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Abstract
Weconsider twominimalmodels of active fluid droplets that exhibit complex dynamics including
steadymotion, deformation, rotation and oscillatingmotion. First we consider a droplet with a
concentration of active contractilematter adsorbed to its boundary.We analytically predict activity
driven instabilities in the concentration profile, and compare them to the dynamicswe find from
simulations. Secondly, we consider a droplet of active polarfluid of constant concentration. In this
systemwe predict,motion and deformation of the droplets in certain activity ranges due to instabilities
in the polarisation field. Both these systems show spontaneous transitions tomotility and deformation
which resemble dynamics of the cell cytoskeleton in animal cells.

1. Introduction

In animal cells,motility andmorphology are strongly coupled and are largely due to the activity of the cell
cytoskeleton. Research into these areas is broad and hasmany applications, from studyingmetastatic cancer cells
towoundhealing. In order tomimic aspects of these systemswemodel, both analytically and numerically,
examples of active cytoskeletalmaterial confined to droplets. An activematerial is defined as driven out-of-
equilibriumby the internal energy of its constituent particles [1].We use the hydrodynamicmodel of an active
polarfluid outlined in [2–4] tomodel the behaviour of such amaterial at long length and time scales.

Over the past decade there have been a number of calculations of instabilities and non-equilibrium steady
states in active liquid crystals; thin or 2D flat films [2, 5–9], thin cortical layers [10–13], confined in emulsion
droplets or vesicles [14–21], and simplifiedmodels of animal and plant cells [22–27]. In this paper wemodel
deforming active droplets immersed in a passive fluid using linear perturbation theory. Bymaking justified
assumptions, we are able to predict non-equilibriumphase transitions in both of the systemswe consider, and
predict how the droplet deformation couples to these. These analytical calculations are presented for the three-
dimensional case and also repeated for the two-dimensional analoguewherewefind qualitatively similar results.
Numerical simulations use the two-dimensional Immersed Boundarymethod used in [28] and are directly
compared to the two-dimensional analytical calculation.

Themodels presented here are relevant to active systems in vitro (constructed using techniques in [29–31]) as
wellmimicking aspects of cell dynamics. The two cases we consider correspond to two limits of active
cytoskeletal behaviour (see figure 1) that represent theminimumdegrees of freedom required to observe
interesting out-of-equilibriumdynamics. In both cases we consider a 1-componentmodel used originally in [2],
which allows us to investigate the couplingwith droplet shape dynamics analytically. The linear stability analyses
are restricted by assumptions which enable an analytical understanding of themechanisms involved in
producing the observed behaviour in numerical simulations.

Firstly, we consider an isotropic layer of contractile activematerial confined to an interface between two
fluids, which has physical similarities to the actomyosin cortex in cells. The stresses generated are confined to the
plane of the interface giving rise toflows in the surrounding fluid and deformation of the interface itself.
Interestingly, diffusion of the active particles through the bulk can result in a change inwhichmode of the
perturbation has lowest critical activity, from a single peak instability driving dropletmotion to highermodes
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which produce symmetric deformation. Furthermore, simulations show that advection through the bulk can
stabilise suchmodes. This suggests that droplets with an active interface could spontaneously deform and
possibly divide due to the feedback from thefluid flow.

Secondly, we consider a highly ordered active polar liquid crystal confined inside afluid droplet. In this case
the polarisation gradients direct the internal stresses giving rise tofluid flow. A polar anchoring condition at the
interfacemeans that the deformation of the droplet and polarisation field are strongly coupled.Wefind in this
case there is a separation of swimming and stationary deformingmodes, such that extensile activity destabilises
the defect position and results in a swimming drop, whereas a contractile activity stabilises the centred defect
position and gives rise to deformations of the interface.

2. Activefluid interface

In this sectionwe consider afluid droplet coated by active particles on its interface that are isotropically ordered.
Such systems have been found to self-organise in in vitro experiments using reconstituted active cytoskeletal
material contained in vesicles or droplets [32, 33]. These experimental systems are a useful tool for
understanding themore complex dynamics of cells. Themodel in this sectionmakes predictions of interesting
active phenomena including symmetry breaking, and droplet deformation, that are relevant to thefield of cell
mechanics.

