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The decoy-state scheme is the most widely implemented quantum-key-distribution protocol in practice. In
order to account for the finite-size key effects on the achievable secret key generation rate, a rigorous statistical
fluctuation analysis is required. Originally, a heuristic Gaussian-approximation technique was used for this
purpose, which, despite its analytical convenience, was not sufficiently rigorous. The fluctuation analysis has
recently been made rigorous by using the Chernoff bound. There is a considerable gap, however, between the
key-rate bounds obtained from these techniques and that obtained from the Gaussian assumption. Here we
develop a tighter bound for the decoy-state method, which yields a smaller failure probability. This improvement
results in a higher key rate and increases the maximum distance over which secure key exchange is possible. By
optimizing the system parameters, our simulation results show that our method almost closes the gap between
the two previously proposed techniques and achieves a performance similar to that of conventional Gaussian
approximations.
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I. INTRODUCTION

In theory, the quantum-key distribution (QKD) [1,2] has
been proven to be information-theoretic secure against eaves-
dropping attacks [3–5], even if we assume that the attacker,
Eve, has full control over the channel. The security of the QKD
stems from the complementary relation of noncommuting
measurement operators in quantum mechanics [6]. Due to the
uncertainty principle, any of Eve’s interference that gains her
some information about the key would inevitably introduce
disturbance. The users, Alice and Bob, can then bound the
information leakage to Eve by quantifying the disturbance. The
latter requires collecting data from which certain parameters
of the system, such as bit and phase error probabilities [5], can
accurately be estimated.

In practice, the required probabilities above cannot be
directly measured. Instead, one can only measure the rates,
i.e., the frequencies of occurrence. If the QKD system runs
for an infinitely long time, the rates will converge to the
corresponding underlying probabilities. That is, the parameters
needed for data postprocessing can be measured accurately
when the data size is sufficiently large. In reality, there are
deviations between rates and probabilities due to statistical
fluctuations. A finite-key analysis accounts for these deviations
and derives a security parameter, the failure probability, for the
final key. With the aid of the finite-key analysis, the security
of the QKD can also be extended to its composable security
definition [7,8]. The finite-key analysis of QKD systems with
idealized single-photon sources and detectors is well studied
in the literature [9]. Here we develop tight bounds for the
secret key rate in practical scenarios when decoy states are in
use [10–12].

A perfect single-photon source is hard to attain in prac-
tice. Alternatively, a highly attenuated laser, described by
a weak coherent state, is widely used in the QKD. The
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multiphoton components in the coherent state would introduce
security loopholes in practice [13,14]. Such imperfections
in realistic devices were originally taken into consideration
in the Gottesman-Lo-Lütkenhaus-Preskill (GLLP) security
analysis [15]. By directly applying the GLLP analysis to
the coherent-state QKD system, however, the performance,
measured by key rate and maximum secure transmission
distance, is rather limited [16]. A clever twist to the weak-laser
QKD, known as the decoy-state method, was introduced
in [10–12], which, fortunately, can enhance system perfor-
mance to a level comparable to that of a perfect single-photon
source. The decoy-state method is now widely used in QKD
systems [17–22].

In the decoy-state method, we estimate the channel pa-
rameters by sending two types of states. One is called the
signal state, which is used to transmit keys similar to the
single-photon source in the ideal situation. The other is called
the decoy state, which is used to characterize the channel,
by estimating the number of single-photon states traversing
the channel. In the information-theoretic security proof of
the decoy-state method [11], these two states have the same
properties except for their intensity, which results in distinct
Poisson distributions for their photon number. Note that the
phases of the coherent states must be randomized, in order
that the source can be treated as a statistical mixture of Fock
states. In this case, the channel, controlled by Eve, will have
the same impact on the single-photon components in both
signal and decoy states. The channel parameters, such as the
probability of a single photon passing through, defined as the
single-photon yield, would then be the same for the signal
and decoy states. This property is at the core of the security
of the decoy-state technique. We revisit this condition in our
finite-key analysis.

Estimating the channel parameters, such as the single-
photon yield, would become less accurate when one only
has a finite set of data. Statistical fluctuation must then be
considered, in our security analysis, to account for possible
deviations from true (probability) values. It turns out that the
statistical fluctuation analysis for the decoy-state method can
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be a complicated problem. To simplify the problem, a Gaussian
distribution assumption of the channel fluctuations was made
in early analyses [23]. Throughout the paper, we refer to this
Gaussian approximation technique as the Gaussian analysis
method. Such an assumption is not necessarily justified
when one considers a rigorous security proof. Recently,
this Gaussian assumption was removed from the security
proof by applying the Chernoff bound and the Hoeffding
inequality [24,25]. We refer to this latter technique as the
Chernoff-Hoeffding method.

