single transis-
tor or connection will render at least part of a circuit perma-
nently unusable. In contrast, reconfigurable devices, such as
FPGAs, appear to open up more possibilities when dealing
with faults. Theoretically, if a fault occurs on one part of an
FPGA, it should be possible to perform a reconfiguration
avoiding the faulty components. The challenge, however,
is determining the appropriate reconfiguration to make as
resynthesizing a design from scratch is computationally
expensive, i.e. takes an infeasibly long time when multiple
runs are required.
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Many novel methodologies targeting fault tolerance us-
ing reconfigurable devices have been proposed in the litera-
ture. For example, [4] and [5] describe how partial bit strings
could be made relocatable within a Xilinx FPGA, enabling
a module to be moved to another place on the fabric in
the event of a fault. Xilinx have looked into providing—on
chip—a number of bit strings implementing the same func-
tionality but are structurally different, so that an alternative
could be loaded once a fault occurs. Closely related to this
work, it was found in [6] that the tolerable failure rate of par-
tially faulty LUTs in FPGAs could be significantly increased
through the use of techniques such as permuting the inputs
and changing their polarity to try to match faulty stuck-at
outputs with the desired output. The techniques presented
in [7] describe how partially faulty logic blocks allowed their
system to even tolerate a greater number of faults, and a
fine-grained approach using transistor-level reconfiguration
for variability tolerance and yield improvement is discussed
in [8], [9]. Another approach to increasing reliability and
variability tolerance of programmable fabrics is presented
in [10], where low-overhead circuitry is embedded assisting
in on-line adaptation.

In addition to these pragmatic engineering approaches
there have been methodologies developed in the field of
bio-inspired hardware, which is where the work described
in this paper is focussed. For instance, a successful concept
developed is that of embryonics, which is inspired from
organisms healing as a result of cellular mechanisms. The
approaches developed in [11], [12], [13], [14] are modelling
this kind of cellular healing mechanisms and relying on the
presence of spare (hardware) cells that can be swapped into
the running circuit in the event of a fault. Building upon the
latter works, the Sabre platform has been developed [15],
which is another cell-based system purpose-built for fault-
tolerance. The fabric is made up of Functional Units (FUs)
built from Unitronics cells [16]. An evolutionary optimsation
approach to filter design can be found in [17]. Another evo-
lutionary approach to increasing error resiliency of circuits,
which is rooted on the field of approximate computing, is
reported in [18].

In this work, we combine a bespoke bio-inspired multi-
reconfigurable FPGA architecture [19], [20], [21]—the pro-
grammable analogue and digital array (PAnDA)—with
novel “fault blind” circuit repair strategies taking inspira-
tion from dynamic partial reconfiguration and configuration
bit string permutation. In this case, “fault blind” refers
to the proposed method’s ability to repair faults without
requiring information of the exact nature or location of a
fault. This offers the advantage to fully concentrate on fault
recovery and assume that fault detection in the granularity
required here is readily available, and appropriate methods
are proposed in [22], [23], [24].

This paper introduces two fault recovery techniques,
Stochastic Strategies in Section 6 and Deterministic Strategies in
Section 7. Both approaches are based on creating algorithms
performing fine-grained hierarchical partial reconfiguration
operations on a faulty circuit, on PAnDA, providing effec-
tive and fast fault recovery. While the stochastic approach
provides insights into feasibility of the method, the deter-
ministic approach aims to generate optimal repair algo-
rithms (strategies) for generic random faults induced into

a specific circuit. For optimisation of the strategies multi-
objective optimisation is used [25], as multiple performance
metrics are considered. The experiments conclude with a
comparison of the two methods in Section 8.

2 PANDA ARCHITECTURE

The programmable analogue and digital array (PAnDA)
architecture is a multi-reconfigurable fabric that consists
of an array of configurable circuit blocks interconnected
using a programmable routing structure. The term “multi-
reconfigurable” refers to PAnDA’s novel and unique feature
to access its reconfiguration facilities on multiple design
abstraction levels, each effectively representing a different
granularity of the architecture. The highest configuration
level makes PAnDA compatible to commercial FPGAs in the
sense that logic functions can be mapped to configurable
logic blocks (CLBs) that offer equivalent functionality and
granularity: PAnDA Fünf slices (each CLB comprises two
slices) can be configured as any 4-bit logic function, MUX or
flip-flop, which is equivalent to the Xilinx Virtex-4 genera-
tion. In addition to that—and beyond the capabilities of any
FPGA currently available—PAnDA can be configured on
additional lower levels offering increasingly finer-grained
configuration options all the way down to re-sizing individ-
ual transistors, which represent the lowest level of design.
The routing architecture of PAnDA is currently following
a standard approach comprised of switch matrices and a
cross-bar architecture. Additional input/output (IO) blocks
surround the CLB array and allow buffering of external
signals.

PAnDA’s multi-reconfigurability enables a wide range of
capabilities and applications that are unique to this architec-
ture. Consider the following examples: (i) A logic design
mapped to PAnDA at the highest level can be optimised
for better power/delay performance trade-off at runtime
using transistor sizing. This effectively allows designers to
modify aspects of the analogue circuitry underlying the
digital function level. (ii) The operating point(s) of a de-
sign can be altered by increasing or decreasing underlying
transistor sizes effectively shifting its performance charac-
teristics as required. In addition, performance variations
(probability distribution) caused by mismatch and intrinsic
device variability, found in technologies below 100 nm, can
be decreased by selecting an optimal set of devices from the
alternatives available. (iii) Multi-granularity allows faults to
be addressed and mitigated with the best cost/benefit trade-
off, and exploiting symmetries of the architecture offers
“fault-blind” repair capability by considering functionally
equivalent but structurally different alternative mappings.
We have previously shown that PAnDA can be used to
provide increased circuit performance while simultaneously
reducing the effects of variability using SPICE-level archi-
tecture simulation [19], [20]. Hierarchical strategies for fault
tolerance in reconfigurable architectures, using PAnDA as a
suitable candidate, is the subject of this work.

The PAnDA architecture has been developed in a num-
ber of iterations involving fabrication of prototypes in 65 nm
silicon technology. The latest version is PAnDA-FÜNF,
which features 400 CLBs and is a scaled-up version of its
predecessor PAnDA-VIER. This sections provides details of
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Fig. 1. The toplevel PAnDA architecture is shown. The array of 4 × 4

CLBs, surrounded by IO blocks, corresponds to PAnDA-VIER, which is a
smaller version of PAnDA-FÜNF comprising 20×20 CLBs. Arrows signify
programmable routing resources. A North-East-South-West (NEWS)
routing block is part of every CLB and IO block.

the PAnDA-FÜNF architecture and its configuration options
from the top down. The time required to compile a new bit-
string and program a PAnDA-FÜNF chip is currently about
0.5 . . . 1.0 seconds.

2.1 Toplevel and Routing Block

The highest design level of PAnDA is the full chip (toplevel),
shown in Figure 1. It consists of an array of configurable
logic blocks (CLBs) comprising programmable logic re-
sources (slices) and programmable routing, described in Sec-
tion 2.2, surrounded by IO blocks. IO blocks are equivalent
to the routing blocks contained within the CLBs, but take on
the special role of routing signals to the pads (outside pins)
of the device, rather than the neighbouring CLB.