2.1.Model
Weconsider afluid droplet described by an interfacial surfaceΣ separating the contained fluid domain W0 and
externalfluid domain W1with viscosities h0 and h1 respectively.We define a concentration of activematter
q f( )c t, , on the interfaceΣ, which alters the droplet surface tension γ such that g g z= - -c Bc 2c0

2 . g0 is
the bare surface tension, zc is the activity (z < 0c for contractile) andB is a passive repulsion force. This higher
order repulsive term represents passive pressure, similar to that in [12], which parametrises the compressibility
of the activefluid on the interface.We denote the effective surface tension g g z¢ = - -c Bc 2c0 0 0 0

2 , which is
the value of γ in the stationary state.

The force density on the droplet interface is then: kg g= + ˆ ( ) ˆF n ts i, where q f=ˆ ˆ ( )n n t, , is the outward
surface normal, q f=ˆ ˆ ( )t t t, ,i i are the orthogonal surface tangent vectors, k =  · n̂ is the local curvature,
and  = (ˆ · )ts i is the surface gradient. It is useful to define the effective activity z z= +˜ Bcc 0 which defines
the scale of the force F for small deviations of the concentration c from c0. Thus, the interface has net
contractility for z <˜ 0.

The only forces acting on the systemoriginate at the droplet surfaceΣ, with position q f= ( ) ˆR eR t, , r

assuming this is single-valuedwith respect to the angular coordinates (θ,f). Thus, the resulting force density in
thefluid is q f d q f= -( ) [ ( )]f Fr t r R t, , , , ,ext .We ignore inertia taking the lowReynolds’number limit,
Re=0, thus the incompressible fluid flow ( =· v 0) is described by Stokes’ equation
h  + -  =v f P 0n

2 ext , where n=0, 1 denotes the domain W0 or W1, q f= ( )v v r t, , , is thefluid velocity,
q f= ( )f f r t, , ,ext ext denotes any external force densities and q f= ( )P P r t, , , is the hydrostatic pressure.

We take the limit of a zero-thickness interface and assumeflow and stress continuity between the twofluids W0

Figure 1. 2D schematic of (a) active fluid interface: active concentration c on the droplet interface coupled to the internal
concentration ρ. (b)Active polar droplet: constant density of active filaments with local average polarisation p (red arrows). Blue
arrows indicate active contractile force dipoles.
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and W1. Thismeans the active particles act as an active surfactant, rather than a thin viscous layer (as in [8, 11–
13, 26, 27]), which allows us to study the dynamics of deformation in a 3D viscous environment analytically.

The evolution of the surface concentration cwith respect to time t is:

r= - +  - +˙ · ( ) ( )vc c D c k c k , 1s b s b
2

off on

where = ¶ ¶ċ c t , q f= =( )v v r R t, , ,b is the interface flow velocity,D is the diffusion constant for the active
particles onΣ, and kon,off are binding and unbinding rates of the particles to the interface. The concentration of
unbound particles in the bulk of the drop is denoted r r q f= ( )r t, , , . Binding occurs at the interface wherewe
denote the concentration of unbound prticles r r q f= =( )r R t, , ,b . Note that kon has units of velocity, as it
contains the adsorption depth parameter.We assume that the active particles are insoluble in the external fluid,
and so the evolution of the bulk concentration ρ is given by:

r r r= -  + r˙ ( · ) ( )v D 22

with the boundary condition r r = -r ( · )nD k k con off at r=R, to ensure conservation ofmass. The
parameterDρ is the bulk diffusion constant of the active particles. Herewe assume that the active particles only
generate stresses at the interface, so the bulk concentration acts as a buffer to recycle the surface concentration.

2.2. Linear stability analysis
In this sectionwe present the results of a linear perturbation to the stationary ground state of the droplet. The
system is in a stationary (velocity =v 0) steady state when the interface is spherical (fixed radius =R R0)with a
homogeneous concentration of active particles ( =c c0). Then the bulk concentration is r = k c k0 off 0 on inside

the drop, and the hydrostatic pressure inside is g z= + -( ˜ )P P c R2ext 0 0 0 where Pext is the stationary state
pressure in the externalfluid.We perform a linear stability analysis by applying a small perturbation to the
variables defined at the interfaceR and c of the form: d q f= + å å=

¥
=-˜ ( ) ( )g g g t Y ,l m l

l
lm l

m
0 1 , whereYl

m are the
spherical harmonic functions and dg glm 0 . Tofirst order, the resulting flow is given by Lamb’s solutions for
flow around a sphere, which can be expressed as vector spherical harmonics [46]. Solving the Stokes equation
withflow and stress continuity conditions at the droplet interface gives expressions for d ( )vlm

i (as defined in [34]
and supplementary information appendix A) in terms of dclm and dRlm. The perturbation on the interface is also
coupled to a perturbation of the internal concentration ρ such that