The simulation results show that a large-size key is required
to achieve a secure key with the Chernoff-Hoeffding method
and the key rate is lower than that of the Gaussian analysis
method. In this work we improve the finite-key analysis
method and provide a tighter estimation of QKD parameters
by breaking the parameter estimation problem into different
regimes of operation and finding tight bounds in each case.
After optimizing the system parameters, we show that our
improved finite-key analysis method achieves a performance
similar to the Gaussian analysis method.

The organization of this paper is as follows. In Sec. II
we review the commonly used vacuum+weak decoy-state
scheme [23,26] and develop a general formulation for its
finite-key analysis. In Sec. III we present our statistical
fluctuation method and provide instructions on how our results
can be applied to a realistic experimental setup. Note that our
proposed method is generic and can also be used in other
decoy-state QKD schemes. In Sec. IV we first construct a
QKD simulation model with typical experimental parameters
and then compare our method with previous work when each
method has been optimized to offer its best performance. We
discuss the results and summarize the paper in Sec. V.

II. FINITE-KEY ANALYSIS FOR THE VACUUM+WEAK
DECOY-STATE SCHEME

In this section we lay out a precise formulation for our finite-
key analysis problem in the special case of the vacuum+weak
decoy-state protocol. This turns out to offer a unifying lan-
guage, applicable to both the Chernoff-Hoeffding [24,25,27]
and the Gaussian analysis methods, as well as our own
proposed method. We will then compare this formulation
with that of the Gaussian analysis method [23] and show
how the results there can be employed in our finite-key
analysis. In particular, we show that the formulation in the
Chernoff-Hoeffding method has an equivalent form to that
of the Gaussian analysis method. In Sec. II A we review
the widely used scheme of the vacuum+weak decoy-state
QKD [26]. Then the definitions and notation used in this paper
are given. In Sec. II B we formulate the parameter estimation
problem in its general form. Finally, in Sec. II C we use the
results in [23] to find analytical bounds for the parameters of
interest.

A. vacuum+weak decoy-state protocol

The vacuum+weak decoy-state protocol, first presented
in [26], is a widely used decoy-state scheme. In this protocol,
Alice encodes the pulses with three different intensities,
corresponding to vacuum states, weak decoy states, and signal

states. This scheme is capable of estimating the single-photon
components because, intuitively, when the intensity of a
coherent state pulse is very weak, the resulting detection
events mainly come from the single-photon components and
background. The yield of the background noise can be esti-
mated by the vacuum decoy state. By combining measurement
results of weak decoy and vacuum decoy states, the relevant
parameters to the single-photon components, including the
yield and quantum-bit error rate (QBER), can accurately be
estimated. With those parameters, secure keys can be obtained
from the signal states after postprocessing.

The protocol is described in more detail in the following
steps.

(i) State preparation. For each bit in her raw key, Alice
randomly chooses the intensity and the basis to encode her bit.
She can choose from three intensities, namely, vacuum state,
weak decoy state, and signal state, and then randomly encode
her bit in the X or Z basis, and sends it to Bob. The probability
of choosing the Z basis could, in general, be different from
that of the X basis [28].

(ii) Measurement. Bob measures the received states in the
X or Z basis chosen randomly. The probability of choosing a
measurement basis is the same as that of the encoding stage.

(iii) Sifting. Over an authenticated channel, Alice an-
nounces the basis and signal or decoy information she has
used, while Bob announces the locations of valid detections
and the bases used for his measurements. If Alice and Bob
have chosen the same basis, they keep the corresponding bits
as the sifted key.

(iv) Error correction and verification. Alice calculates some
parity information of her sifted key, encrypts the parity bits
with preshared secure keys, and sends them to Bob. Bob then
performs the error correction and Alice and Bob verify if their
keys are now identical [9]. If the verification fails they perform
the error correction again or abort the protocol. If the keys are
verified to be identical, Bob finds the number of bit errors and
evaluates the QBER.

(v) Parameter estimation. Using the parameters obtained in
the experiment, a lower bound on the number of successful
detection events results from single-photon components of the
signal states Ms

1 and an upper bound on the corresponding
phase error rate e

ps

1 will be obtained in each basis. The latter
quantifies the leaked information to a potential eavesdropper.