2.2 Configurable Logic Block (CLB)

The CLB (Fig. 2) is a hierarchical structure consisting of
two slices and a routing switch block. Each slice contains
4 configurable analogue blocks (CABs), input multiplexers
and an output merger. Depending on the usage of a slice,
i.e. how many CABs need to be connected via the output
merger to create the desired logic function, the number of
unique output signals varies from 1 to 4. The routing switch
block provides external connectivity to the CLB array and
allows up to 6 buses to be simultaneously routed north,
east, west and south in both directions. In addition, any of
the 24 incoming signals can be routed to both slices and
the 8 outputs (4+4) of both slices can be routed to any of
the 24 outgoing signals. Direct connections can be made
within the routing block bypassing the slice logic. The 6
incoming signals on one side can be directly connected to
the 6 outgoing signals on one of the three other sides in
the order of the signals on the busses. At this level the CLB
block is fully tileable making it in principle relatively easy
to create larger array sizes.
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Fig. 2. A PAnDA configurable logic block (CLB) is shown. Each CLB
comprises two slices and a routing block, and each slice consists of four
configurable analogue blocks (CABs).
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Fig. 3. The structure of the PAnDA configurable analogue block (CAB)
is shown. Each CAB comprises 8 NMOS and 8 PMOS configurable
transistors (CTs) arranged in two symmetrical branches.

2.3 Mini Configurable Analogue Block (MiniCAB)

Each CAB (Fig. 3) is constructed using 8 NMOS and 8 PMOS
configurable transistors (CTs) arranged in two symmetrical
branches. This branch structure closely matches the circuit
topology seen in CMOS logic design and an arrangement
of 4 CABs combined with an output merger allows any
4 input logic function to be implemented. Note that in
the latest version of PAnDA CABs are also referred to as
MiniCABs, however, this has only design-historical rele-
vance and henceforth simply the name CAB is used here
for simplicity.

2.4 Configurable Transistors (CTs): The Lowest Level

of Configuration

Fig. 4 shows a schematic of a configurable transistor (CT).
Each CT consists of six transistors, arranged in a parallel
configuration, with gate widths either ranging from 135 nm
to 230 nm, or all the same with the minimum-size gate width
of 135 nm. The two resulting types of CTs are intended to
serve different purposes: CTs with a variety of widths can
achieve a greater number of combinations and maximum
width (all turned on), which allows the manipulation of the
operating point of a circuit. In contrast, CTs with devices of
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Fig. 4. The heart of PAnDA, a configurable transistor (CT), is shown.
Each CT consists of six transistors, arranged in a parallel configuration,
with gate widths ranging from 135 nm to 230 nm.

the same minimum width can achieve greater variability
tolerance through offering more equivalently sized alterna-
tives, i.e. allow to manipulate the shape of the performance
distribution.

Configuration circuitry allows the input to the gates of
each of these transistors to be enabled, disabled or clamped
to a logic level. This allows any parallel arrangement of
the six input transistors to be programmed resulting in an
effective single transistor equivalent device with 64 possible
gate width combinations ranging from 135 nm to 1045 nm
(or from 135 nm to 810 nm).

3 MAPPING LOGIC FUNCTIONS

A PAnDA Slice (see Figure 2) is designed in a way that
allows the implementation of any 4-bit logic function by
following the implementation methodology of complemen-
tary MOS design where PMOS and NMOS transistors form
a push-pull network driving an output. The PMOS branches
are connected to VDD and will be driving the output ‘high’
for a logic ‘1’, if all transistors in a branch are conducting.
Vice versa, the NMOS branches are connected to GND and
will drive the output ‘low’ for a logic ‘0’, if all transistors
are conducting. Notice that functions must be designed so
that either (at least one) PMOS branch or NMOS branch
is conducting. A PMOS and NMOS branch conducting at
the same time causes a short circuit and neither a PMOS
or NMOS branch conducting leaves the output undefined
(floating).

Given a 4-bit input (ABCD), eight PMOS/NMOS
branches are required to construct all possible logic combi-
nations of ABCD and ABCD, hence, a PAnDA slice provides
eight branches. Note that the inverse signals are required,
because PMOS and NMOS behave in the opposite (com-
plementary) way where a logic ‘0’ at the gate makes a
PMOS conducting and an NMOS insulating, while a logic
‘1’ makes a PMOS insulating and an NMOS conducting.
While this design methodology allows the mapping of all
possible 2

16 boolean 4-input functions on a PAnDA slice, it
will always consume all available resources. From a fault

tolerance point of view this is undesirable, since this will
leave no redundant CT’s or branches that could be utilised
in the event of a fault. However, the mapping of most
logic functions can be optimised in a way as described in
Appendix ?? that frees resources and thereby provides scope
for the fault-mitigation strategies presented in this work.

This also ensures that all possible 4-bit boolean functions
can be synthesised on PAnDA, as the mapping is different
from traditional look-up-table (LUT) based FPGAs where
a LUT is simply a memory and the inputs to the LUT are
essentially the address bus “looking up” a corresponding
output value. Hence, by storing a set of appropriate values
in a LUT, it is possible to emulate any n-bit logic function,
where n corresponds to the size of the address bus. PAnDA
works differently in the sense that logic gates are imple-
mented by configuring structures of transistors, as described
above, which is more similar to how circuits are built in
VLSI design.

4 HIERARCHICAL RECONFIGURATION FOR FAULT

MITIGATION

The PAnDA fabric offers a high degree of symmetry and
homogeneity throughout its entire design hierarchy. It is
hypothesised that the fabric’s homogeneity can be utilised
for the purpose of fault tolerance as every circuit can in prin-
ciple be implemented in a number structurally different—
but functionally equivalent—ways. Furthermore, it is sug-
gested that symmetry can be exploited to apply certain non-
disruptive circuit transformations which transform one pos-
sible implementation of a circuit into another, without any
knowledge of its particular original mapping or structure
required. When considering circuits that do not require all
resources of a given area, i.e. there are spare CTs, branches,
slices, CLBs etc. available, it follows that a circuit suffering
from a fault within resources used might be transformed
so that its new structure utilises intact, previously spare,
resources, and the faulty components become the new,
although possibly no longer useful, spares.

In fact, in all but two of the 2
16 logic functions imple-

mentable on a PAnDA slice, there exists redundancy that
can be exploited by way of an alternative implementation
in order to recover from at least one type of fault in the
reconfigurable fabric. The only two circuits that do not have
this possibility are the most complex 4-input logic functions,
odd and even 4-parity generators, when they are built as
single logic gates. This is because these gates require all of
the resources in a slice, leaving none spare for redundancy.
Multiple implementations of these circuits are possible how-
ever and it seems likely that transistor reconfigurations
at lower levels (inside a CT) could work around certain
problems, although these will not be considered here as this
work focuses on CT and branch level.