å år dr= +
=

¥

=-

( )
⎡
⎣⎢

⎤
⎦⎥

k c

k
r t Y, .

l m

l

l
moff 0

on 1 1

Weobtain analytical solutions for the stability by assuming a quasistatic solution for dr (taking r =˙ 0). This
assumption corresponds to a fast relaxation of the bulk concentration ρ compared to the timescale of evolution
of the surface concentration c. At linear order, the solution for dr simply satisfies the diffusion equationwith a
flux condition at the boundary:

dr
d

=
+r

⎛
⎝⎜

⎞
⎠⎟

k R c

D l k R

r

R
.

l
off 0

on 0 0

This solution enables us to predict the effect of the feedback by diffusion through the bulk analytically. The full
solutions to the coupled linear equations are solved exactly with Bessel functions as in [11], however these
solutions do not permit an analytical calculation of the stability condition, hencewe do not consider themhere,
but instead compare our approximate analytical solutions directly with the full dynamical simulations.

Finally, we evaluate the coupled systemof dynamic equations for the concentration (equation (1) in
section 2.1) and radius = ^v nR .b (the normal velocity at the interface) tofirst order in the perturbations.We
find instabilities by looking for positive eigenvalues of the stabilitymatrix that relates ċ and Ṙ to dc and dR to
first order in the perturbations (see supplementary information appendix A for further details of this
calculation). From this analysis we find an instability threshold for the effective activity z a<˜

I where

a
h

= - + +
+ +

r

r

˜ ( )
( )( )

( )
⎛
⎝⎜

⎞
⎠⎟c

l
D

R

D R k

l D l k R

2
2 1

1
, 3I

0 0

0 off

on 0

where h h h= +˜ ( ) 20 1 is themean viscosity of the internal and externalfluid.We see that aI is independent of
the effective surface tension g¢0 which shows that the coupled droplet deformation does not contribute to the
symmetry breaking threshold. However, the correspondingmaximumeigenvalue of the stabilitymatrix does
weakly depend on the effective surface tension g¢0 for >l 1. This weak positive relation suggests that the
instability should evolvemore quickly in large surface tension dropswhen >l 1. In this linear limit there is no
contribution from the advection term in (2) and the second term in (3) (proportional to the binding rates) always
increases the threshold. This is because the binding terms allows the concentration on the interface to be recycled
by unbinding and diffusing into the bulk of the drop.
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The stability analysis shows how the droplet will initially deform. This deformation is characterised at short
times by themaximally unstablemode lmax , which can be found exactly when binding is not included (see
figure 2 and supplementary information appendix A). At linear order the instability is independent of the
spherical harmonic parameterm. Generically, lmax predicts that as contractile activity is increased, themore
concentration peakswill be initially formed on the droplet surface (figure 2). The total droplet activity scales with
droplet size, and so lmax ismore sensitive to the activity parameter z̃ in larger droplets. Thus it is easier to observe
modeswith small l in smaller droplets, where the dynamics are less sensitive to small changes in the activity. Note

that only the l=1mode (k=1 in 2D) produces net propulsion of the droplet (i.e. ò ¹
S

n̂R Sd 0 ), so thefirst
unstablemode corresponds to front-back symmetry breaking of the droplet profile.

As shown in supplementary information appendix A, one can approximate themaximally unstablemode
lmax analytically by solving =Ṙ 0 for dRlm. This approximation imposes thatR always assumes the steady state
shape for a givenfixed concentration perturbation dclm (plotted infigure 2). Physically, this assumes that the
shape dynamics aremuch faster than the concentration dynamics, and so can be taken to be quasistatic.
Interestingly, while this assumption does not represent the full coupled dynamics of dclm and dRlm, it does
reproduce the critical activity threshold, and also approximates themode structure well.

When binding is included ( ¹k 0off ) the dispersion relation changes, and aswe see from (3) the active
threshold is nonlinear in l, and hence higher (non-swimming)modes can have lower activity thresholds than the
l=1 (swimming)mode.