(vi) Privacy amplification. Alice and Bob apply a universal
hashing function based on the parameters Ms

1 and e
ps

1 in each
basis. Then, according to the GLLP analysis [15], a shorter
but more secure key can be extracted with a length of Ms

1[1 −
h(eps

1 )].
The final key length in each basis is then lower bounded by

K � Ms
1

[
1 − h

(
e
ps

1

)] − Kec,
(1)

Kec = Msf h(Es),

where f denotes the inefficiency of error correction and
h(x) = −x log2 x − (1 − x) log2(1 − x) is the Shannon binary
entropy function. Here, for the sake of simplicity, we assume
that Alice and Bob only extract secure keys from the signal
states. In principle, they can also extract secure keys from
the decoy states as well. The other parameters in Eq. (1) are
defined below.
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The following notation is used throughout the paper,
including the parameters in Eq. (1). The superscripts x and z

denote the X and Z bases, respectively. For brevity of notation,
we often do not explicitly mention the basis superscript, unless
otherwise needed. All parameters defined below are then for
a certain fixed basis γ = x,z, although the superscript γ is
not shown. Capital letters K , N , and M , respectively, denote
the number of the final key bits, the pulses sent by Alice,
and the valid, after basis sifting, detections on Bob’s side. Q

denotes the gain, i.e., the rate of creating a sifted key bit, and
E denotes the total QBER in the sifted key bit. Yi denotes the
yield of i-photon states and is given by Yi ≡ Mi/Ni , where
the subscript i for M and N refers to the corresponding counts
for i-photon states. ei denotes the error rate corresponding to
the transmission of i-photon states. Note that it should not
be confused with the letter e without the subscript, which is
the base of the natural logarithm. The superscripts s, w, and
v, respectively, denote the signal state with intensity μ, the
weak decoy state with intensity ν (<μ), and the vacuum state.
The superscript or subscript a denotes these three cases, i.e.,
a ∈ {s,w,v}, with corresponding intensity μa ∈ {μ,ν,0}. The
superscripts b and p refer to bit and phase (in error rate terms),
respectively. The superscripts L and U refer to the lower bound
and the upper bound, respectively. qa ≡ Na/N denotes the
rate Alice encodes a state with intensity μa . On Alice’s side,
pa

i denotes the conditional probability that an i-photon state
corresponds to a coherent pulse with intensity μa , i.e.,

pa
i ≈ Na

i

Ni

, (2)

where the approximation is caused by statistical fluctua-
tions. The approximation becomes equality in the asymptotic
(infinite-key) limit. Due to the Poisson distribution of the
photon numbers in different states and Na = qaN , these
probabilities are given by

pa
i = Nae−μa (μa)i/ i!∑

α∈{s,w,v} Nαe−μα (μα)i/ i!
,

= qae−μa (μa)i/ i!∑
α∈{s,w,v} qαe−μα (μα)i/ i!

. (3)

Note that pa
i is the only probability term used in this paper.

All other terms are rates, i.e., the ratio between two counts.

B. Statistical fluctuation analysis: Formulation

Our key objective in the statistical fluctuation analysis of
the decoy-state schemes is to bound Ms

1 and e
ps

1 , by allowing a
certain failure rate, by using the measurement results obtained
in a QKD round. A QKD round consists of transmitting N

pulses by Alice, out of which K key bits are to be extracted. In
this section and the next, all the terms refer to the parameters
in a particular basis, e.g., the Z basis. The same results hold
for the other basis as well. In each QKD round, Alice and Bob
can specify Ma and EaMa for different values of a. Based on
these measurement results, they consider a worst-case scenario
by finding the minimum value of Ms

1 and the maximum value
of e

ps

1 that are consistent with the measurement results.
From the GLLP security analysis [15], Eve cannot get

any key information from the single-photon states without

introducing disturbance, while she can in principle get in-
formation about the key when multiple photons are sent, say,
via photon-number-splitting attacks [13,14]. Eve’s objective is
then to minimize Ms

1 , within the constraints of the decoy-state
scheme.

Note that some parameters, such as Ni and Mi , are, in
principle, known to Eve, assuming that she can perform
nondemolition measurements on the signals generated by
Alice. From Alice and Bob’s perspective, these variables are,
however, unknown, but have a fixed value in each round of
the QKD protocol once Bob’s measurements are completed.
On the other hand, the choice of a for each transmitted state is
known to Alice, while Eve has no information about that before
the sifting stage. This is the key advantage that Alice and Bob
have over Eve in specifying the range of values that the key
parameters of interest would take. In the following, we will
try to find relationships between the measurable parameters
Ma and EaMa and the unknown (to Alice and Bob), but fixed,
parameters Mi . We will then show how this can help us bound
Ms

1 and e
ps

1 .
For phase-randomized coherent sources, the state prepared

by Alice can be considered as a mixture of Fock states. The
channel, controlled by Eve, behaves the same for different Fock
states. This is called the photon-number channel model [29].
For an i-photon state, the conditional detection probability for
Bob that the originally encoded state has an intensity μa is the
same as the probability chosen by Alice, pa

i , defined in Eq. (2).
This implies that

Ma
i ≈ pa

i Mi,

ea
i M

a
i ≈ pa

i eiMi,
(4)

where the approximation becomes equality in the asymptotic
case.