If a circuit implementation and the location of a fault
occurring is known, and there are sufficient spares available,
the circuit could certainly be fixed manually following the
aforementioned methodology. However, when mapping a
complex function and faults occurring at random locations
at runtime, neither fault location nor positions of spares are
known. Moreover, it is desirable to recover from a fault at
runtime, without the need to perform a full reconfiguration
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of the device or taking the entire system off-line. In order to
address these issues and automate fault-mitigation a novel
method, which requires no knowledge of the nature or the
exact location of a fault, is introduced. It is based on algo-
rithms that execute fault-blind repair strategies comprising
of non-destructive circuit transformations. In this work we
initially consider two reconfiguration hierarchy levels, input
and branch swapping, however, the proposed approach is
generic and can easily be extended across all hierarchies
of PAnDA and it should be portable to any FPGA fabric
offering a degree of symmetry and homogeneity, which they
generally do. Moving up on the hierarchy, i.e. swapping
entire CLBs, areas or even chips, requires a larger proportion
of configuration bits to be moved around and potentially
comes at a higher cost as larger areas become unusable
spares, however, higher-level transformations will provide a
higher probability to fix a fault. Therefore, finding strategies
operating at the appropriate trade-off between fault-fixing
performance and preserving resources becomes a multi-
objective design problem.

4.1 Input Swapping

Within a CAB, the four inputs are each chosen from a
set of 32. This allows a number of permutations for any
given subset of inputs and the choice of permutation is
functionally irrelevant, so long as the associated CTs are
configured to match.

It can be seen therefore that the permutation of any
Branch’s input set can be changed to another, copying the
CT configurations appropriately to match, and no knowl-
edge of the current configuration is required as the resulting
circuit will be functionally identical. This will be known as
an Input Swap, and forms the lowest level transformation
that this work considers.

Under certain conditions, Input Swapping allows fault
recovery (see Figure 5). When a CT Branch has 1-3 CTs
enabled, there are necessarily one or more CTs in the
Disabled-Conducting state. Should any of these disabled
CTs suffer a conducting fault, there will be no effect on the
behaviour of the circuit, as they were already conducting.
If a conducting fault occurs in an enabled CT, this clearly
affects the behaviour of the circuit as the branch will conduct
when it is not designed to. In this case, it is possible to take
advantage of the previously mentioned case and swap the
inputs and CTs around so that the disabled-conducting state
configured for that CT is modelled by the fault and correct
functionality is restored.

4.2 Branch Swapping

The Branch Swap transformation swaps Branches within
a Slice. This is achieved by exchanging the configurations
of all the CTs in a Branch with another. Branches can
be swapped between CABs as well as within them while
maintaining a functionally equivalent circuit. If branches
are swapped between CABs, it is possible that the input
multiplexers route the inputs in different orders. In this case,
it is necessary to reorder the CT configurations as part of
the swap. An example of a Branch swap is illustrated in
Figure 5.

Fig. 5. An illustration of the application of two circuit transformations.
The rightmost NMOS branch in the first CAB from the left suffers an
insulating fault which is recovered from by being swapped with a spare
in the fourth CAB. The rightmost NMOS branch in the second CAB from
the left suffers a conducting fault, and is recovered from by swapping the
mappings of inputs C and D.

If there is only one function currently occupying the
Slice, all eight Branches of each type can by freely ex-
changed. If more than one function exists in a Slice however,
the branches can only be swapped between CABs that form
part of the same function. Although not explored here,
the CABs could be swapped around so that each function
utilises a different set of them, allowing the Branches to be
swapped more freely when more than one function exists in
a Slice, but this is not explored here.

5 EXPERIMENT SETUP

This section describes the part of the experimental setup
which is common to all experiments presented in this paper.
This includes a description and discussion of the choice of
benchmark circuits, of the fault model used and of the fault-
injection process that has been followed when carrying out
experiments in order to break circuit functionality.

5.1 Test Circuits

Four different circuits are used for testing which were cho-
sen to represent a spread of different utilisations of branches
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Test Circuit Description

Z0

This circuit represents the simplest possible binary
logic gate, an inverter. It utilises only one CT of a
single branch of each type (PMOS/NMOS) in one
CAB. Due to its simplicity, Z0 provides the highest
possible amount of redundancy. All methods tested
are expected to perform best on this circuit due to the
maximum amount of spare resources available.

Z1

This is a four input “one hot detector” circuit, pro-
ducing a high output if precisely one input is high.
This circuit has been chosen as it provides a mix
of redundancy between PMOS and NMOS branches.
On the PMOS side, there are four fully occupied
branches which means that input swapping will be
ineffective, however, there are four completely re-
dundant branches which will allow branch swapping
to recover from faults. On the NMOS side, there is
only one redundant branch, but all except one of the
utilised branches have two unused CTs which will
enable input swapping to recover from some faults.

Z2

This circuit has been chosen to represent a balanced
mix of input and branch swapping possibilities on
both PMOS and NMOS side. All except one of the
branches has at least one spare CT, enabling fault
recovery via input swapping, and there are four spare
PMOS branches and three spare NMOS branches,
allowing for fault recovery via branch swapping. It
is expected that the proposed fault recovery methods
will perform well on this circuit.

Z3

This circuit has a high utilisation, with most branches
used having no redundant CTs, and there is only one
redundant PMOS and NMOS branch respectively.
This relatively small amount of redundancy does still
provide some options for fault recovery, but it is
expected to perform worse than Z0-Z3 in terms of
the number of faults that it can tolerate and how long
repair will take.

TABLE 1
The properties of the four benchmark circuits chosen as test cases for

the proposed approach.

or slices. They are referred to as Z0 to Z3 for simplicity
and consistency with other publications [26], [27], and their
properties are listed in Table 1.

As pointed out in Section 4, four-bit even and odd parity
circuits will not benefit from this methodology since they
utilise all the CTs, leaving no spares. While this leaves no
room for fault recovery within a single Slice, the functional-
ity could be constructed by cascading two or three-bit parity
circuits which do not utilise all the CTs. The 2-bit parity
circuit fits inside a single CAB, and the three-bit inside two
CABs. A four-bit parity circuit could be built with either
a three-bit and a two-bit, or three two-bit circuits, either
way taking up three CABs and leaving spare resources. If
these were split up between different Slices then the fault
tolerance methodology presented could be applied directly.

5.2 Fault Model

Based on the most common fault sources discussed in Ap-
pendix ??, two types of faults are considered in this work:
conducting and insulating transistor faults. These represent
the two extreme cases of device failure and are commonly
used in the literature as a basic fault model.

A conducting fault causes the faulty CT to permanently
conduct between its source and drain nodes. This is sugges-
tive of a short between the nodes, or perhaps the transistor

suffering from variability and consequently having a very
low or high threshold voltage, depending on whether it’s
NMOS or PMOS respectively. The functional effect of this
is that the transistor conducts when not intended. In some
situations, this will have no effect on the current configu-
ration in PAnDA as CTs are sometimes used as conductors
anyway. If this fault occurs in an active CT however, it will
cause the CT to conduct on input patterns for which it is
not supposed to. The effect of this is that for those input
patterns, there may be a short circuit, for which there are
two consequences. The first is that damage could be caused
to the chip as a large current flows directly from Vdd to
Ground, potentially damaging more transistors. The second
is that, if the chip survives, the logic output will likely
be either wrong or undefined (∼ 0.5V ) due to the circuit
essentially becoming a voltage divider. Since a CT suffering
from a conducting fault acts as a conductor, performing the
input swap transformation can recover from the effects of
this fault by moving an input from a faulty CT to a working
one, if the configuration allows.

