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History matching of a complex epidemiological model of HIV trans-

mission using variance emulation.

I. Andrianakis†, I. Vernon, N. McCreesh, T.J. McKinley, J.E. Oakley, R.N. Nsubuga,

M. Goldstein and R.G. White

Summary

Complex stochastic models are commonplace in epidemiology, but their utility depends on their

calibration to empirical data. History matching is a (pre-)calibration method that has been applied

successfully to complex deterministic models. In this work, we adapt history matching to stochastic

models, by emulating the variance in the model outputs, and therefore accounting for its dependence

on the model’s input values. The proposed method is applied to a real complex epidemiological model

of HIV in Uganda with 22 inputs and 18 outputs, and is found to increase the efficiency of history

matching, requiring 70% of the time and 43% fewer simulator evaluations compared to a previous

variant of the method. The insight gained into the structure of the HIV model, and the constraints

placed upon it, are then discussed.
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1. Introduction

Mathematical modelling has played a large role in informing our understanding of infectious disease

transmission and epidemiology. In the field of HIV, it has been used to investigate the role of part-

nership concurrency (overlapping sexual partnerships) on HIV transmission (McCreesh et al., 2012),

estimate the contribution of acute, early stage infection to overall transmission (Powers et al., 2013),

and estimate the proportion of transmission that occurs outside of cohabiting partnerships (Bellan

et al., 2013). Modelling can also be used to inform policy, by allowing the effects of different control

interventions to be estimated and compared, without the need for expensive and time-consuming

randomised control trials. For instance, modelling has been used to predict the effects of making

antiretroviral therapy (ART) universally available to people living with HIV, regardless of how far

their disease has progressed (Granich et al., 2009), and estimating the effects of expanding access to

ART and/or pre-exposure prophylaxis in men who have sex with men in the UK (Punyacharoensin

et al., 2016).

In this study, we analyse a mathematical model of HIV transmission and partnership concurrency,

called Mukwano, developed at the London School of Hygiene and Tropical Medicine. It is an individual

based model with 22 inputs and 18 outputs, and is also stochastic, meaning that repeated evaluations

for the same input parameters do not return the same output, but rather samples from a distribution

with unknown characteristics. The usefulness of this and other models depends on our ability to

calibrate them to measured empirical data (Grimm et al., 2006; May, 2004). Calibration is a type of

inverse problem that attempts to estimate the input parameters of a system, such that its outputs are

consistent with the available empirical data. Poor calibration results in a mathematical model that

does not accurately reflect what we know about the current situation, greatly reducing our ability

to make projections into the future. Poor calibration can also result in the amount of uncertainty

in future projections being underestimated, leading to over-confident predictions being made, and

potentially harmful policy decisions.

Calibration approaches range from simple least squares estimation techniques, to advanced proba-

bilistic methodologies. Markov chain Monte Carlo (MCMC)-based techniques (Gibson and Renshaw,

1998; O’Neill and Roberts, 1999) are popular calibration methodologies. However, they tend to re-

quire the calculation of the likelihood function, which in the case of Mukwano is not available, while

a data augmentation approach would require a numerical integration over a very large hidden state

space. In smaller scale models, simulation based techniques, based on repeated evaluations of the

simulator (Toni et al., 2009; McKinley et al., 2009; Andrieu et al., 2010) have been applied with

some success. The simulator we are analysing in this work has a large number of inputs and outputs,

and would require a large number of evaluations because of a) the high dimensionality of the input

space, and b) the part of that space that matches the empirical data can be very small, due to the

multiple constraints imposed by the large number of outputs. Furthermore, Mukwano is a stochastic
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simulator, which requires multiple evaluations for each set of inputs in order to extract statistics

about its output values, such as means and variances. Finally, the above methods attempt to make

inferences over the entire input space using all available outputs at once. This can be an unnecessarily

complicated task, as it requires simultaneously capturing the behaviour of all outputs in parts of the

input space that are very far from the ‘region of interest’.

History matching (Craig et al., 1997) is a form of calibration methodology, sometimes referred to

as a pre-calibration step, that is designed to address the above problems. It is based on the use of

an ‘emulator’, a statistical model of the simulator that is fast to evaluate (Sacks et al., 1989), and is

therefore less disadvantaged by long simulator running times. It works by rejecting the input space

where the simulator does not match the data, rather than the other way around. As a result, the

entire set of outputs does not have to be taken into account at once, thus reducing the burden of

analysing a large number of possibly complex outputs simultaneously, as is required by more tradi-

tional approaches. Finally, it focusses in on the region of interest in a series of iterations (waves),

bypassing the need to model all of the simulator’s outputs over all of its input space, and benefitting

from the fact that Mukwano is expected to be ‘well-behaved’ in smaller input space regions. These

characteristics make history matching particularly suitable as a pre-calibration step for simulators

with large numbers of inputs and outputs, and long evaluation times which make the direct appli-

cation of other calibration methodologies nearly impossible. Additionally, it may be viewed as an

appropriate analysis methodology for simulators that are not considered accurate enough to warrant

a full Bayesian analysis, which is much more computationally expensive.

History matching is not only useful for producing a large number of calibrated input samples. A

careful study of the patterns that appear in the input and output spaces can be very informative

about the way the simulator models various processes as well as the effect the constraints imposed

by the empirical data have on the structure of the non-implausible space. These features of history

matching illustrate the way Mukwano handles the HIV transmission process and how the empirical

data shape the values that input parameters, such as contact rates and concurrency parameters, are

allowed to take.

In previous work (Andrianakis et al., 2015), history matching was applied to Mukwano, but a

rough approximation was used to account for the stochastic variability in its outputs, which was

found to unnecessarily slow the method’s convergence. In the present work, we refine the treatment

of stochastic outputs by explicitly emulating their variance in addition to their mean and improving

the overall efficiency of history matching. We also study correlation patterns between calibrated input

and output samples, which provide useful insights into various processes of the simulator.