The total number of detection events caused by the state a,
Ma , and the number of errors EaMa are given by contributions
from states with different numbers of photons, that is,

Ma =
∑

i

Ma
i ,

EaMa =
∑

i

ea
i M

a
i .

(5)

Therefore, by substituting Eq. (4) into Eq. (5), we obtain

Ms ≈ ps
0M0 + · · · + ps

i Mi + · · · ,

Mw ≈ pw
0 M0 + · · · + pw

i Mi + · · · ,

Mv ≈ pv
0M0,

EsMs ≈ ps
0e0M0 + · · · + ps

i eiMi + · · · ,

EwMw ≈ pw
0 e0M0 + · · · + pw

i eiMi + · · · ,

EvMv ≈ pv
0e0M0,

(6)

where the approximation becomes equality in the asymptotic
case. Note that the terms on the left-hand side of Eq. (6)
are measurable counts, while the ones on the right-hand side
are mixed with probabilities. When the data size is finite,
the statistical fluctuation may lead to deviations between Ma

i

(ea
i M

a
i ) and pa

i Mi (pa
i eiMi), in Eq. (4), and similarly in Eq. (6).

Our objective is to bound these deviations while meeting a
certain failure rate for the protocol, as we show next.
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The key idea that we use to bound the right-hand side of
Eq. (6) is to use the fact that Eve does not know the type
of states used by Alice. While Eve can control the values of
Mi for i = 0,1,2, . . . , she cannot change them after Bob’s
measurements. Nevertheless, even for fixed values of Mi ,
she cannot exactly predict the measurement results Ma and
EaMa . That is, before the sifting stage, these variables can
be considered to be random. It turns out, however, that the
expectation value of these random variables, as we show next,
can be written as a weighted sum of Mi’s. That is, after Bob’s
measurements, Eve can no longer change these mean values
either. From Alice and Bob’s point of view, a set of observed
values for Ma and EaMa would correspond to a fixed, but
unknown, set of values for Mi . Using proper techniques, they
can then bound the above expectation values as a function of
the observed values.

Let us first look at Ma
i in a more detailed way. Before the

sifting stage, but after Bob’s measurements, Mi has a fixed
value, but Ma

i is random to Eve. We can then rewrite Ma
i as

Ma
i =

Mi∑
j=1

χa
i,j , (7)

where

χa
i,j =

{
1 with probability pa

i

0 with probability 1 − pa
i

(8)

(with j = 1, . . . ,Mi) are independent and identically dis-
tributed indicator random variables. It will then follow that

E
[
Ma

i

] = pa
i Mi,

E
[
ea
i M

a
i

] = pa
i eiMi,

(9)

where E[·] is the expectation value with respect to χa
i,j

variables. Finally, from Eqs. (5) and (9) we find

E[Ms] = ps
0M0 + · · · + ps

i Mi + · · · ,

E[Mw] = pw
0 M0 + · · · + pw

i Mi + · · · ,

E[Mv] = pv
0M0,

E[EsMs] = ps
0e0M0 + · · · + ps

i eiMi + · · · ,

E[EwMw] = pw
0 e0M0 + · · · + pw

i eiMi + · · · ,

E[EvMv] = pv
0e0M0,

(10)

where, again, the expectation values are taken with respect
to χa

i,j variables. Note that these expectation values would
represent the average values for our observables from Eve’s
perspective before the sifting stage, but after Bob’s measure-
ments. At this stage, Alice and Bob can safely assume that
Eve can no longer change the values of Mi variables on the
right-hand sides of Eqs. (10). The measured values for Ma

and EaMa will then set some constraints on the expectation
values in Eqs. (10) and, correspondingly, the right-hand sides.
In particular, we can show that for any set of values for
observables Ma (EaMa), we can find lower and upper bounds
for their corresponding expected values, respectively, denoted
by EL[Ma] (EL[EaMa]) and EU [Ma] (EU [EaMa]). Our
finite-key analysis can then be formulated as the following

optimization problem: Find min M1 such that

EL[Ms] � ps
0M0 + · · · + ps

i Mi + · · · � EU [Ms],

EL[Mw] � pw
0 M0 + · · · + pw

i Mi + · · · � EU [Mw],

EL[Mv] � pv
0M0 � EU [Mv]

(11)

and max e1M1 such that

EL[EsMs] � ps
0e0M0 + · · · + ps

i eiMi

+ · · · � EU [EsMs],

EL[EwMw] � pw
0 e0M0 + · · · + pw

i eiMi

+ · · · � EU [EwMw],

EL[EvMv] � pv
0e0M0 � EU [EvMv]. (12)

In Sec. III, starting with the Chernoff bound, we show how the
required lower and upper bounds above can be related to the
measured observables. Before doing that, however, let us find
the correspondence between the above formulation and that of
the previous work in [23].