Insulating faults prevent the transistor from conducting
between source and drain. In reality this could be due to a
break in the circuit due to electromigration or the threshold
voltage being exceptionally high or low (for NMOS or
PMOS transistors respectively). If this type of fault occurs on
an unused CT branch, there will be no functional effect. If it
occurs anywhere on an active branch, however, it will cause
one or more input patterns to produce an undefined output,
because the branch is physically cut off and cannot be used
for anything else. This situation necessitates a branch swap
transformation to move the configuration to another branch
without an insulating fault.

As mentioned previously, each type of fault represents
an extreme fault case and faults in reality may fall some-
where between the two, as well as manifesting in other
ways (such as a transistor conducting between the gate and
source or drain nodes). These other cases are not considered
directly in this work but the methodology is still applicable
since the precise nature of the fault is not considered during
reconfiguration.

5.3 Fault Injection

Faulty circuits were created using the following process in
the simulator:

1) The circuit was configured in a fault-free substrate.
2) The circuit was tested to ensure correct operation.
3) A fault of a random type (conducting or insulating)

was injected into a random CT in the Slice.
4) The circuit was tested to see if the output is affected.
5) If the circuit still works the process is repeated

from Step 3 and more faults are injected; if not, the
process is finished.

Using this process, one or more faults are injected to
break the functionality of the circuit. Faults which have no
effect on the output are retained which may later affect the
fault recovery. This was considered to be a realistic approach
to modelling permanent faults - fault recovery would start
after the first fault affects functionality, and faults not affect-
ing functionality would accumulate unnoticed. It also makes
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the fault recovery more challenging as the exact number of
faults in any one case is unknown.

One observation of this approach is that a circuit with
low utilisation, such as Z0, should on average receive more
faults, and this may make fault recovery more difficult.
This is because there is a large possibility that faults will
be injected into CTs on unutilised branches, due to these
forming the majority of the Slice configuration. These faults
will accumulate until one of two things happens:

1) An insulating fault is injected into any of the CTs in
the utilised branches.

2) A conducting fault is injected into either of the two
active CTs.

The first situation will cut off the affected branch and
cause it to always insulate. When the input pattern is such
that the branch should conduct, the output of the circuit
will float and likely cause an undesirable value to be read
by whatever is connected to it.

The second situation will cause the affected branch to
conduct for all input patterns. In the case of the inverter,
this means that for half the input patterns the output will be
correct, and for the other half the output will be connected
to both VDD and GND and therefore be undefined.

Using a whole Slice to implement an inverter is quite
inefficient as the PAnDA architecture allows for the CABs
to be separated and used for separate functions, thus the
three unused ones could implement other functions, but this
design was chosen to measure the performance of the fault
recovery in the best possible circumstances.

Figure 6 illustrates how many random faults need to be
injected into each circuit to break their functionality. The
numbers are expected and confirm that the choice of the four
benchmark circuits is appropriate. The number of random
faults that need to be injected into Z0 to break it is higher
than for the other circuits. This is due to the majority of the
slice being unused and so faults can accumulate in those
parts without affecting functionality. Statistically, Z1 takes
the second least number of faults to break, because there are
four fully utilised branches (a quarter of the slice) any of
which will be broken by a single fault. A slightly higher
number of faults is required to break Z2, since most of
the branches have at least one CT in the disabled-conducting
state, they are able to absorb some conducting faults without
functionality being affected. The least number of faults are
required to break Z3. This is expected as most of the slice is
utilised and so a random fault is likely to affect an enabled
(used) CT.

6 STOCHASTIC STRATEGIES

The two circuit transformations described in Section 4 were
used as the basis for fault mitigation strategies. A sequence
of one or more circuit transformations (reconfigurations)
that an algorithm may apply to recover from a fault is
referred to as a strategy. In the first set of experiments
a set of strategies is defined, which is based on random
selection. The stochastic approach serves two purposes: first,
to demonstrate that the proposed approach is feasible and
capable to repair circuits mapped onto PAnDA using a set
of suitable reconfiguration operations. Second, the results
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Fig. 6. Statistical illustration of how many random faults are required to
break each of the circuits using box plots. The results were obtained by
injecting faults into fault-free Slices configured with the functions until
functionality was lost. This was repeated 10,000 times for each function.
(a) The full results results showing the large difference between Z0 and
the other circuits. (b) The full results truncated to show more detail of Z1,
Z2 and Z3. The extremely skewed distribution in the case of Z3 comes
from the fact that this circuit uses almost all resources available in a
slice, which means that inducing just one fault already breaks it in most
cases.

from randomly applied strategies will provide a baseline
comparison for the experiments and results in Section 7,
where the sequence of strategies is optimised for a spe-
cific circuit. Another advantage of the stochastic strategies
is that no prior knowledge of a circuit configuration is
required as transformations are performed at random. In
order to measure the effectiveness of these strategies in
their ability to fix faults, experiments are conducted where
the devised strategies are applied according to a random
scheme to the benchmark circuits from Section 5.1 with
faults injected, until correct operation is restored or a pre-
determined threshold is met.

There are 80 possible, distinct circuit transformations in
total. Assuming that at least 10 transformations are required
to fix a fault, which is a very conservative number given
the fault-blind strategy, the size of the search space becomes
80

10. This is too large to enumerate and requires a search
algorithm such as, for instance, an evolutionary algorithm as
proposed here. Details on the combinatorial complexity of
all circuit transformations can be found in Section 7, where
it becomes more significant in the context of optimised
deterministic strategies.

6.1 Fault Recovery Strategies

For these experiments four different strategies are devised,
each using one of the two basic circuit transformations de-
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scribed in Section 4: Random Input Swapping, Input Shuffling,
Random Branch Swapping and Branch Shuffling. The strategies
involving swapping are less disruptive than those perform-
ing shuffling, but the latter are capable of transforming large
parts of a circuit more quickly.

6.1.1 Random Input Swapping

One of the CABs in a slice is randomly selected, and two
of the four inputs (ABCD) are then swapped at random.
This operation is relatively cheap and non-disruptive to the
layout of the circuit, requiring the configurations of only
two input multiplexers to be swapped and eight CTs (two
on each branch of the CAB) to be reconfigured.

6.1.2 Input Shuffling

All inputs of all CABs in a slice are shuffled using the Fisher-
Yates shuffling algorithm [28]. This, however, can be quite
an expensive operation as the shuffle may require that all
sixteen input multiplexers in a slice (inputs to all 16 CTs)
are being reconfigured.

6.1.3 Random Branch Swapping

A branch type is first selected at random (PMOS or NMOS)
and then two branches of that same type are then picked
at random from the same slice and swapped. Again, this is
a relatively cheap operation, requiring eight CT configura-
tions to be exchanged (four for each branch). However, it can
be disruptive to the layout of a circuit, causing a previously
compact circuit to be spread out across a slice.