Within the assumptionsmade here, the binding and unbinding dynamics always increase the activity
threshold.We see that if the binding is fast rk Don  , the critical activity takes the same form as the 1Dmodel
considered in [11]where the active threshold is alwaysminimal for l=1 and is proportional to the effective
diffusion parameter = + r˜ ( )D Dk D k kon off on. However, for fast bulk diffusion, geometrical effects become

Figure 2.Maximummode number lmax plotted against activity in normalised units for increasing values of the droplet radius. Dashed
lines shownumerical solution and solid lines show analytical approximation using =Ṙ 0. Parameters used: =c 10 , g = 10 ,
D=0.05, h h= = 10 1 and =k 0off . Insets showflow (blue arrows) and active concentration c (colour gradient frompurple (low) to
yellow (high)) to linear order on the perturbed interface for a (i) l=1mode and (ii) l=2mode respectively. Deformation of the
interface in (ii) is calculated by solving =Ṙ 0 for dR given the formof dc , and is exaggerated for visibility using small g ¢0.
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important. A single peak in the interfacial concentration gives rise to a concentration gradient in the bulk driving
diffusion away from it. As the number of peaks on the interface increases the concentration gradients aremore
localised to the surface, and diffusion has a smaller effect. In this regime, theminimumcritical activity can
correspond tomulti-peakmodes ( >l 1)when the contribution frombulk diffusion is significant. This is
analogous to thefindings in [8] for a one-dimensional activefluid consisting of two-components.

The droplet shape instability is enslaved to the concentration (as aI is independent of γ), sowe can estimate
how the shapewill deformdue to certain concentration distributions on the interface by solving =Ṙ 0 for dR
(for >l 1). Plotted infigure 2 is an example of these deformations and the associated flow to linear order. In
order to calculate the resulting steady state dynamics we require numerical simulation.

2.3. Results and comparisonwith simulations
We test these analytical results against the 2D simulations developed in [28]. These use an Immersed Boundary
method [35, 36] to represent the active interface explicitly as a Lagrangianmeshwhich is coupled to the
Cartesianmesh for the 2D fluid via a numerical Dirac delta function.

Repeating the stability analysis in 2D,we now take perturbations of the form = + å q
=

¥g g ek
k

0 1
i . The

calculation reveals that surface tension gradients do not deform the drop in 2D (as found in [37]) however the
concentration dynamics remain very similar.We compare our predictions in 2D to the results of the Immersed
Boundary simulations infigure 3.We run simulations varying the activity, binding rate (taking =k koff on) and
diffusion parameters. At zero bindingwe observe two steady phases, a stationary state and a steadymoving state
3(a) separated by the threshold aI,2D which agrees well with the expected analytical result

a
h

= - +
+
r

r

˜
( )

( )
⎛
⎝⎜

⎞
⎠⎟c

Dk

R

D R k

D k k R
4 . 4I,2D

0 0

0 off

on 0

Thismoving steady state due to a surface tension gradient is also observed for the the self-propelled droplets
studied in [37, 38]. The equations ofmotionwe use (seeModel section) are similar to those for the self-propelled
droplets studied in [37, 38] and hence some of the same dynamical behaviour is observed. However, ourmodel
predicts new stable states and instabilities corresponding to pure deformation and division as discussed below.
This arises due to the advection and diffusion of active particles through the bulk of the drop. Unlike in [37, 38]
themodel here conserves the active particles within the dropmaking itmore relevant to cell cortex dynamics.

Figure 3.Phase diagramof 2D simulation results for an active isotropic interface, each dot represents a single simulation run. Insets
show steady state flow (blue arrows) and concentration fields (colour density, black to yellow) for the different phases. Low values of
koff transition from stationary (black squares) tomotile (red circles)with a single peak in concentration (shown in (a)). Feedback from
the internal concentration produces intermediate oscillatory states (magenta stars) and a stationary 2-peak state (blue triangles). Solid
lines of increasing gradient showpredicted activity threshold formodes k=1, 2 (red, blue). Simulation parameters: =c 10 , =R 10 ,
g = 10 ,D=0.05, =rD 0.5, h h= = 10 1 .
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Wenext calculate themaximummode number kmax (see supplementary information appendix A). In the
regimewherewe predict =k 2max , our simulations show initial formation of 2 peaks in droplet concentration.
Without binding, these peaks are unstable and always coalesce to formone (as predicted for aflat active viscous
layer in [8]). In this case, the droplet swims persistently and steadily with the concentration peak at its rear. A
decomposition of the Fouriermodes of this steady state shows that the farfieldflow is puller like, i.e. its dipole
moment is such that it pulls the surrounding fluid inward and pushes it outward along the axis perpendicular to
itsmotion. The activity threshold predicted compares well to that in the simulations for small values of the
binding. At larger binding rate, the interior dynamics is not completely diffusion dominated, and the critical
activity is underestimated due to the approximation of r =˙ 0. Aswe increase koff and z̃ we see that eventually
the droplet becomes immobile with 2 stable peaks in the concentration (seefigure 3). In the intermediate regime
the droplet undergoes a ‘wandering’motion as the concentration profile oscillates between a single peak and two
peaks. Equation (4) predicts a non-trivial k dependence of the active threshold as binding terms become
important. For the parameters used infigure 3, this can be seen by the crossing of the lines for the k=1 and
k=2modes,meaning that theminimumcritical activity is not necessarily for the lowest kmode (k= 1). Note
this is very similar to the prediction in 3D in (3).