The structure of this paper is as follows: Section 2 describes the stochastic simulator studied, which

is a dynamic, individual based HIV simulator, calibrated with epidemiological and behavioural data

from a cohort in Uganda. Section 3 describes history matching in its standard form, and introduces
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the proposed adaptation that allows it to handle stochastic models. Section 4 presents the results of

history matching with the proposed adaptation, and Section 5 concludes the paper.
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2. Model description and problem setup

The simulator we analyse in this work, known as Mukwano, is a dynamic, stochastic, individual based

computer model that simulates heterosexual sexual partnerships and HIV transmission (McCreesh

et al., 2012). Each individual is represented by a number of characteristics, of which some remain

constant during simulated life (e.g. gender and date of birth), whereas others can change (e.g. HIV

status). Changes in personal characteristics result from events such as the start and the end of sexual

relationships. These events are stochastic: if and when an event occurs is determined by sampling

from appropriate probability distributions. To generate model outcomes for a simulated population,

the characteristics of the simulated individuals are aggregated.

Births, deaths, partnership formation and dissolution, and HIV transmission are modelled using

time-dependent rates. At birth, simulated individuals are assigned to one of two sexual activity

groups (‘high activity’ and ‘low activity’), and to one of two partnership concurrency groups (‘high

concurrency’ and ‘low concurrency’). Each sexual activity group has associated male and female

sexual contact rates, which determine the rate at which individuals form new partnerships. The

duration of each new partnership is determined by the activity group of one of the partners, chosen

at random. If their activity group is high, the partnership will have a short duration. If it is low, the

partnership will have a long duration.

Seven different HIV stages are simulated, as shown in Figure 1. The natural history of HIV before

antiretroviral therapy (ART) is represented by four stages: primary, CD4≥ 200 cells/µl, CD4< 200

cells/µl pre-AIDS, and AIDS. Infected people move sequentially through the four stages, and each

stage has an associated HIV transmission probability. After 2004, when ART first became available

in the population we are modelling, simulated people can be in an additional three stages: ART from

pre-AIDS, ART from AIDS, and AIDS from ART. Possible routes of progression through the seven

stages are shown in Figure 1. The probability of moving from an non-ART stage to an ART stage

increased between 2004 and 2008, representing the increasing availability of ART in the population

over time.

Twenty behavioural and two epidemiological inputs are varied, including a mixing parameter,

which determines the tendency for individuals to preferentially form partnerships with people in

their own activity group, and an input which determines the duration of the long and short duration

partnerships. Many behavioural inputs are permitted to take different values in each of three calendar

time periods. This enables sexual behaviour to vary over time, and allows the simulator to be fitted

to trends in HIV prevalence in the population. A full list of the 22 simulator inputs and their original

plausible ranges is shown in Table 1.

The simulator is calibrated to 18 demographic, behavioural and epidemiological outputs that

include male and female population sizes in 2008, and male and female HIV prevalences at three

time points. They also include a number of outputs that ensure that the prevalence and incidence of
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monogamous and concurrent sexual partnerships in the simulator closely match estimates from the

empirical population. The empirical data were collected from a rural general population cohort in

South-West Uganda. The cohort was established in 1989, and currently consists of the residents of

25 villages (Mulder et al., 1994a,b; Seeley et al., 1991). Every year, demographic information on the

cohort is updated, the population is tested for HIV, and a behavioural questionnaire is conducted.

In 2008, this included questions that allowed the prevalence of monogamous and concurrent short

duration and long duration partnerships to be estimated. All 18 simulator outputs and their empirical

data are shown in Table 2. The intervals given for each of the outputs represent the limits for an

acceptable match, and we considered them to be 95% confidence intervals for the purposes of the

calibration. Their mean value was therefore used to define the value of the empirical data z, and

their difference was considered to represent 4 times the square root of the observation error variance

Vo.

As mentioned previously, the simulator is stochastic, and the variance of the outputs changes,

sometimes drastically, with changes in the values of the input parameters. In Andrianakis et al.

(2015), it was observed that not accounting properly for the variance in the outputs, and in particular

their dependence on the input values, reduced the efficiency of history matching and limited the

insight gained into Mukwano’s structure and the consequences of the observational constraints. The

methodological developments proposed in this work address this issue.
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3. Methods - History matching

3.1. Overview

History matching is a method that attempts to identify the part of the simulator’s input space that

is likely to result in matches between the simulator’s outputs and the empirical data (observations) .

This part of the input space is referred to as non-implausible and has a high probability of containing

the vast majority of the input parameters’ posterior mass. This space’s complement is known as

implausible, where matches between the outputs and the observations are highly unlikely to be found.

History matching was first developed in the field of oil reservoir simulations (Craig et al., 1997), but

has since been applied to the calibration of computer models in fields ranging from galaxy formation,

oceanography, systems biology, and epidemiology (Vernon et al., 2010a; Vernon and Goldstein, 2010;

Vernon et al., 2014; Goldstein et al., 2013; Williamson et al., 2013; Andrianakis et al., 2015).

History matching works in iterations, known as waves, where the implausible space is first identified

and then discarded. Each wave focusses the search for implausible space in the space that was

characterised as non-implausible in all previous waves; thus, the non-implausible space shrinks with

each iteration. The implausibility of the input space is determined with the implausibility measure,

which is a measure of the distance between the observations and the simulator’s output when evaluated

at input x.

Even though the implausibility measure could be calculated using the simulator directly, this

turns out to be impractical even for simulators of moderate complexity. The reason is that the input

space is high dimensional, and an exhaustive search would require a prohibitively large number of

simulator evaluations. For this reason, fast surrogates of the simulator are used, which are known

as emulators. An emulator is essentially a regression model, that predicts the simulator’s output for

a particular input x, and is also capable of quantifying the uncertainty of these predictions. A key

feature of an emulator is its almost negligible evaluation time. Gaussian processes (GP) are used

to build the emulators in this work; however Bayes Linear models (Vernon and Goldstein, 2010) or

simpler substitutes such as linear regression models could also be employed.

3.2. History matching of stochastic simulators (fixed variance)

In this section, we present a summary of history matching of stochastic simulators, as presented

in Andrianakis et al. (2015). The next section introduces the extensions to history matching that

improve its efficiency on the calibration of Mukwano and stochastic simulators in general.