C. Correspondence with Gaussian analysis method

In order to compare our formulation in Sec. II B with that
of the Gaussian analysis method proposed in [23], we rewrite
Eq. (10) by dividing both sides of it by Na . We obtain

E[Qa] = E

[
Ma

Na

]
= E[Ma]

Na

=
∞∑
i=0

pa
i

Mi

Na

=
∞∑
i=0

e−μa (μa)i/ i!qa

e−μμi/i!qs + e−ννi/i!qw

Mi

qaN

=
∞∑
i=0

e−μa
(μa)i

i!
Y ∗

i ,

E[EaQa] =
∞∑
i=0

e−μa
(μa)i

i!
eiY

∗
i .

(13)

Here we implicitly assume that, to her advantage, Na is known
to Eve and

Y ∗
i = Mi

N∞
i

,

eiY
∗
i = eiMi

N∞
i

,

(14)

where

N∞
i = e−μμiqs + e−ννiqw + qv0i

i!
N (15)

is the asymptotic limit of Ni when N → ∞. Alternatively, we
can think of N∞

i as the expected number of i-photon states sent
by Alice. Note that eiY

∗
i should be regarded as one variable.
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Equation (13) can be expanded as:

E[Qs] = e−μY ∗
0 + μe−μY ∗

1 + μ2e−μ

2!
Y ∗

2 + · · · + μie−μ

i!
Y ∗

i + · · · ,

E[Qw] = e−νY ∗
0 + νe−νY ∗

1 + ν2e−ν

2!
Y ∗

2 + · · · + νie−ν

i!
Y ∗

i + · · · ,

E[Qv] = Y ∗
0 ,

E[EsQs] = e−μe0Y
∗
0 + μe−μe1Y

∗
1 + μ2e−μ

2!
e2Y

∗
2 + · · · + μie−μ

i!
eiY

∗
i + · · · ,

E[EwQw] = e−νe0Y
∗
0 + νe−νe1Y

∗
1 + ν2e−ν

2!
e2Y

∗
2 + · · · + νie−ν

i!
eiY

∗
i + · · · ,

E[EvQv] = e0Y
∗
0 .

(16)

In order to find the bounds of M1 and e1M1 in our original problem, we find the corresponding bounds for Y ∗
1 and e1Y

∗
1 by

calculating μ2eνE[Qw] − ν2eμE[Qs] to obtain

Y ∗
1 � Y ∗L

1 = μ

μν − ν2

(
EL[Qw]eν − EU [Qs]eμ ν2

μ2
− μ2 − ν2

μ2
EU [Qv]

)
,

e1Y
∗
1 � (e1Y

∗
1 )U = EU [EwQw] − EL[EvQv]e−ν

νe−ν
,

(17)

which results in

ML
1 = Y ∗L

1 N (e−μμqs + e−ννqw),

(e1M1)U = (e1Y
∗
1 )UN (e−μμqs + e−ννqw),

eU
1 = (e1M1)U

ML
1

= (e1Y
∗
1 )U

Y ∗L
1

= EU [EwQw]eν − EL[EvQv]

Y ∗L
1 ν

.

(18)

The interesting point about Eqs. (13) and (16) is that, by
some simple substitutions, they have the same form as Eq. (13)
in [23]. In fact, by replacing E[Qa] (E[EaQa]) and Y ∗

i in
Eq. (13) with Qνm

(Eνm
Qνm

) and Yi , we reach the same result
as in Eq. (13) in [23]. Note that the definitions for Q and
Y terms here, in our finite-key analysis, are slightly different
from the definitions given in [23] for the infinite-key scenario.
Nevertheless, the equations look similar and one can use the
analytical results obtained in [23], after necessary substitution,
and recycle them here. For instance, the bounds obtained in
Eq. (17) can directly be obtained from Eqs. (34) and (37)
in [23].

Thus far, we have shown that the formulation that we
need in either the finite-key analysis here and in [24] or
the infinitely-long-key case in [23] will result in solving a
similar optimization problem. That is, once one specifies, in
our formulation, the values of EL[Ma], EU [Ma], EL[EaMa],
and EU [EaMa] in Eq. (12) (or the corresponding values in
other formulations), all optimization problems would result in
an identical key-rate estimation. The key difference would be
in their estimated failure probability. The latter is a function
of how we estimate the lower and upper bounds of the average
terms that we need in Eq. (12) as a function of our observations.
In [23], the authors use a heuristic Gaussian assumption,
which is not exact but is convenient to use. In [24], the
required bounds are obtained by using Chernoff and Hoeffding
inequalities, which are rigorous but a bit too loose in certain
regions. In our work, we obtain tighter bounds for these

average terms, which, not only are rigorous, but also offer
higher key rates and/or lower failure probabilities as compared
to the Chernoff-Hoeffding method.