The simulation results infigure 3 demonstrate that as the binding rate increases, advection of the
concentration through the droplet bulk becomesmore important. The advection can stabilise the two peaks at
diametrically opposite points on the circle, resulting in a stationary droplet. However, we see that in 2D the drop
does not deform, as the radial forces from the activity gradients are always cancelled by the hydrostatic pressure
P. This is not the case for the full 3D systemwherewe expect concentration gradients to deform the droplets as
shown infigure 2.Nonetheless, the 2D simulations show that advection can stabilise the 2 peak configuration,
which in 3Dwould result in symmetric deformation and potentially division of the droplet. Such a 3D
simulation is beyond the scope of this work, but would be useful for quantifying the full 3Dmorphology. Recent
work has shown that non-adherent cells exhibit a swimming state similar to themotion described here, and so it
would be of interest to test in future workwhether the steady state shape in 3D for themodel here resembles the
‘pear shape’ observed in [27, 39].

3. Active polarfluid droplet

In this section, we consider a droplet filledwith an active polar liquid crystal of constant density everywhere.
Realising this system experimentally in droplet systems requires high concentrations of activematerial so that
the polar to isotropic phase transition is localised to the droplet centre. This has been achieved in vitro for
microtubule based active nematics but only in thin films thus far [30, 31]. In these systems themeasured order
parameter is approximately constant everywhere except in the vicinity of topological defects. Thuswe consider
the limit where the activefluid is strongly polarised and restrict the analysis to only the orientational degrees of
freedomof the active liquid crystal, and do not consider the density or polarisationmagnitude degrees of
freedom.

3.1.Model
Weutilise themodel of an active polarfluid developed byKruse et al in [2–4]which has similarities to other
continuummodels of the cytoskeleton on surfaces (such as [40, 41]).We consider the case where the activefluid
has strong local ordering and is far from the isotropic phase so that =∣ ∣p 1 everywhere (except at defects where
p is undefined). This approximation is commonly used tomodel active and passive liquid crystal systems
analytically.

In theRe=0 limit the total stress in the active polarfluid, s s s s= + +ij ij ij ij
tot visc dist act, has viscous, distortion

and active contributions respectively where:

s h h

s
n

s

s z

= = ¶ + ¶

= + + - +

=-

( )

( ) ( )

u v v

p h p h p h p h

p p

2 ,

2

1

2
,

.

ij n ij i j j i

ij i j j i i j j i ij

ij i j

visc
0,1

dist e

act

The viscous stress is the response toflow assuming aNewtonianfluid. The distortion stress is that of a passive
polar liquid crystal due to deviations infilament alignment, where the perpendicular part of themolecular field

d d d= - -( )ph F p pi j ij i j acts tominimise the free energy functional ò=
W+S

F rfd3 with respect to p, given

=∣ ∣p 1. The Ericksen stress, s d d= - ¶ ¶ ¶ - ¶[ ( ( ))]( )f f p p p pij ij j n ij n k i k
e , is a generalisation of the hydrostatic

pressure for complex fluids. Finally, the active stress represents the active dipolar force and thus is second order
in p.
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The free energy functional F gives the equilibriumproperties of the system.Here for simplicity we use the
one constant approximation of the Frank free energy:

ò ò= ¶ +
W S

( ) ( )F r
K

p Sfd
2

d , 5i j s
3 2

whereK is the elastic constant and =∣ ∣p 1. Sincewe aremodelling a finite droplet, the surface terms are
important.We consider normal anchoring of thefilaments to the interface, with surface distortion free energy
density = -( · ˆ )p nf W 1s

2. This formof the surface free energy includes the spontaneous splay termwhich is
allowed in polar liquid crystals [42].