6.1.4 Branch Shuffling

All of the branches of both types are shuffled within a slice
using the Fisher-Yates shuffling algorithm [28]. This is the
most expensive transformation in terms of reconfiguration
operations, potentially requiring all 64 CTs to be reconfig-
ured. It is also the potentially most disruptive to the circuit
layout.

6.2 Fault Recovery Method

In order to recover from a fault, the repair algorithm applies
the strategies described in Section 6.1 to a circuit, once a
fault has been detected, repeatedly and at random until
either the circuit is fixed or a threshold of strategies applied
(fault-fixing steps performed) is reached. Four experiments
are conducted, testing each combination of one input swap-
ping/shuffling and one branch swapping/shuffling strategy
respectively:

• Random input swapping vs. random branch swap-
ping

• Random input swapping vs. branch shuffling
• Input shuffling vs. random branch swapping
• Input shuffling vs. branch shuffling

6.3 Experimental Method

For each experiment, 101 runs are carried out, each with
a different statistical bias, swept from 0 to 1 in 0.01 incre-
ments, making either input swapping/shuffling or branch
swapping/shuffling more likely on average. For a bias of 0,
only input-affecting strategies are used and for a bias of 1

only branch-affecting strategies are used. At a bias of 0.5,
both input or branch strategies are applied with an equal
probability.

It is assumed that the input-affecting strategies are gen-
erally preferable to the branch-affecting ones, as they cause
less disruption to the mapping of a circuit. For example,
an advantage of this is that small circuits, e.g. an inverter,
does not quickly spread across multiple CABS. Moreover,
branch swaps will be more complex due to the requirement
to check—and possibly swap—the order of the CTs, if the
input multiplexer configurations differ. Hence, when cal-
culating the cost of an operation the power requirements
are assumed to be higher for branch operations, despite the
same number of CT reconfigurations are required. One of
the aims of the experiments will hereby be to identify an
optimum bias value, if it exists, which will represent good
fault recovery performance while using branch strategies as
little as possible.

For each of the 101 runs (representing 101 different
bias values) of all four experiment setups, 10,000 tests
are performed to achieve meaningful statistics. Preliminary
testing resulted in this number of samples to be required for
sufficiently stable results, whereas 1000 produced noticeable
variance between repeats. The threshold for the maximum
number of steps is set to 10,000, which allows the algorithm
sufficient time to find a solution whilst not taking an infeasi-
bly long time. In practice, this threshold will of course be too
high for fault mitigation at runtime as it potentially involves
tens of thousands of reconfigurations.

Each test run for the measurement of a bias value was
conducted as follows:

1) Configuration of a function on a fault-free slice.
2) Fault-injection according to the procedure described

in Section 5.3.
3) Start of the fault recovery procedure applying the

strategies as described in Section 6.1.
4) Record the number of steps required to repair the

circuit.

6.4 Results

Results of two performance aspects of the stochastic strate-
gies applied to each of the four benchmark circuits Z0, Z1,
Z2 and Z3 from Section 5.1 are presented: first, the total
number of circuits repaired out of 10,000 instances. Second,
the number of steps (strategies applied) required to recover
from a fault in case repair has been successful. Results of an
additional investigation into the average number of faults
the benchmark circuits used can tolerate before they can no
longer be fixed using the same approach are provided in
Appendix ??.

6.4.1 Number of Circuits Repaired

As can be seen from Figures 7(a)-7(d), the number of
circuits repaired generally tends to increase as the bias
favours branch swapping/shuffling strategies. When the
bias reaches ∼ 0.2, the number of circuits fixed becomes
stable. In all four cases, the results for circuit Z2 are signifi-
cantly higher than for the other three, averaging ∼ 9990±20

in the stable section of the graph compared to ∼ 9800± 50
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out of 10,000. It appears that the structure of Z2 is partic-
ularly suited to this method of fault recovery. The likely
reason for this is that all but one of the active branches
contain a spare CT, which provides a high probability of
recovery through input swapping/shuffling when a con-
ducting fault occurs in a CT. In addition, there are four spare
PMOS branches and three spare NMOS branches, providing
sufficient redundancy for branch swapping/shuffling to
take advantage of.

In the way circuit Z2 benefits from redundancy, it may
appear contradictory that circuit Z0, featuring the maximum
amount of redundancy, does not. In fact for the majority of
cases, fault recovery is much less successful on Z0 than any
of the other circuits. The reason for this is likely down to the
method of fault injection. Since faults are injected at random
without regard for where the active CTs are placed, the Z0
circuit is more likely to receive a higher number of faults in-
duced into unused CTs before finally breaking. Hence, when
fault recovery is triggered, there are fewer fully functioning
CTs left to work with. However, this reflects what would
happen in reality and would be balanced by an average
longer lifetime of Z0 before suffering from a fault.

The general shape of the graphs is as expected, since
branch swapping/shuffling is principally able to recover
from either type of fault (conducting or insulating), whereas
input swapping/shuffling can only recover from conduct-
ing faults in branches which have a spare CT. However,
as discussed previously, there is value in trying to use the
input-affecting strategies as much as possible as the dis-
ruption to the layout of the circuit is significantly reduced.
Hence, the best trade-off performance indicated by the re-
sults shown is around a bias of 0.2, where high success rates
for fault recovery can be achieved while—on average—
mainly using input swapping/shuffling.

At the far right of the graphs, the bias of 1 means
that only use branch swapping/shuffling can be used. In
this particular case the success rate drops dramatically,
because there are specific combinations of faults from which
it is only possible to recover with the use of input swap-
ping/shuffling. For example, consider Z0 (see Table 1): if all
the PMOS CTs in the top row are injected with conducting
faults, branch swapping alone will not reach a working
configuration again but an input swap moving the CT
configuration down to one of the lower rows will. Therefore,
despite branch swapping/shuffling strategies appear to be
generally better than input swapping/shuffling strategies,
the best performance is only achieved using a combination
of both.

Figures 7(a) and 7(c) display worse performance at low
values for the bias than Figures 7(b) and 7(d). The difference
between these two sets is the branch strategy used. The
experiments in Figures 7(b) and 7(d) use branch shuffling,
which appears to have helped for bias values favouring
input operations. Since the shuffling strategies can perform
one or more swaps in one step, the total number of swaps
performed in a single step is increased bringing the perfor-
mance closer to that of the higher biases.

6.4.2 Number of Steps Taken

The mean number of steps required to fix a fault is shown in
Figures 8(a)-8(d). As can be seen from the graphs, this num-

ber reduces as the bias increases towards using more branch
swapping/shuffling, which means quicker fault recovery.

Comparing Figures 8(a) and 8(c) with 8(b) and 8(d), the
mean number of steps towards the left hand side is lower
in the latter two, where each step involves shuffling all
inputs of all CABs. This enables the algorithm to fix any
faults that are possible to repair with input swapping in
a single step. However, due to the stochastic nature of how
the strategies are applied, it is also possible to put the circuit
into a situation where faults cause more problems than the
previous state.