III. STATISTICAL FLUCTUATION ANALYSIS

In this section, we first provide step-by-step instructions on
how to use our theoretical results in a real experimental setup.
We then summarize all the tools that we have developed in our
statistical fluctuation analysis. The full derivations for each of
these tools will appear in Appendixes A and B.

A. Instructions for experimentalists

Suppose we run a QKD experiment according to the
decoy-state scheme, as formulated here. After sifting and error
correction, we will then have certain observables, namely, Maz

and Eaz. The next step in the procedure is to apply sufficient
privacy amplification that guarantees a failure probability
below a given threshold ε. In the privacy amplification
procedure, the length of the extracted secure key and hence
the size of the corresponding universal hashing function are
determined by Msz

1 and e
psz

1 . Thus we need to estimate these
two parameters before performing privacy amplification. Note
that it is common to estimate the phase error rate e

psz

1 by using
the observed bit error rate ebsx

1 in its complementary basis [5].
One should, however, account for deviations from the bit error
rate value once finite-key issues are considered [9], as we
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do here. In this section, we only calculate the length of the
secure key Kz extracted from the Z-basis measurements. The
key length extracted from the X basis Kx can be obtained
similarly and the final key length is given by Kz + Kx . We
assume that all the secure key bits come from the signal states.
The final key length Kz is given by

Kz � MszL
1

[
1 − h

(
e
pszU

1

)] − Ksz
ec ,

(19)
Ksz

ec = Mszf h(Esz),

where the lower bound MszL
1 and the upper bound e

pszU

1 can
be found by taking the following steps.

(1) Calculate Ksz
ec . The parameters Msz and Esz can be

directly obtained in the experiment. The cost of error correction
is Ksz

ec = Mszf h(Esz).
(2) Calculate MzL

1 and ebxU
1 . Use the results of Sec. III C

to calculate the upper and lower bounds of all the average
terms in Eq. (12), i.e., EL[Ma], EU [Ma], EL[EaMa], and
EU [EaMa] for each basis. Then use E[Qa] = E[Ma]/Na and
E[EaQa] = E[EaMa]/Na to calculate the corresponding Q

and EQ parameters. Then use Eqs. (17) and (18) to calculate
MzL

1 and ebxU
1 .

(3) Calculate MszL
1 . Use Eq. (34) in Sec. III D to calculate

MszL
1 = χL for χ̄ = ps

1M
zL
1 .

(4) Calculate e
pszU

1 . Use Eq. (B4) to find e
pszU

1 . In
Appendix B we use the random sampling method to account
for the deviation θ between ebx

1 and e
psz

1 caused by the
finite-key setting in our problem. The upper bound on ebx

1 has
already obtained in step 2. By upper bounding θ as explained in
Appendix B, we can find e

pszU

1 . This will specify the required
amount of privacy amplification in the protocol.

B. Methodology: Key ideas

The first nontrivial step in our instruction list, given in
Sec. III A, is to calculate lower and upper bounds for all the
average terms of interest. The key idea to solve this problem,
in our case, is to use the Chernoff bound with an inverse
formulation. To make this point clear, in this section we first
review the Chernoff bound in the special case of Bernoulli
random variables and show that why it is relevant to our
problem. Then, by rewriting the Chernoff bound, we find
proper candidates for upper and lower bounds of the relevant
average terms. In the end, we comment on the differences
between our approach and that of [24].

The Chernoff bound for a set of n independent Bernoulli
random variables χi ∈ {0,1} can be expressed as fol-
lows [30,31]. For χ = ∑n

i=1 χi and χ̄ = E[χ ], we have the
bounds

Pr[χ > (1 + δL)χ̄] <

[
eδL

(1 + δL)1+δL

]χ̄

= g(δL,χ̄ ) (20)

and

Pr[χ < (1 − δU )χ̄] <

[
e−δU

(1 − δU )1−δU

]χ̄

= g(−δU ,χ̄ ),

(21)
where δL > 0, 0 < δU < 1, and g(δ,χ̄ ) = [ eδ

(1+δ)1+δ ]χ̄ .

The above formulation can be applied to Ma and EaMa ,
whose average values need to be bounded. For instance, in
the data postprocessing step, the total number of detections
obtained by Bob in the Z basis is given by Mz. For each valid
detection event, we can define the indicator random variable χj

that determines whether or not Alice has originally prepared
the j th received pulse in the signal state. That is, χj = 1 means
that a signal state has caused the j th detection event, whereas
χj = 0 implies that another state (weak decoy or vacuum
state) has been used. Then the total number of detected signal
states is given by Msz = ∑Mz

j=1 χj , with χj being independent
Bernoulli random variables. A similar formulation can be used
for error terms as well. In the rest of this section, the parameter
χ will then represent any of the parameters of interest in the
form Ma and EaMa in a particular basis.