The polarisation flux is

w n= -  - - +
G

˙ ( · ) · · ( )p v p p p
h

u , 6

where w = ¶ - ¶( )v v 2ij i j j i andΓ is the rotational viscosity.

3.2. Linear stability analysis
Wecontrast themodel of an active interface to that of a droplet of active polar fluid of constant density. In this
case, rather than the concentration of active particles, the important degree of freedom is the polarisation vector
p denoting the average direction of the contractile filaments in thefluid.

We calculate the linear stability of the droplet in the limit of strong anchoring  ¥W in order to study the
effects between the coupling of dropletmorphology and polarisation. This equates to the boundary condition
= ˆp n at =r R. In the case of weak or no anchoring, instabilities can occur for both extensile (z > 0) and

contractile (z < 0) active polar drops as shown analytically in [43] and in simulations [15]. The condition of
fixed polarisation at the interface inhibits certain deformations of the polarisation field at low activities and so
the preferred deformationmodes are thosewhich can couple to the droplet deformation. This was
demonstrated in 2D simulations of active nematic drops in [18]. Herewe explain thismechanism analytically in
a 3D fluid drop by linear stability analysis. The polar nature of the anchoring produces a ‘radial hedgehog’
topological defect at the droplet centre (or a radial defect with+1winding number in 2D), giving a simple
analytical description of the stationary state. Thuswe are able tomake analytical predictions about spontaneous
symmetry breaking in these systems even in the general 3D case.

Unlike the case of an active interface, the activefluid here fills the drop, and hence active and passive stresses
are generated in the bulk. The stationary steady state is given by the polarisation = ˆp r , = ˆR rR0 , and =v 0.

To perform a general linear stability analysis, onewould need to consider generic perturbations to both the
polarisation field and interface and study the coupled equations for their evolution, this is not analytically
tractable in this case. However, we can perform restricted perturbations thatwe expect to be representative of the
dynamics in a particular limit.We consider the case where the polarisation field is enslaved everywhere to the
shape of the boundary by the anchoring condition. This corresponds to the limit where bulk instabilities in the
droplet are suppressed by its size (i.e. small droplets). In larger droplets, (or equivalently for smallerK ) the
dynamics of the polarisation field becomesmore independent of the anchoring condition, andwe expect this
approximation to break down.

Due to the symmetry of the stationary state, wefirst need to consider the special case of the translational
mode of perturbation, corresponding to the l=1 spherical harmonicmode.Without loss of generality we
consider a perturbation along the z-direction (m=0). Thismode implies a translation of the hedgehog defect
away from the droplet centre. If we assume that the defect has some fixedfinite core radiusRc thenwe can treat
the liquid crystal as contained between two boundary conditions, one at the defect =r Rc and one at the droplet
interface d q= - ( )r R z cos0 , where dz is a small displacement of the defect position from the droplet centre
along the z-direction. The calculation is done in the reference frame of the defect so that it coincides with the
origin of our coordinate system. In the equilibrium case (z = 0), we canwrite a polarisation field tofirst order
thatminimises the bulk free energy in (5) by solving =h 0 for these boundary conditions:

d q= -
-
-

q= ( )
( ) ( )p e ez

r R

r R R
sin . 7l r

c

c
1

0

Thismethod equates the defect to a small colloidwith (polar)homeotropic anchoring, and in the strong
anchoring case we expect the free energyminimum to correspond to the defect being positioned at the droplet
centre aswe observe in simulations, and is reported in [44, 45]. Using the polarisation in equation (7)we can
estimatewhat the bulk free energy increase will be for such a deformation (details in supplementary information
appendix B)
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where = R Rc0 0 is assumed small in the final approximation of the equation. ThisDF is positive for all ò,
suggesting that the free energyminimumcorresponds to the defect being positioned at the droplet centre. Note
that this polarisation field is only valid tofirst order in dz and so higher order terms could affect the formof the
quadratic termhere.