The results for Z2 are again noticeably better than for the
other three circuits, which all perform similarly. The balance
of redundancy and utilisation in this circuit resonate with
this methodology well for two reasons: first, by utilising
slightly more than half of the branches of a slice, faults are
more likely to occur in utilised branches, leaving redundant
ones less likely to be faulty and increasing the probability
that spares will be fault-free when required. Second, having
slightly less than half of the CAB branches not utilised
leaves a lot of redundancy for branches to move into.
Random swaps have a high probability of putting active
branches into previously unused ones, speeding up fault
recovery.

At the far right hand side of each of the graphs, per-
formance is reduced in that the average number of steps
required for repair increases. This indicates situations where
it is hard for the algorithm to find configurations that work,
and so more steps are required when trying to recover from
faults. Reducing the bias slightly to include some input
swapping clearly helps in these situations.

7 DETERMINISTIC STRATEGIES

The experiments in Section 6 utilised a random application
of repair strategies for fault tolerance and has been shown to
successfully repair faults with varying levels of performance
depending on the circuit it was applied to. It is therefore
hypothesised here that an ordered application of determin-
istic strategies optimised for a given circuit should provide
improved performance.

One drawback of the stochastic strategies approach is
that there are frequently unnecessary swaps being per-
formed that do not contribute to the repair process in a
helpful way, which is expensive in terms of time and power
due to making more reconfigurations. To a certain extent
this is acceptable for a generic repair strategy capable of
operating without knowledge of fault locations, however,
with a completely non-deterministic approach the amount
of unnecessary swapping is likely to be excessive. This
should provide room for improvement when generating
deterministic strategies tailored for specific use cases using
an optimisation algorithm.

It is likely that, when the initial configuration of a circuit
is known, similar strategies may be able to do better given
some determinism. For instance, consider a circuit that is
only using one PMOS and one NMOS branch, as is the case
in Z0, where the majority of the branches are unused and
therefore there is no effect in performing repair strategies on
them. If the fault recovery method is deterministic and op-
timised for Z0, the algorithm will avoid swapping between
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Fig. 7. The number of faulty circuits fixed is shown when running stochastic strategies sampling two different strategies with different statistical bias.
The performance of input vs. branch swapping is shown in (a), input vs. branch shuffling is shown in (b), and the mixed experiments input shuffling
vs. branch swapping and input swapping vs branch shuffling are shown in (c) and (d). Generally, a trend towards better repair performance can be
observed when branch operations are more likely used. However, the cost of these operations is also higher.
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Fig. 8. The number of steps required (strategies applied) in order to repair a broken circuit is shown. The performance of input vs. branch swapping
is shown in (a), input vs. branch shuffling is shown in (b), and the mixed experiments input shuffling vs. branch swapping and input swapping vs
branch shuffling are shown in (c) and (d). Again, a trend towards better repair performance can be observed when branch operations are more
likely used. However, the cost of these operations is also higher.

two unused inputs or branches, resulting in faster runtime
and less power consumed by unnecessary reconfigurations.

Therefore, in order to verify this hypothesis, experiments
are conducted where deterministic strategies are optimised
using a multi-objective evolutionary algorithm and are
applied to the benchmark circuits from Section 5.1 with
faults injected, until correct operation is restored or a pre-
determined threshold is met.

7.1 Fault Recovery Strategies

The rationale when determining the set of basic transforma-
tions is to keep the two types of strategy, input swapping
and branch swapping, but to predetermine their application
in some way. Where the strategies are previously composed
of a random number of swaps, the new strategies are com-
posed of exactly one deterministic swap, giving very fine
grain control over what happens in the event of a fault. By
enumerating all possible swaps within a slice, these swaps
can be chained together to form a list of actions to perform,
and the resulting efficiency of this list may be optimised.

The two types of circuit transformation described in
Section 4 are again used to form strategies to repair faults.
This time however, each strategy consists of just a single

input or branch swap. It is calculated by enumerating all
possible unique permutations that there are a total of 80
possible swaps that can be performed on a single slice, 24
input swaps and 56 branch swaps. These 80 swaps represent
the set of operations to choose from when composing deter-
ministic repair strategies. Due to the completeness of this set
of transformations, shuffling is not used in the deterministic
strategies.

7.1.1 Input Swapping

Each CAB has four inputs which results in there being six
distinct swaps that can be performed between them. This

can be calculated using the combination

(

4

2

)

= 6. Input A

can be swapped with B, C and D. Input B can be swapped
with C and D, since the A with B swap is already covered.
Input C can be swapped with D and that covers all possible
input swaps for one CAB. Since there are four CABs in a
slice each with 6 possible swaps, there are 24 possible input
swaps per slice.

Each swap is assigned an index in order to handle it
conveniently in a repair algorithm. Input swaps are assigned
the numbers 0-23, where 0-5 refer to swaps in the first CAB,
6-11 in the second and so on. Within each CAB, the swaps
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Fig. 9. An illustration of how some of the strategies are mapped from
numbers to circuit transformations. For instance, strategy ‘0’ swaps the
input multiplexer configurations for inputs A and B, and also two CT
configurations in each branch associated with inputs A and B. Strategies
6-11 perform the same actions on the second CAB from the left and so
on. Strategy ‘53’ swaps all four CT configurations in the leftmost NMOS
CT branch with the ones in the third NMOS CT branch from the left,
compensating for any differences in the order of the inputs between the
two CABs. Strategies 59-64 swap the second NMOS branch with each
of the others to the right and so on and strategies 24-51 enumerate all
the possible PMOS CT branch swaps.

are arranged in the order used above, where the first is
swapping A with B. Figure 9 illustrates the input swaps
and identifiers assigned to them for the left-most CAB.

7.1.2 Branch Swapping

Each slice features sixteen branches, eight of each type
(PMOS and NMOS). Only branches of the same type can be
swapped, otherwise the functionality of the circuit changes
after the swap. Consequently, the total number of possible

swaps is 2×

(

8

2

)

= 56.

The branch swaps are assigned index numbers in the
same way as with the input swaps. PMOS branch swaps
are numbered 24-51 and NMOS branch swaps 52-79. The
first seven possible NMOS branch swaps are illustrated in
Figure 9.

7.1.3 Strategy Lists

Associating every possible swap with a unique index num-
ber ensures than they can be referred to in a convenient
and unambiguous manner. Arranging these numbers into a
list (as in Figure 10) defines a deterministic set of actions
that can be performed on a circuit. Lists of this type are
henceforth referred to as strategy lists.

Fig. 10. An abstract strategy list. S{1-n} represent the strategy numbers
which are applied in order.

7.2 Fault Recovery Method

Given a particular strategy list, the methodology when
attempting to repair a fault works as follows:

1) Start with a faulty circuit with a known correct
output.

2) Read the first number from the list.
3) Apply the strategy referred to by the number to the

circuit.
4) Test the circuit to see if it now works.

a) If it does, end the process.
b) If it doesn’t, read the next number from the

list and continue from Step 3.

An example list, using numbers illustrated in Figure 9,
could be [0, 3, 5, 52]. If the entire list is applied to the circuit
Z0 from Section 5.1, the following circuit transformations
will be performed:

1) Inputs A and B are swapped in the first CAB from
the left.

2) Inputs B and C are swapped in the first CAB from
the left.