The Chernoff bound in Eqs. (20) and (21) bounds the
probability that the observed value deviates from its average
value. That is, if we know the average value of χ , we can
define a confidence interval [χU,χL], where χL = (1 + δL)χ̄
and χU = (1 − δU )χ̄ , the probability of being outside of which
is bounded by functions of δL, δU , and χ̄ . The problem that
we have in hand is, however, the opposite. We need to bound
χ̄ for a given observed value of χ in such a way that the failure
probability is below a certain threshold.

To define the failure probability precisely, we use the same
framework that we developed in Sec. II B in which we showed
that after the measurement phase, χ̄ is fixed, but unknown.
Nevertheless, even for a fixed χ̄ , the value χ that Alice and Bob
observe in their experiment is a random variable. The failure
probability in this setting can then be defined as follows. For a
fixed but unknown value of χ̄ , we find the probability that the
observed value for χ results in either of the following events:
event 1, E1,

χ̄ < EL(χ ), (22)

where EL(χ ) is the procedure or function by which we relate
an observed value to the lower limit on χ̄ , and event 2,

χ̄ > EU (χ ), (23)

where EU (χ ) is the procedure or function by which we relate
an observed value to the upper limit on χ̄ . For instance, the
probability of failure, corresponding to event 1 is given by

Pr[E1] = Pr[χ̄ < EL(χ )]. (24)

Now, in order to bound the above probability, we define our
function EL(χ ) in such a way that it satisfies the condition

Pr{χ > [1 + δL(εL,χ̄ )]χ̄} = Pr[χ̄ < EL(χ )], (25)

where εL, as we see next, is the failure probability and we
have solved the equation g(δL,χ̄ ) = εL in order to write δL as
a function of εL and χ̄ . The left-hand side of Eq. (25) is then
equivalent to the left-hand side of Eq. (20), which will then
result in

Pr[E1] < εL. (26)

In other words, by choosingEL(χ ) in such a way that it satisfies
Eq. (25) we can use the Chernoff bound to bound the failure
probability. The same holds if one works out the upper limit
for the average terms with the difference that now one should
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find EU (χ ) such that

Pr{χ > [1 − δU (εU ,χ̄ )]χ̄} = Pr[χ̄ < EU (χ )], (27)

with εU being the failure probability for event 2 and δU (εU ,χ̄ )
is the solution to g(−δU ,χ̄ ) = εU .

Provided that functions χL = [1 + δL(εL,χ̄ )]χ̄ and χU =
[1 − δU (εU ,χ̄ )]χ̄ are increasing functions of χ̄ , one obvious
choice for EL(χ ) [EU (χ )] is the inverse function of χL (χU ).
In Appendix A we show that the above monotonicity condition,
in fact, holds and that would offer a solution to find very tight
bounds for all terms of interest.

Our approach offers tighter bounds than the ones proposed
in [24]. One reason for the difference is that, in [24], the
authors use looser forms of the Chernoff bound than the ones
we use in Eqs. (20) and (21), especially when χ has small
values. However, more importantly, the procedure for finding
EU (χ ) in [24] is somehow heuristic, as compared to our exact
calculations, and results in looser upper bounds even in the
case of large values of χ . In our numerical results we show
how these differences will result in our improving the bounds,
and correspondingly the failure rate and/or key rate, in the
decoy-state QKD setup. In the rest of this section, we then
provide a summary of our analytical results that can be used
to bound relevant terms in our formulation.

C. From χ to χ̄

Given a measurement result χ , we can bound the underlying
expectation value χ̄ for a failure probability bounded by ε =
2εL = 2εU . The results are summarized below and the details
of calculations are shown in Appendix A.

If χ = 0, we use

EL(χ ) = 0,

EU (χ ) = β,
(28)

where β = − ln(ε/2). If χ > 0, we use

EL(χ ) = χ

1 + δL
,

EU (χ ) = χ

1 − δU
,

(29)

where δL and δU can be obtained by solving[
eδL

(1 + δL)1+δL

]χ/(1+δL)

= 1

2
ε,

[
e−δU

(1 − δU )1−δU

]χ/(1−δU )

= 1

2
ε.

(30)

It turns out that the solutions δL and δU to Eq. (30) are
difficult to calculate when χ is large. A simplified analytical
approximation is given next. If χ � 6β, we use

δL = δU = 3β +
√

8βχ + β2

2(χ − β)
(31)

in Eq. (29). This will provide us with a slightly looser bound
than the one we can obtain by solving (30), but the difference
is negligible.