We suppose that the simulator has P inputs denoted as x = [x1, x2, . . . , xP ]
T, which are continuous

and lie in a bounded subset X ⊂ R
P . The simulator also has R outputs f(x), the r-th of which is

denoted by fr(x). Suppose also the existence of z = [z1, z2, . . . , zR]
T observations, one for each

simulator output, which typically come with their own uncertainty bounds (e.g. 95% confidence

intervals).
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Unlike deterministic simulators, which return the same value each time they are evaluated at the

same input x, stochastic simulators typically return draws from a distribution, which has a mean

and a variance that we respectively denote by g(x) and s(x). We write the r-th output of the k-th

evaluation of a stochastic simulator at input x as

fr,k(x) = gr(x) + ǫr,k(x), (1)

where gr(x) is the mean and ǫr,k(x) is a zero mean noise term with variance sr(x).

At each wave, the simulator is evaluated K times at each of the N design points; an estimate of

the mean simulator’s response is

ĝr(xn) =
1

K

K∑

k=1

fr,k(xn). (2)

An emulator of the simulator’s mean output is then built using the training points D = {xn, ĝr(xn)},

for all the outputs that this is possible, which at wave η are denoted as r ∈ Rη. We write the emulator’s

prediction for the mean output as E∗[gr(x)] and the uncertainty of the prediction (variance) as Vc,r(x).

An estimate of the simulator’s variance at each of these points is

ŝr(xn) =
1

K − 1

K∑

k=1

(fr,k(xn)− ĝr(xn))
2. (3)

Andrianakis et al. (2015) used the 90-th percentile of the variances ŝr(xn), n = 1, . . . , N , which we

denote by Vs,90, in the calculation of the implausibility measure.

The implausibility measure for the r-th output, is formulated as the distance between zr and

E∗[gr(x)], weighted with the uncertainty introduced by the error terms that link the two quantities.

We assume that zr is a noisy measurement from an underlying, unobservable physical process yr,

with their relationship described by

zr = yr + φr, (4)

where φr is a random variable that follows a unimodal distribution with zero mean and variance

Vo,r. Its variance can be derived from considerations of the measurement process and as it links the

(unobserved) physical process yr and the measurements zr, has no dependence on the simulator’s

inputs x.

The physical process yr is linked to a single realisation of the simulator fr,k(x) via the model

discrepancy δr, using

yr = fk,r(x
∗) + δr, (5)

where x∗ is known as the ‘best input’. This discrepancy arises because simulators are virtually

always simplifications of the physical process yr (reality), either because we do not fully understand

yr, and therefore cannot model it exactly, or because some parts have been deliberately left out of the
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modelling process. Accounting for model discrepancy can protect against overfitting the (potentially)

wrong values of x, and makes the simulator’s predictions more robust. For more on this point

the reader can consult Kennedy and O’Hagan (2001); Goldstein and Rougier (2009); Vernon et al.

(2010a); Brynjarsdottir and O’Hagan (2010). The δr term represents the model expert’s beliefs

about the simulator’s deficiencies, and as such is subjective and should be treated with some caution.

Methods for a structured elicitation of model discrepancy are discussed in Goldstein and Rougier

(2009); Goldstein et al. (2013). In Andrianakis et al. (2015), as well as in the present work, δr is

assumed to follow a unimodal distribution with zero mean and variance Vm,r; as δr is defined as the

difference between yr and the simulator evaluated at its ‘best value’ x∗, it is also x-invariant.

Finally, because we are using an emulator in place of the actual simulator, we need to take into

account the error between the emulator’s prediction E∗[gr(x)] and the simulator’s mean output gr(x),

which we denote by ζr(x) = gr(x)−E∗[gr(x)]. ζr(x) is also assumed to be unimodal with zero mean

and variance Vc,r(x).

Combining the above with Equations 1, 4, 5 the link between the observed data zr and the

emulator’s prediction E∗[gr(x)] is

zr = E∗[gr(x
∗)] + φr + δr + ζr(x

∗) + ǫk,r(x
∗).

Based on the above analysis, the implausibility measure for a single output r at a given value of

x is given by

Ir(x) =
|zr − E∗[gr(x)]|

(Vo,r + Vm,r + Vc,r(x) + sr(x))1/2
. (6)

Equation 6 is a measure of the distance between the observation zr and the emulator’s posterior mean

E∗[gr(x)], weighted by the square root of the variances of all the uncertainties we have considered so

far.

In general, sr(x) is unknown unless the simulator is evaluated at x. In Andrianakis et al. (2015)

this was approximated by Vs,90, the 90-th percentile of the observed variances, which could be seen

as a conservative estimate in the absence of more detailed information. The approximation of sr(x)

with Vs,90 is clearly a rough one, because it essentially assumes that the variance of the simulator’s

output is constant w.r.t. the input x (fixed variance), which is not necessarily true. As a result,

the rejection of input space is not as efficient as it would have been if more accurate estimates of

the variance were available. In the present work, we aim to refine this approximation via the use of

variance emulators. This will be described in Section 3.3.

The relaxed distributional assumptions we made for the uncertainty terms φ, δ and ζ, (i.e. simply

that they have zero mean and are unimodal) allow the use of Pukelsheim’s 3 sigma rule (Pukelsheim,

1994) to derive cutoff limits for the above implausibility measure, such that when the value of Ir(x)

is larger than a cutoff Ic, then the input x can be considered implausible. Pukelsheim’s 3 sigma rule
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is a powerful (and underused) result which states that any continuous, unimodal distribution has at

least 95% of its probability mass within 3 standard deviations, regardless of any asymmetry in the

distribution. That is, if x was indeed the best input x∗, then I(x) should be < 3 with probability 95%

for even the most asymmetric (but still unimodal) distributions that contribute to I(x), and with a

probability much higher than 95% for more symmetric, less unusual cases. Therefore, if Ir(x) > 3

it suggests that we would be unlikely to obtain an acceptable match between outputs and observed

data, were we to run the simulator at x (see Vernon et al. (2010a) for details). We should note here,

that the parts of the input space for which Ir(x) < 3 do not necessarily lead to matches between

zr and gr(x), and hence do not necessarily represent a ‘good’ input x: the implausibility can be

small either because zr and E∗[gr(x)] are close, or because there is still a large amount of uncertainty

regarding the simulator’s behaviour at x. In other words, the denominator of Ir(x) is still large.