3) Inputs C and D are swapped in the first CAB from
the left.

4) The first and second NMOS branches from the left
are swapped.

Note that it is assumed here that Z0 is mapped into
the leftmost CAB of a PAnDA CLB. This is for illustration
purposes only and not generally the case with a strategy list.
The work presented here investigates whether it is possible
to automatically create lists which repair faults in a more
efficient—but still generic—way than the random method
presented in Section 6.

7.3 Experimental Method

The proposed deterministic strategies methodology per-
forms circuit transformations in a deterministic manner,
specifically single-swap strategies stored in an ordered list.
While the stochastic strategies apply a different sequence of
circuit transformations each time it is used, the deterministic
method applies the same sequence of transformations each
time. The experiments performed in this section are aimed
to automatically generate and optimise an appropriate se-
quence of strategies, i.e. a strategies list, for repairing faults.
In order to allow a comparison with the stochastic method,
the same set of benchmark circuits Z0-Z3 is used here.

The length of the lists used in the experiments is 50, i.e.
a maximum of 50 strategies are applied when attempting to
recover from a fault. This value, which is significantly lower
than the 10,000 used in the stochastic method, has been cho-
sen based on the results from Section 6.4, where circuit Z2
requires approximately 50 steps on average to repair and the
others take significantly more than that. Calibrated to this
critical point, the results from this section should therefore
show clearly any advantage the deterministic approach may
have.

7.3.1 Multi-objective Evolution of Strategy Lists

The process of creating a strategy list for a given function
should be automatic. However, the search space is infeasibly
large for manual exploration and its structure is unsuitable
for hill-climbing. Hence, to achieve this automation, an
evolutionary algorithm (EA) is employed which optimises
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lists iteratively. Moreover, multiple goals for the optimisa-
tion, e.g. fixing as many faults as possible whilst requiring
the least number of steps, necessitate the use of a multi-
objective evolutionary algorithm (MOEA), for which NSGA-
II is used. In this case, the generation, optimisation and
evaluation is performed using the commercial optimiser LS-
OPT [29]. The algorithm used is LS-OPTs implementation of
NSGA-II.

The genetic encoding simply consists of 50 variable
placeholders representing a generic list of 50 integer num-
bers forming a strategy list. Each number can take on a value
between 0 and 79, each representing a strategy from the
basic set of transformations described in Section 7.1.3. The
EA parameters used are:

• Population: 80
• Mutation rate: 0.1
• Generations: 400

Population size and mutation rate are the defaults sug-
gested in LS-OPT. The experiments are stopped after a
limit of 400 generations has been reached, as preliminary
experiments showed that by then solutions have already
seen significant convergence and further improvement has
slowed down.

7.3.2 Objectives

The following objectives are identified to be minimised by
the MOEA:

1) Number of unfixed circuits (out of 1,000).
2) Average number of steps required for repair.
3) Cost/effort expended to fix circuits.

Each genome (strategy list) is evaluated on 1,000 in-
stances of the same circuit with different faults randomly
injected. The number of unfixed circuits value represents
the number of faulty circuits that are not fixed out of these
1,000.

In addition to the two measurements used Section 6, a
cost metric is introduced. The purpose of this is to encourage
the optimisation algorithm to favour input swapping over
branch swapping. The rationale behind this is that if a fault
can be fixed with just input swapping, it will disrupt the
layout of the circuit significantly less than branch swapping.
A solution achieving this is clearly superior.

The input swapping strategies are assigned a low cost
of 1, whereas the branch swapping strategies are assigned a
high cost of 100. The optimisation algorithm is instructed to
minimise the total cost expended when executing a certain
list. The specific cost values are arbitrarily chosen in a way to
significantly penalise the branch swapping and encourage
input swapping.

7.3.3 Strategy List Evaluation

The process of evaluating a strategy list is repeated 1,000
times for each list. A more detailed explanation follows:

1) A fault-free PAnDA Slice model is prepared and
programmed deterministically with a logic function.

2) The circuit is made faulty by the process described
in Section 5.3.

3) The algorithm looks to the first item in the strategy
list.

4) The strategy stored at the current position of the
strategy list is applied to the circuit.

5) The circuit is checked for correct functionality.
6) If it is not fixed and there are items left in the list, the

algorithm looks to the next item in the strategy list
and goes back to Step 4. If it is fixed or every item
in the list has been used, this evaluation is over and
the number of steps taken are added to a running
total.

As in the previous experiments in Section 6, each of the 1,000
evaluations of the list has to deal with a random number of
randomly injected faults, in order to prevent over training
to any particular set of faults.

7.4 Results

Results for each of the four functions Z0-Z3 are shown
in Figure 11. These solutions represent the Pareto-optimal
set found after running the MOEA for 400 generations. As
can be seen from the figure, the general trend seen in all
four cases is that solutions leaving fewer circuits unfixed—
i.e. achieve to repair more—do so, on average, in fewer
steps. However, this comes at the expense of cost, which
can be seen increasing as the other two objectives decrease.
This suggests that, for faults that are indeed repairable, the
evolved strategy lists are able to repair them quickly. At the
same time, these lists generally comprise a large amount of
branch swapping operations.

In order to illustrate a typical result of the evolutionary
algorithm, the first eight steps of an “unfixed”-optimised
list for Z0 is worked through and explained in more detail
in Appendix ??.

8 COMPARISON OF STOCHASTIC AND DETERMIN-

ISTIC STRATEGIES

In order to provide a more direct and fair comparison
between the deterministic and stochastic approaches dis-
cussed in Sections 7 and 6, results presented here are ob-
tained from a slightly modified version of the experiment
using the stochastic strategies.

8.1 Modifications to the Setup

There were two different input swapping methods used in
the stochastic strategies: a single random input swap and a
shuffle of all the inputs in the slice. The first mechanism is
equivalent to the one used for the deterministic strategies,
apart from swaps being randomly selected in the first case
and running one of the strategies numbered 0-23 in the sec-
ond case. However, the equivalent of the shuffle mechanism
would involve running up to three of these on each of the
CABs, so up to 18 single swap strategies in total for one
input shuffle operation. To provide a more fair comparison,
this strategy was modified to make a single swap on a single
CAB by invoking a random deterministic strategy in the
range 0 to 23.

The experiments in Section 6 do not consider cost, as this
is not meaningful when sweeping the bias value. However,
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Fig. 11. The results for circuit Z0 is shown in (a), Z1 is shown in (b), Z2 is shown in (c) and Z3 is shown in (d) after evolving their respective strategy
lists over 400 generations. The best solutions optimised for the number of unfixed circuits, mean number of steps and total cost are circled in red.

this metric was added simply for comparison with the total
cost being accumulated over all (successful and unsuccess-
ful) runs.

The measurement of the mean number of steps to fix
a fault is modified to fit with the optimisation-based ap-
proach of the deterministic strategies. Instead of recording
the number of steps taken in only the successful cases, the
total number of steps used over all runs is used in order to
remove statistical bias. Finally, The total number of steps is
divided by 1,000 to provide an average per run.