We now introduce a small activity z , such that equation (7) remains a valid approximation for the formof
the polarisation field, thenwe see that this gives rise to active forces in the drop.We solve the force balance
equations (omitting passive contributions, see supplementary information appendix B) tofind the active
contribution to theflow.We then integrate tofind the active contribution to the velocity of the defect core vc and
droplet vdrop. The relative velocity of the defect is then:

zd
h h h h

h h h
D º - »

+ - +
+

( ) ( )
( )

ˆ ( )


v v v ez
2

2 3 2
. 9c zdrop

0 1 0 1

0 0 1

We see that extensile activity (z > 0) always results in a relative defect velocity that is in the same direction as the
initial defect displacement (along êz), as shownby figure 4. This implies that extensile activity will destabilise the
defect from the centre and give rise tomotion of the droplet as awhole (which to linear order is also along êz).
Conversely, we expect contractile activity to stabilise the defect at the droplet centre, as the flows resulting from
contractile activity (z < 0) act to restore the defect back to its stationary position at the droplet centre.

Thus, within the assumptionsmade above, one can predict that the active polar droplet will break
translational symmetry spontaneously above some finite activity. Thismode of symmetry breaking is
independent of surface deformations at linear order, and so its critical activity threshold should not depend on
the droplet surface tension.Hence the critical activity thresholdwill only depend on the increase in the passive
free energy (equation (8)), which goes to afinite value in the limit of a point defect and scales as the inverse of the
droplet size. In general, the parameter ò is difficult to define, which is a consequence of the assumption of

=∣ ∣p 1, which breaks down around the defect. This can be avoided by using a Landau-DeGennes type free
energy description for the passive part of the dynamics such that there is an polar-to-nematic phase transition at
the centre of the droplet. However, such an approach is not analytically tractable, as it requires solving nonlinear
partial differential equations for the radial dependence of p. Qualitatively though, the predictions here are
consistent withwhat is observed in the simulations.

For perturbationmodes >l 1 theflow at the originwill always be zero, and so one can assume that in the
strong anchoring limit the defect will remain centred at the origin.We again require an assumption for the r-
dependence of the polarisation perturbation. Taking R 0c0 , we canwrite a general form as d µp rn for
arbitrary n 0. Importantly, for all n, the activeflows always give rise to an instability for z < 0 (contractile).
Considering only active flows, themaximally unstable perturbation is for n=0. Thus, belowwe consider only
the results of thismode, which allows us to consider the dynamics in the limit where the filament polarisation at
the interface and in the droplet are strongly coupled.However it comes at the cost of reducing the quantitative

Figure 4.Active part of theflow field (blue arrows) to linear order in the perturbations for: (a) defect position (inner sphere) displaced
in the vertical directionwith z > 0 (extensile activity); (b) l=2mode perturbation of the interface assuming strong anchoring of the
polarisation fieldwith z < 0 (contractile activity). The perturbations aremade artificially large for visibility here.

8

New J. Phys. 18 (2016) 123016 CAWhitfield andR JHawkins



power of our predictions, and is an important restriction to the dynamics considered. Note, in two-dimensions,
the assumption n=0 gives rise to an infinite passive contribution to the dynamics (proportional toK ) and so
we use n=1, which appears consistent withwhat is observed in simultions.

In the strong anchoring limit, the polarisation has tomatch the perturbed interface normal at r=R tofirst
order, such that

å å d
q f= - 

=

¥

=-

ˆ ( ) ( ( )) ( )
⎡
⎣⎢

⎤
⎦⎥p r

R t

R
r Y , . 10

l m l

l
lm

l
m

2 0

Wecalculate the resultingflows tofirst order in dR. Since p is enslaved to the deformationwe then only need to
consider the radius dynamics given by Ṙ (for details see supplementary information appendix B).

In this strong anchoring limit we find that the droplet is unstable if z a< < 0P , i.e. the activity threshold,
aP, is always contractile. The threshold aP increases linearly with γ andK. Repeating the linear stability analysis
calculation in 2D shows the same qualitative prediction, where this timewe take d µp r as this is the leading
order contribution allowed. The analytical expressions for the activity threshold are given in supplementary
information appendix B and a full discussion of the eigenvalues of the general stabilitymatrix (for weak
anchoring) can be found in [43].

The result of this analysis is somewhat surprising, in this strong anchoring limit we expect the l=1mode to
be unstable to extensile activity, whereas the highermodes of deformation are unstable for contractile activity.
This suggests that, when our assumptions hold, we should see translational symmetry breakingwith the defect
moving to the droplet front for an extensile drop and symmetricmodes of deformation for a contractile drop
(see figure 4). This active threshold scales linearly withK and g0, demonstrating the importance of the coupling
of themorphology to the polarisation field. Contrast this to the case of the active interface where the shape does
not affect the threshold for a phase transition.