The above single output implausibility measure has natural extensions to several outputs. One

such extension is the maximum implausibility defined as:

IM (x) = max
r∈Rη

(Ir(x)), (7)

where Rη is the set of outputs that we wish to consider in wave η. Further extensions and analysis

on implausibility measures can be found in Vernon et al. (2010a). Note that the above definition

only involves a subset of the outputs as represented by the set Rη. Often, at early waves of the

history match we would only emulate and construct implausibility measures for a small subset of the

outputs, as some outputs may be very badly behaved over the whole input space. This subset Rη

would usually increase in size in later waves as we narrow the search to a smaller region of input

space. This should be compared to a standard fully Bayesian or likelihood based analysis, where

one has the difficult task of modelling all outputs simultaneously from the outset. This is a major

strength of history matching.

3.3. History matching with variance emulation

In the previous section, we claimed that using a fixed estimate for the simulator’s variance reduces

the efficiency of history matching, because it assumes that sr(x) is constant w.r.t. x, which is not

true in general. In this section, we are proposing a method that mitigates this problem by providing

better estimates of the variance via emulation. The proposed method is based on an independent

emulation of the mean g(x) and variance s(x). At each wave, the simulator is evaluated at N points

and the training data {xn, ĝ(xn)} and {xn, ŝ(xn)} are calculated using Equations 2 and 3. We start

with a description of the emulator of the mean.

A GP emulator is built by considering a Gaussian process as a prior for the simulator’s r-th output:

gr(x) ∼ N (h(x)β, σ2c(x,x′)). (8)
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The GP has a mean function h(x)β, with h(x) being a vector of deterministic functions of x (re-

gressors), β a vector of regression coefficients, and σ2 the variance of the process. The correlation

function c(x,x′) can be a kernel, such as a Gaussian or a Matérn, that determines the correlation

between gr(x) and gr(x
′).

A key point here is that the training data Dm ≡ {xn, ĝ(xn)} are not the actual mean outputs of

the simulator, but estimates, the accuracy of which depends on the variance s(xn) and the number

of repetitions K. For this reason, we use a heteroscedastic noise component in the emulators of the

mean, i.e. a noise term that will be different for each training point. The GP model of the training

data is

gr(Dm) ∼ N (Hβ, σ2A+ diag([ν1, ν2, . . . , νn]
T)).

In the above equation, H is an (n×q) matrix, whose n-th row is the polynomial h(xn) from Equation

8. A is a symmetric correlation matrix with entries Ai,j = c(xi,xj). The noise components ν are

calculated as νn = ŝn(xn)/K and the operator diag(.) transforms the column vector to a diagonal

matrix.

The hyperparameters in the above expression are estimated using maximum likelihood (e.g. see

Andrianakis et al. (2015); Rasmussen and Williams (2006)) and the above emulator provides an

estimate of the simulator’s mean value at an untested point x and an associated variance of the

estimate. We denote these two quantities as E∗[gr(x)] and Vc,r(x). All emulators are validated using

a separate validation set of simulator runs, following the methods described in Bastos and O’Hagan

(2009).

A similar procedure is followed for emulating the variances. First, we log-transform the variance

data defining ξ̂(x) ≡ ln(ŝ(x)), resulting in the training data set Dv = {xn, ξ̂(xn)}. This transforma-

tion is helpful, because ξ̂(x) is closer to a Gaussian distribution than ŝ(x), and therefore easier to

model using a GP. The prior for the training data is

ξ̂r(Dv) ∼ N (Hβ, σ2A+ Iν).

Since the data Dv are also estimates we could have used the same heteroscedastic model we used

for the emulators of the mean. However, this would require estimating the ν’s using a fourth order

statistic of the simulator runs (variance of the variance), which could be unstable unless we had a

very large number of repetitions per design point. For this reason, we take a simpler approach, and

assume that the noise level in the variance data is constant and equal to ν, a hyper-parameter that

is estimated along with the other hyper-parameters of the GP, using maximum likelihood.

The variance emulators provide an estimate of the log variance for any untried input x in the

current non-implausible space, which we denote by E∗[ξr(x)] and will be used in the implausibility

defined in Section 3.3.1. Variance emulation in a regression setting has also been discussed in Hender-
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son et al. (2009); Vernon and Goldstein (2010); Ankenman et al. (2010); Boukouvalas et al. (2014),

but its integration within the history matching framework is studied here for the first time.

3.3.1. The implausibility measure (emulated variance)

The implausibility measure for one output is again given by Equation 6. In this case, the variance

emulators provide an improved approximation to sr(x), which is sr(x) ≈ exp(E∗[ξ(x)]). This term is a

function of x, and should therefore be more accurate than the fixed Vs,90 used previously. Furthermore,

in most cases it should hold that exp(E∗[ξ(x)]) < Vs,90, which results in larger implausibility values

for a given x and, therefore, a more efficient space rejection. The proposed implausibility measure

for one output takes the form:

Ir(x) =
|zr − E∗[gr(x)]|

(Vo,r + Vm,r + Vc,r(x) + exp(E∗[ξr(x)]))1/2
. (9)

The above argument is illustrated in Figure 2. The top panel shows 100 simulator evaluations at

each of 8 different design points (grey dots). The output studied is the 2007 female HIV prevalence.

The horizontal black lines show the estimated mean of each design point, and the red lines represent

±2 standard deviations calculated with the second largest variance of the design points shown (similar

to Vs,90). The green lines show ±2 standard deviations, calculated with the variance estimated from

the actual 100 repetitions at each design point. The observations are shown with the horizontal blue

line. The bars in the bottom panel show a simplified form of the implausibility I = |z− ĝ(x)|/ŝ(x)1/2,

calculated with the respective variances of the top panel. The horizontal black line is the cutoff

implausibility value, which is set at 3. The figure shows that the overestimation of the variance for

points 1,2,4,5 by the use of Vs,90 reduces their implausibility, such that they are either accepted or

rejected marginally (I(x) ≈ 3). Improving the estimate of s(x) increases the implausibility and allows

rejecting those points with greater confidence. This toy example conveys the essence of the method

we are proposing in this work.

3.3.2. Procedure

The procedure of history matching using the emulated variance is presented below:

(a) Define the initial P -dimensional non-implausible space Xη=0.