8.2 Results

For comparison, the results from the stochastic method
from Section 6 are re-run with modifications detailed in
Section 8.1 on the same four benchmark circuits used before.
The new results are shown in Figure 12.

The general trend that can be seen from Figures 12(a)
and 12(b) is that the average number of steps required to
recover from a fault and the number of circuits left unfixed
decrease as the bias tends towards the branch swapping
strategy. Figure 12(c) shows the opposite trend in that the
average cost decreases as the bias tends towards the input
swapping strategy. This is intuitively expected as the branch
swapping strategy is significantly more expensive than the
input swapping strategy but it is also expected that there
would be more of an ‘S’-shaped curve as the introduction
of branch swapping should overall decrease the number of
strategies that have to be applied. It is possible, however,

TABLE 2
A comparison of solutions from both methods optimised for the least

unfixed circuits out of 1000.

Solutions Optimised for Least Unfixed
Circuit Stochastic Deterministic Improvement

Z0 Unfixed 113 43 61.95%
Steps 16.973 8.2 51.69%
Cost 1629485 317575 80.51%

Z1 Unfixed 256 110 57.03%
Steps 24.571 16.487 32.90%
Cost 2457100 858779 65.05%

Z2 Unfixed 150 55 63.33%
Steps 19.918 12.655 36.46%
Cost 1850032 1106210 40.21%

Z3 Unfixed 383 109 71.54%
Steps 31.991 18.374 42.57%
Cost 3135740 1148560 63.37%

that this effect becomes visible with more carefully selected
cost factors.

The number of circuits repaired in the best cases of
each approach is significantly improved, as can be seen
from Table 2. The improvement varies between 57.03% and
71.54% in terms of the number of circuits repaired, and the
other objectives are improved as well. This confirms that for
the given number of 50 steps, the deterministic method is
indeed able to recover more circuits from faults.

The deterministic method has decreased the average
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TABLE 3
A comparison of solutions from both methods optimised for the least

number of steps taken during 1000 circuit repairs.

Soolutions Optimised for Least Steps
Circuit Stochastic Deterministic Improvement

Z0 Unfixed 122 48 60.66%
Steps 16.44 7.859 52.20%
Cost 1644000 311987 81.02%

Z1 Unfixed 256 124 51.56%
Steps 24.571 15.961 35.04%
Cost 2457100 720742 70.67%

Z2 Unfixed 150 55 63.33%
Steps 19.918 12.655 36.46%
Cost 1850032 1106210 40.21%

Z3 Unfixed 395 131 66.84%
Steps 31.73 17.627 44.45%
Cost 3173000 992381 68.72%

TABLE 4
A comparison of solutions from both methods optimised for the least

cost expended after 1000 circuit repairs.

Solutions Optimised for Least Cost
Circuit Stochastic Deterministic Improvement

Z0 Unfixed 793 760 4.16%
Steps 41.798 38.309 8.35%
Cost 41798 38309 8.35%

Z1 Unfixed 835 807 3.35%
Steps 43.778 41.745 4.64%
Cost 43778 41745 4.64%

Z2 Unfixed 688 619 10.03%
Steps 39.826 33.375 16.2%
Cost 39826 33375 16.2%

Z3 Unfixed 855 803 6.08%
Steps 45.398 41.863 7.79%
Cost 45398 41863 7.79%

number of steps taken when fixing faults by between 35.04%
and 52.2% (see Table 3). This suggests that, if a fault is re-
pairable, the deterministic method will find the fix quicker,
on average.

The new cost measurement shows less improvement
than the other optimised solutions (see Table 4). The de-
terministic solution presented shows a small improvement
in cost, between 4.64% and 16.2%, and similarly sized im-
provements across the other objectives.

9 CONCLUSION

This work has demonstrated how symmetry-aware map-
ping of logic functions onto FPGA architectures in com-
bination with evolutionary algorithms can be a powerful
tool devising fault-blind repair strategies using existing
reconfiguration mechanisms. This paper has focussed on
fault-mitigation in the case of transistor failures. Some of
the PAnDA architecture features, symmetries and swap-
ping of inputs, have been proven to be useful for fault-
blind fault mitigation. The approach presented here can be
generalised to any existing FPGA architecture that exhibits
regularities and symmetries in its architecture. Future work
will be considering the more unique features of PAnDA
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Fig. 12. Results of running the experiments from Section 6 with the
differences detailed in Section 8.1. Top: the average number of steps
required to fix random faults. Middle: the number of unfixed circuits out
of 1,000. Bottom: the total cost expended when using a particular bias.
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that go beyond what currently available FPGAs can do,
which is reconfiguration at the transistor level, in order
to extend hierarchical fault-mitigation to this lower level
and to expand the scope of fault tolerance towards design
optimisation. For example, configurable transistors do not
only allow fixing faults, but also offer a range of possibilities
to optimise a mapped design for performance, variability or
power consumption by changing and optimising transistor
sizes.

The results of the Stochastic Strategy experiments from
Section 6 have shown that even with random circuit trans-
formations, it is possible to structurally manipulate circuits
on PAnDA-FÜNF in a way to work around faults. The
methodology described has been demonstrated to work
without any information about the configured circuit’s im-
plementation or the location or nature of any faults, simply
the knowledge that a circuit is faulty. By exploiting the
additional configuration layers available on PAnDA, fault
recovery has been performed in a simple yet effective way.
It has also been shown that the efficiency and effectiveness
of the Stochastic Strategy methodology can be controlled by
biasing the random application of transformations between
two different strategies. This effect can be used to optimise
the methodology for a particular situation. For example, if
the quickest possible recovery is required, biasing towards
branch swapping/shuffling will be optimal, whereas if the
disruption to the layout of a circuit should be kept minimal,
biasing towards the input swapping/shuffling side will be
more beneficial while yielding equally good results.

The experiments using Stochastic Strategies found that
both types of transformations, input and branch based ones,
are required to achieve the best results. If biased strongly
towards the input swapping strategy there is a drop in
performance that becomes severe at the extreme. When
biased towards the branch swapping strategy, the results
remain good until very high values of bias, at which point
there is a significant (but not nearly as severe) drop in
performance. Some circuits performed better than others
in the same circumstances. This is due to differences in
their layouts changing the probability or difficulty of finding
recovery configurations.

The results of the Deterministic Strategy experiments have
shown that this method is able to perform better than the
stochastic approach in all test cases. The results suggest that
this would be the case for every possible function; also this
follows from the fact that the stochastic method is likely to
perform many unnecessary and unhelpful reconfigurations,
which will not be the case if the strategies are optimised and
more deterministic ensuring a more consistent reconfigura-
tion path to a successful repair.

The Deterministic Strategy experiments have also shown
that applying an ordered list of strategies provides a better
performing fault tolerance methodology than a random ap-
plication, even when the source of the fault is unknown. The
results have also shown that it is possible to optimise the
time it takes to fix faults, or trade this off for lower structural
disruption to the circuit configuration. A slight drawback
here is the time required to evolve good strategy lists, which
makes it infeasible to produce them on the fly at runtime.
However, strategy lists can be computed in advance, i.e.
after circuit mapping and before deployment, and stored

in a memory so that an optimal strategy is available in the
event of any random occurring fault at runtime.
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