This contractile instability can be understood physically by considering the splay in the drop due to
perturbations in the interface curvature.High curvature couples to increased splaywhich couples to outward
flow, further increasing the curvature of the interface and hence the splay. A sketch of this is given infigure 5.

3.3. Results and comparisonwith simulations
In the 2D simulations (see figure 6)we see symmetry breaking corresponding to the k=1mode for extensile
activity resulting in a steadymotile state, as predicted by the stability analysis. This is characterised by the defect
centremoving to the front of the drop and is independent of the boundary deformation (and hence g0). Due to
the extensile nature of the activity this droplet is a pusher, pushing fluid out along its axis ofmotion and thus
elongating parallel to itsmotion.

Conversely contractile activity stabilises the defect at the droplet centre andwe observe a k=2mode
instability characterised by deformation of the droplet into a ‘dumbbell’ shape. It is also observed that this phase
behaviour breaks down as the value of K R0

2 is reduced. In this limit the distortions in the droplet bulk are not

Figure 5. Spatial change in splay induced by boundary pertubation. Dotted line indiciatesR0 and solid line the perturbed interfaceR.
Increased splay in regions of higher curvature drive outward flows, coupling to further increase in boundary curvature. The black
arrows indicate polarisation directionwhile the colour gradient indicates the splaymagnitude ∣ · ∣p relative to its value in the
stationary state.
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strongly coupled to those at the interface and somore complex distortions can occurwithout significant droplet
deformation.Our analytical calculations do not predict this as we assume a form for the r-dependence of the
polarisation such that it is strongly coupled to the curvature. This behaviour goes beyond the scope of the
analytical work here as this corresponds to a transition to an ‘active turbulence’ state, as numerically simulated
in [28].

Finally, we also observe rotational steady states in the simulations (for extensile activity when using
n = -1.1)which can be characterised exactly by rotationally invariant distortions of the polarisation field [2, 3],
but these are not predicted for the parameter range used infigure 6.

4.Discussion

Wehave used analytical linear stability analysis and numerical simulation to characterise instabilities in active
droplets and their resulting non-equilibrium steady states. Recent advances in experimental techniquesmean
that active gels of cytoskeletalmaterial can be produced in vitro. The predictions of our active interfacemodel
could be tested by adsorbing an isotropic actin gel onto the interface of an emulsion drop containingmyosin and
ATP [32, 33].We predict an activity threshold for spontaneousmotion, and a further continuous transition to a
stable symmetric statemediated by advection ofmotors through the droplet bulk.We predict that in 3D this
symmetric configurationwill be coupled to deformation of the drop, however this cannot be observed in the 2D
model.

The active polar dropmodel we use only predicts some of the dynamics of a real active polar drop system as it
ignores the density and orderingmagnitude degrees of freedom.However, thismodel system gives us an insight
into the intrinsic instabilities when droplet deformation and filament polarisation direction are strongly
coupled. In particular, there is a contractile activity threshold that is linearly dependent on surface tension, above
which the droplet spontaneously deforms into a characteristic dumbbell shape.We also see persistentmotility in
the case of extensile activity such that the droplet acts as a pusher, compared to the puller typemotion exhibited
in the active isotropic interfacemodel. This is consistent with previous active dropletmodels that show
contractile activity resulting in droplets which are pullers and extensile activity resulting in pushers
[13, 15, 18, 20, 21]. An interesting future extension of this workwould be to consider coupling between both of
the active phases studied herewithin a single drop.

Figure 6.Active polar drop stability diagram. Stationary state (white, square dots), spontaneous symmetric deformation (blue,
triangular dots) and spontaneousmotility (red, round dots) are observed. Dashed line shows analytical prediction from linear stability
analysis. Insets show the polarisationfield p (black arrows) inside the droplet following symmetry breakingwith defects labelled by
blue dots. Note that due to the simulationmethod, the polarisation field in the simulations changes continuously from =∣ ∣p 1 inside
the drop to =∣ ∣p 0 outside, hence the polarisation is defined everywhere in (i) and (ii). Parameters used:K=0.1, =R 10 ,
h h= = G = 10 1 ,W=50 and n = 1.1.
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Thefinite active systemswe study improve our understanding of how confinement and deformation affect
steady state dynamics. Additionally, we see the importance of feedback, driven by advection through the droplet
or the internal orientational order, resulting inmore complex dynamics. These results should prove useful in
characterising future experiments on in vitro cytoskeletal networks and be useful in developingmore complex
models ofmulticomponent active systems in nature.
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