(b) Select N training and N ′ validation points from the current non-implausible space Xη, using a

space filling design.

(c) Evaluate the simulator K times at each of the training and validation points; calculate the

training data Dm for the mean and Dv for the variance.

(d) Build and validate an emulator for as many of the gr(x) as possible.

(e) Build and validate an emulator for as many of the ξr(x) as possible.
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(f) Evaluate the implausibility measure IM (x) for a large number of x ∈ Xη such that the complexity

of Xη is represented with sufficient accuracy. Use the single output implausibility from Equation

9. Xη+1 is the set of x ∈ Xη for which IM (x) is less than the chosen threshold.

(g) Increase wave counter η by 1 and repeat steps (b) to (f), until:

(i) The emulator uncertainty Vc is smaller than the other uncertainties (e.g. Vo or Vm), so

more waves would not reduce Xη further, or

(ii) A large number of simulator runs from the final wave’s non-implausible space are sufficiently

close to the observations for the needs of the application, or

(iii) All Xη has been characterised as implausible.

In the above sequence of non-implausible spaces, it holds that Xη ⊂ Xη−1 ⊂ . . . ⊂ X0. During this

process of space reduction, Xη might lose properties such as convexity or connectivity. In general,

history matching can handle non-convex spaces, as it can identify, for example, disconnected regions.

Ideally, if disconnected regions were to be found in Xη, they could be emulated separately. In most

cases however, identifying such regions in high dimensional spaces is far from trivial. As for the GP

emulators, these can be thought of as defined over the wider (convex) region, but we only choose to

evaluate them, for the purpose of history matching, within the non-implausible space. For more on

this point the reader can consult Vernon et al. (2010b).

History matching is also very efficient in dealing with models that are unidentifiable. Correlation

ridges and multiple modes in the posterior, typical manifestations of identifiability issues, pose no

problem to history matching, whereas they can plague other methods, including MCMC based ones.

Finally, if the simulator is incapable of matching the observations, history matching will reject all

the input space as implausible, flagging this condition, while other likelihood and simulation based

methods will always attempt to return a posterior distribution, regardless of how poorly the simulator

fits the data.

3.3.3. Further points - extensions

The value of N can be determined by the available computational resources, but a very rough rule

of thumb suggests setting N = 10P , where P is the number of inputs (Loeppky et al., 2009). The

number of validation runs can be chosen as N ′ ≈ N/10. The training and validation data are best

selected using some space filling method, e.g. by maximising the minimum distance between points,

such that they fill the entire input space. This type of design generally leads to emulators that can

more accurately describe the simulators over most parts of the non-implausible space. Furthermore,

simulator runs from previous waves can be used as training points for the present wave if they fall

within or close to the current non-implausible region.

The number of repeated evaluations K of the simulator at each design point is considered fixed
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throughout this work. The value of K can be chosen such that the variance of the estimator ĝ(x),

which is given by ŝ(x)/K, is smaller than the observation error, and also by considering the com-

putational budget that is available for running the simulator. Another approach would be to use a

variable number of repetitions K(x), such that the simulator is evaluated more times at the x’s where

s(x) is expected to be large, and vice versa. The emulators of the variance can provide some guidance

in this direction, as they can predict s(x) at a new location x. This possibility has been explored

in a Kriging setting in Fedorov and Hackl (1997); Ankenman et al. (2010) and in an optimisation

setting in Picheny et al. (2013). Although using a fixed number of repetitions is a simple and robust

approach to the problem, a K that varies with the input x could further increase the efficiency of

history matching by reducing the total number of simulator evaluations.

The simulator’s 18 outputs were modelled with independent univariate emulators. Note that it

is the ‘residual processes’ g(x) − h(x)β that are assumed to be independent between the different

outputs. The independent emulators can therefore still capture strong correlations between outputs

via the trend term h(x)β, which often justifies putting more detail into it, as is discussed in Vernon

et al. (2010a, 2014). Nevertheless, it is possible that the efficiency of history matching could be

improved by using multivariate emulators if there are correlations between these residual processes.

Emulators with separable covariance functions such as those in Rougier (2008) or Conti and O’Hagan

(2010) could be used, although these require the same set of correlation length parameters to be

used for each output. Multivariate emulators with non-separable covariance functions are discussed

in Fricker et al. (2013), but these are more computationally demanding to fit.
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4. History matching the Mukwano simulator

4.1. Comparison with the fixed variance approach

In order to evaluate the benefits of including the variance emulators in history matching, we compare

it to the history match shown in Andrianakis et al. (2015). In that work, the fixed variance approach

was used. That is, the variance of the simulator’s output s(x) was not emulated, but was rather fixed

to the 90th quantile of the estimated variances {ŝ(xn) : n = 1, . . . , N}. In the proposed emulated

variance methodology, the variance in the output of the stochastic model is emulated, and is therefore

a function of the input x.

To facilitate the comparison, both history matches were designed to be the same in terms of the

number of simulator runs per wave, the number of simulator inputs and outputs, and the empirical

data. The observation variance terms Vo were also identical, and the model discrepancy was set

in both cases equal to 10% of the variance of {ĝ(xn)}, n = 1, . . . , N . Since the emulated variance

approach essentially estimates sr(x) as a function of x, instead of using a fixed and relatively large

value, we expect that the efficiency of history matching will increase. In the following, we show that

this is indeed the case, and demonstrate that the benefits gained by the inclusion of the variance

emulators outweigh the extra computational effort of building them. A comparison of the costs in

terms of CPU and user time is given in section 4.3

To quantify the closeness of an actual simulator run to the empirical data z, we define the simulator

run implausibility for a single output as

IR,r(x) =
|zr − ĝr(x)|

(Vo,r + Vm,r + ŝr(x))1/2
. (10)

Note that no emulators are involved in this metric, and it is not part of the history matching algorithm;

it is only a metric that quantifies how close the simulator’s output is to the empirical data, when

evaluated at input x. The overall simulator run implausibility is defined as the maximum of IR,r(x)

across all outputs, i.e. IR(x) = maxr(IR,r(x)).

Figure 3 shows the empirical cumulative distribution of the simulator run implausibility at each

wave. This figure can also be interpreted as the proportion of each wave’s simulator runs with an

implausibility IR(x) smaller than the value indicated in the horizontal axis. Panel (a) shows the

runs from Andrianakis et al. (2015) (using the fixed variance approach), and panel (b) the runs from

the proposed methodology. The figure shows that in Andrianakis et al. (2015) the non-implausible

region contained 65% of non-implausible runs after 9 waves. Under the current methodology, the

same target was reached after 6 waves, a substantial improvement.

Figure 4 shows the (log10) proportion of the original input space that is calculated as non-

implausible after each wave, using both methodologies. This figure again shows that the addition

of the variance emulators causes the non-implausible space to shrink by a larger amount at each
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wave. Especially in later waves, the rate of space reduction is much higher under the proposed ap-

proach. The main reason for this is that sr(x) dominates the uncertainties in these stages, and having

improved estimates from the use of variance emulators allows the space to shrink faster.

4.2. Results and insights into the Mukwano simulator

We now discuss the insights generated by our analysis of the Mukwano simulator. A practical way

of visualising the reduction of the non-implausible space over consecutive history matching waves is

via the minimum implausibility and optical depth plots. The first type of plot shows, for a grid of

values for 2 selected inputs x1 and x2, an estimate of minimum implausibility for an input x if we

were to fix x1 and x2 to a specific value and vary the remaining components xi i = 3, . . . , p. The

optical depth plots show an estimate of the probability of obtaining a non-implausible value were we

to fix x1 and x2 to specific values and sample from the remaining elements of x (see Vernon et al.

(2010a) for details).

Figure 5 shows an example of these plots for the high activity contact rate (hacr1 ) and the

proportion of men in the high activity group (mhag) inputs. These plots show that if both inputs

take a large value, it is very unlikely that the outputs will match the empirical data, as indicated by

the high minimum implausibility value and the low optical depth on the upper right corners of both

figures. This is consistent with behaviour data from the study population in rural Uganda. When

both parameters have large values, a high proportion of men will be in the high activity group, and

these men will form partnerships at a high rate. This will result in there being too many partnerships

in the simulator, and the proportion of men and women with one and/or 2+ partnerships will be

above the plausible ranges for the associated outputs (Outputs 10-18).

The optical depth plots indicate the regions where most of the non-implausible input space can

be found (essentially the depth of the non-implausible space conditioned on the two inputs used for

the axes of the plot). In this case, as is shown in the right panel of Figure 5, this occurs where both

hacr1 and mhag are low. This can often be due to a large number of mediocre input points, and

therefore a naive search of the input space may be more likely to find solutions within this region.

The minimum implausibility plots show the two-dimensional projection of the regions of input space

that can be discarded by different cutoffs, and give an indication, especially in later waves, of where

the most promising input points may lie. In this example, this is when hacr1 is low and mhag takes

intermediate values, as shown in the left panel of Figure 5.

Figure 6 shows the combined minimum implausibility and optical depth plots for 10 out of the 22

inputs whose range was reduced the most after the history match. Panel (a) shows the rejected space

after 9 waves using the fixed variance approach. Panel (b) shows the space reduction after 6 waves

of the proposed methodology. The two dimensional projections of the non-implausible space are very

similar, implying that the proposed methodology (emulated variance) achieved a similar input space
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reduction as the fixed variance approach of Andrianakis et al. (2015), in 3 fewer waves.

Figure 6 also shows that the male concurrency parameter in the high concurrency group in the

third risk period (mchc3 ) can take higher values when the high activity contact rate in the third

risk period (hacr3 ) is lower. The values of these parameters are constrained by the need to fit the

simulator to data on the point prevalence of men with 2+ short duration partnerships in 2008 (output

14), which suggest that no more than 2.1% of men have concurrent short duration partnerships at a

given point in time. When the high activity contact rate is high, the probability of a man forming a

second, concurrent partnership needs to be low, to prevent the point prevalence of concurrent short

duration partnerships in the simulator being too high. At lower contact rates, this is relaxed slightly,

and the probability of men forming additional partnerships can be higher.

Regarding the simulator’s outputs Figure 7 shows 18 panels, one for each output given in Table

2. Each panel shows a scatter plot of the mean against the variance of the simulator runs at each

wave. The vertical bands show the empirical data and the associated 2 standard deviations arising

from the observation error and model discrepancy at wave 6, and hence represent the target of the

history match. Two key conclusions can be extracted from this figure: first, as the history match

progresses, the mean output of the simulator converges to the empirical data, as can be seen by the

green dots that are centered around the empirical data patches. Second, the variance of the output is

far from being constant, and varies not only in the first, but also in the later waves. This shows that

the HIV transmission model has a non trivial variance dependence on x, even across the tiny region

of input space where good matches are to be found. This further justifies the need for estimating the

variance, instead of using a fixed and crudely large estimate, as in Andrianakis et al. (2015).

Figure 8 shows scatter plots between simulator outputs at wave 7, which provide insight into how

the simulator handles the HIV transmission process. Panel (a) shows a strong negative correlation

(r=-0.96) between the prevalence of HIV in women in 1992, and female population size in 2008. This

occurs because a high prevalence of HIV in 1992 greatly increases the mortality rate in the simulated

population, decreasing population size. As the rate at which new people are born in the simulation is

a function of the number of women in the simulated population, this also reduces population growth.

Strong positive correlations are present between male and female HIV prevalences in the same year

(panel (b), r=0.96). This occurs because heterosexual sex is the major route of HIV transmission

in Uganda, and is the only route that is included in the simulator. As simulated men can therefore

only be infected by women, and vice versa, men and female HIV prevalences are necessarily highly

correlated. There are also strong correlations between HIV prevalences in different years (panel (c),

r=0.94), reflecting the fact that HIV is infectious. This means that the rate of new infections is higher

at higher HIV prevalences, and that the prevalence of HIV in any given year is likely to be higher if

the prevalence of HIV was also high in earlier years.
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4.3. Computational cost of the proposed methodology

In order to allow a comparison of the computational costs between the proposed methodology and the

fixed variance approach, the number of simulator runs was kept the same between the two methods

at each wave. The number of design points per wave are shown in Table 3. The number of design

points in the initial waves were approximately 250, following the recommendation of 10 design points

per input (Andrianakis et al., 2015), a number that was doubled from wave 5 onwards in an attempt

to improve the emulators and increase the space rejection. The simulator was run K = 100 times

at each design point for estimating its mean and variance, the same number as in Andrianakis et al.

(2015) to ensure consistency. The number of emulator evaluations per wave and in total can therefore

be extracted by Table 3 by multiplying the quantities by K = 100.

We recorded the time it took to complete the simulator runs, shown in Table 4 in the row ‘Simulator

running time’. Note that these calculations assume a 100 core cluster (which is the average number

of cores we had at our disposal) - running the simulator on a single core, but otherwise identical

machine, would have taken 100 times as long. Runs in wave 1 took up to 4 times longer to complete

than the runs in subsequent waves. This was because the simulator run times were longer in some

very implausible areas of the input space. This is a common feature of computer models, but is more

prominent in the stochastic case: we may see vastly different run times in different parts of the input

space. Once we were aware of this, say after analysing the wave 1 runs, we could create designs that

exploit this feature, but we leave this for future work.

We also recorded the time required for training the emulators, noting that to avoid local minima

in the estimation of the emulator’s hyperparameters, the optimisation routine was initialised from

20 different starting points (see Andrianakis et al. (2015) for more details). At each wave, the

optimisation scheme was run 20R times where R = 18 is the number of outputs, and therefore the

number of emulators we built. Table 4 also shows the time it took the cluster to run the optimisation

routines, again assuming the existence of 100 cores. The second row of Table 4 refers to the training

of the emulators of the mean, and the third row to the emulators of the variance.

Currently, history matching is not a fully automated procedure, and manual intervention is re-

quired from the user at two stages of the process at each wave. The first is to collect the data from the

cluster and set up the emulators to be trained. The second involves using the ‘newly built’ emulators

to identify the non-implausible space, and select the design points where the simulator is next to be

run. Although large parts of this process could be further automated, we believe that a number of

manual checks can ensure that the history match is converging to the right values, and can save time

in the long run. We estimated that approximately 3 hours of staff (user) time were required at each

of the two stages mentioned earlier. For the fixed variance approach, this time was approximately 2

hours, as variance emulators did not need to be built.

In summary, and as shown in the last row of Table 4, the use of variance emulators allowed
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completing the history match around 70% of the time, taking approximately 9.4 days instead of 13.2.

The total number of simulator evaluations was also brought down to 201700 from 351700, a 43%

reduction.
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5. Conclusion

In this work, we history matched Mukwano, an individual based stochastic simulator that models the

transmission of HIV in the presence of concurrent relationships. The simulator is used for assessing the

impact of concurrent relationships on the incidence and prevalence of the disease and to evaluate this

effect relative to other changes in sexual behaviour. History matching allows calibrating Mukwano

to empirical data, a step that is necessary before using the simulator to infer any epidemiological

parameters or make predictions about the evolution of the disease.

The present paper addressed a shortcoming of history matching when applied to stochastic models,

by explicitly emulating the variance of the outputs, an approach that increased the overall efficiency

of the method. After 6 waves, history matching produced samples that matched all Mukwano’s 18

outputs 70% of the time, while the parameter space was reduced by a factor of 1011. Furthermore,

the variance emulation proposed here reduced the time required by the method to 70% compared to

previous work and also reduced the number of simulator evaluations by 43%.

A study of the non-implausible space and the calibrated outputs provided useful insights into the

simulator’s structure. The constraints, imposed by the empirical data, were traced back to the inputs,

finding that they created distinctive correlation patterns in the non-implausible space. For example,

constraints in the number of concurrent partnerships meant that contact rates and concurrency

parameters could not be simultaneously large or small. Additionally, strong correlations between the

simulator’s outputs at the last wave, illuminated the way the simulator handles specific aspects of

the HIV transmission process. In particular, correlations between HIV prevalence and population

size across time and genders revealed the major route of HIV transmission in the simulator and

links between HIV prevalence and mortality. This type of analysis enhanced our understanding of

Mukwano and can be very helpful in its further development.

Although history matching is a methodology for calibrating slow and high dimensional simulators,

such as Mukwano, it is not geared towards making probabilistic statements about the posterior of the

simulator’s parameters, and instead should be viewed as a) a useful pre-calibration step to identify

a small region of input space where the posterior will reside (while simultaneously checking that the

simulator is fit for purpose, and hence that such a calibration is meaningful) or b) the appropriate

analysis for model development and checking of a model not thought to be sufficiently accurate to

warrant a full Bayesian analysis (see Vernon et al. (2010a) and the associated discussions for more

details). In this way, history matching should not be thought of as a direct competitor to other

calibration methods, but rather as a procedure that will help improve the efficiency of whatever

subsequent technique one wishes to employ. An extension of this method would be to combine it

with probabilistic calibration methods, which would typically be computationally infeasible if applied

to the original input space of a simulator of Mukwano’s complexity, but may be successful if they are

applied to the greatly reduced non-implausible space that results from history matching.
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Table 1. Simulator input parameter description and ranges. These define the input parameter space

over which the history match search is performed.

Number Input description Abbr. Min. Max.
1 Proportion of men in the high sexual activity group mhag 0.01 0.5
2 Proportion of women in the high sexual activity group whag 0.01 0.5
3 Mixing by activity group [ǫ] mag 0 1
4 High activity contact rate (risk behaviour 1) [partners/yr]∗ hacr1 0 10
5 Low activity contact rate (risk behaviour 1) [partners/yr]∗ lacr1 0 2
6 Start year for risk behaviour 2 sy2 1986 1992
7 High activity contact rate (risk behaviour 2) [partners/yr]∗ hacr2 0 10
8 Low activity contact rate (risk behaviour 2) [partners/yr]∗ lacr2 0 2
9 Start year for risk behaviour 3 sy3 1998 2002
10 High activity contact rate (risk behaviour 3) [partners/yr]∗ hacr3 0 10
11 Low activity contact rate (risk behaviour 3) [partners/yr]∗ lacr3 0 2
12 Mean HIV transmission probability per sex act during

primary stage of infection (mean of male to female and
female to male transmission probabilities)

atp 0 1

13 Ratio of male to female/female to male transmission
probabilities

rtp 1 3

14 Proportion of low activity men in high concurrency group lmhc 0 1
15 Proportion of low activity women in high concurrency group lwhc 0 1
16 Male concurrency parameter in high concurrency group

(risk behaviour 1)
mchc1 0 1

17 Female concurrency parameter in high concurrency group
(risk behaviour 1)

fchc1 0 1

18 Male concurrency parameter in high concurrency group
(risk behaviour 2)

mchc2 0 1

19 Female concurrency parameter in high concurrency group
(risk behaviour 2)

fchc2 0 1

20 Male concurrency parameter in high concurrency group
(risk behaviour 3)

mchc3 0 1

21 Female concurrency parameter in high concurrency group
(risk behaviour 3)

fchc3 0 1

22 Duration of long-duration partnerships [years] dlp 5 20
(*) simulator input parameters that codetermine partnership formation. The actual rate of part-
nership formation in the simulator will vary from this due to adjustment for concurrency and
partnership balancing.
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Table 2. Description of simulator outputs and the limits defined as an acceptable

match.

Number Output description Abbr. Min. Max.
1 Population size in 2008 (male) psm 2986 3650
2 Population size in 2008 (female) psf 3374 4124
3 Average male partnership

incidence in 2008 (partners/year)
ampi 0.4 0.489

4 HIV prevalence in 1992 (male) p92m 0.084 0.112
5 HIV prevalence in 1992 (female) p92f 0.096 0.124
6 HIV prevalence in 2001 (male) p01m 0.07 0.09
7 HIV prevalence in 2001 (female) p01f 0.083 0.107
8 HIV prevalence in 2007 (male) p07m 0.06 0.084
9 HIV prevalence in 2007 (female) p07f 0.093 0.119
10 Point prevalence of men with 1

long duration partnership in 2008 (%)
m1l 34.62 42.31

11 Point prevalence of men with 1
short duration partnership in 2008 (%)

m1s 10.86 13.27

12 Point prevalence of men with 1
partnership (either type) in 2008 (%)

m1 37.83 46.24

13 Point prevalence of men with 2+
long duration partnerships in 2008 (%)

m2l 3.38 4.13

14 Point prevalence of men with 2+
short duration partnerships in 2008 (%)

m2s 1.69 2.07

15 Point prevalence of men with 2+
partnerships (any combination) in 2008 (%)

m2 8.66 10.59

16 Point prevalence of women with 2+
long duration partnerships in 2008 (%)

w2l 0.85 1.03

17 Point prevalence of women with 2+
short duration partnerships in 2008 (%)

w2s 0.42 0.52

18 Point prevalence of women with 2+
partnerships (any combination) in 2008 (%)

w2 2.17 2.65

Table 3. Number of design points the simulator was run at each wave. The number of

simulator evaluations is given by the numbers shown in the table multiplied by K = 100.

Wave 1 2 3 4 5 6 7 8 9 Total
Fixed variance 240 242 249 250 516 520 500 500 500 3517
Emulated variance 240 242 249 250 516 520 - - - 2017

Table 4. Total time and breakdown of the tasks involved in history matching Mukwano

using the two approaches. The tasks in the first 4 rows are parallelisable, and figures

assume the usage of a 100 core cluster (2.5GHz, 8GB RAM).

Fixed variance Emulated variance % Reduction
Simulator running time [days] 10.5 7.1 32
Emulator training time [days] 1.19 0.41 -
Var. emulator training [days] - 0.38 -
Total emulator training [days] 1.19 0.79 34
Staff time per wave [hours] 4 6 -
Total staff time [days] 1.5 1.5 0
Total time [days] 13.2 9.4 29
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Fig. 1. Schematic of simulated HIV natural history and antiretroviral treatment.
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Fig. 2. Improvements due to the emulated variance method. Top panel: 100 simulator evaluations in

8 different design points (grey dots), their mean (horizontal black lines) and ±2 standard deviations calculated

with Vs,90 or with the actual variance calculated by the 100 repetitions at each design point (green lines).

The horizontal blue line represents the mean of the empirical data. Bottom panel: a simplified form of the

implausibility calculated with the respective variances of the top panel.
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Fig. 3. Cumulative distribution function of simulator run implausibility IR(x), by wave. Each line

represents the percentage of each wave’s simulator runs with an IR(x) less than the value indicated by the

horizontal axis. The numbers on the curves indicate the wave number.
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Fig. 4. Proportion of the samples drawn at random in the original simulator input space, that
are non-implausible after k waves of history matching. The proposed emulated variance methodology

achieved the same reduction of non-implausible space in 3 fewer waves.
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(a) Minimum implausibility (b) Optical depth

Fig. 5. Examples of minimum implausibility and optical depth plots. Minimum implausibility plots

show an estimate of the minimum implausibility achievable by varying the remaining inputs for different values

of the inputs shown along the x and y axes. Optical depth plots provide an estimate of the log
10

probability of

finding a non-implausible point once the two selected inputs are fixed to a certain value, and hence give the

depth of the non-implausible region at each point.
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(a) Wave 9 (fixed variance) (b) Wave 6 (emulated variance)

Fig. 6. A comparison of the minimum implausibility (below and left of diagonal) and optical depth
plots (above and right of diagonal) for 10 key inputs. All axes vary between 0 and 1 (normalised). For

the minimum implausibility plots, the inputs that appear across the main diagonal vary along the horizontal

axis for the plots that appear to the left of the input names, and along the vertical axis for those that appear

below. For the optical depth plots, the inputs vary across the horizontal axis for the plots that appear above

the input names and across the vertical axis for those that appear to the right.
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Fig. 7. Scatter plots of simulator’s mean output (horizontal axis) against its variance (vertical
axis) for waves 1 (black), 3 (red) 5 (blue) and 7 (green). The 18 outputs are arranged first from left

to right and then from top to bottom. The vertical patches in each panel show the empirical data on the mean

outputs with ± 2 standard deviations derived from the observation error and model discrepancy at wave 6.
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Fig. 8. Scatter plots of mean output values from simulator runs at wave 7. The large correlation

between outputs is an indication of the way the simulator models the HIV transmission across sexes and

across time (see text).
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