D. From χ̄ to χ

Once, using the relationships in Sec. III C, EL(χ ) and
EU (χ ) are found for all relevant parameters χ , we use Eqs. (17)
and (18) to calculate MzL

1 and ebxU
1 . In step 3 of the instruction

list, we, however, need to calculate MszL
1 . We know that

E[Msz
1 ] = psz

1 Mz
1 . In this section, we will show, using a

symmetric form of the Chernoff bound, how to estimate the
value of Msz

1 from E[Msz
1 ].

Let us use our more general notation χ representing the
sum of a number of independent Bernoulli random variables.
Here Msz

1 satisfies this condition as written in Eq. (7). Then
we can solve the equation

2e−δ2χ̄/(2+δ) = ε (32)

and using the symmetric form of the Chernoff bound given
by [32,33]

Pr(|χ − χ̄ | � δχ̄) � 2e−δ2χ̄/(2+δ), (33)

we obtain a confidence interval [χL,χU ], for which Pr{χ ∈
[χL,χU ]} > 1 − ε, where

χL = (1 − δ)χ̄ ,

χU = (1 + δ)χ̄ ,

δ = − ln(ε/2) +
√

[ln(ε/2)]2 − 8 ln(ε/2)χ̄

2χ̄
.

(34)

In our problem, we have the lower bound for χ̄ = E[Msz
1 ]

given by psz
1 MzL

1 . We can then use the relationship for χL

above to calculate MszL
1 with a failure probability bounded by

ε.

IV. NUMERICAL RESULTS

In this section, we provide additional insight into our
proposed method by numerically comparing it with the other
two methods of Chernoff-Hoeffding and the Gaussian analysis.
We compare the three methods in terms of the tightness of their
confidence intervals, or their failure probability, as well as the
secret key generation rate and the maximum secure distance
in the finite-key setting.

A. Tightness of the bounds

Here we compare the two previously proposed methods
in [23,24] with ours in terms of bounding the expectation value
E[χ ], from an observation value χ . For ease of reference, we
have summarized the Gaussian analysis method in Appendix C
and the Chernoff-Hoeffding method [24] in Appendix D. For
different methods, we calculate the width of the confidence
interval for a fixed failure probability ε. We define this width
as d = (EU [χ ] − EL[χ ])/2, which quantifies the tightness of
an analysis method. Below, we consider the two extreme cases
of large and small values of χ .

Figure 1 compares the three methods in terms of the width
of the confidence interval d for different failure probabilities
when the observed value is rather large. We have normalized
the vertical axis by σ = √

χ , which, for χ → ∞, is somehow a
measure of standard deviation for the original random variable.
Among the three methods, the Gaussian analysis method gives

012333-7



ZHEN ZHANG, QI ZHAO, MOHSEN RAZAVI, AND XIONGFENG MA PHYSICAL REVIEW A 95, 012333 (2017)

10
−15

10
−10

10
−5

10
0

0

2

4

6

8

10

12

14

Failure probability ξ

N
um

be
r 

of
 D

ev
ia

tio
n 

(σ
)

 

 

Gaussian analysis
CH method
Our method

FIG. 1. Comparison of the width of the confidence interval versus
failure probability for three methods: the Gaussian analysis (solid
line), the Chernoff-Hoeffding (CH) method [24] (dotted line), and
our method (dash-dotted line). In each scheme, we find lower and
upper bounds for the expectation value E[χ ] from an observed value
χ , at a given failure probability and at χ → ∞. The vertical axis then
represents (EU [χ ] − EL[χ ])/2σ , for σ = √

χ .

the tightest bounds, but that comes with the consequence of not
being able to rigorously bound the failure rate. Our proposed
method almost follows that of the Gaussian curve, while there
is a considerable gap between our method and the Chernoff-
Hoeffding one. This implies that the latter offers looser bounds
on the average terms of interest as compared to our proposed
technique.

We also compare the three fluctuation analysis methods
from another perspective where we fix the fluctuation devi-
ations, χ − EL[χ ] or EU [χ ] − χ , and evaluate the failure
probabilities. The results are shown in Table I. We find that
in the Chernoff-Hoeffding method [24], the failure probability
for event 2, at an identical deviation, is higher than that of
event 1. This is because, in their formulation, χ − EL[χ ] 	=
EU [χ ] − χ and their estimate of the upper bound EU [χ ] is
rather loose. For large values of χ , the failure probability
for both events is the same for our method as well as the
Gaussian analysis one. It can be seen that the failure probability
guaranteed by our method is roughly within one order of
magnitude of that of the Gaussian analysis method. Note

TABLE I. Failure probability as a function of the fluctuation
deviations χ − EL[χ ] = EU [χ ] − χ when χ → ∞. Here εG, εCH,
and εpresent, respectively, denote the sum failure probability for events 1
and 2 for the Gaussian analysis, the Chernoff-Hoeffding method [24],
and our method.

Deviation εG εCH εpresent

3σ 10−2.56 10−0.57 10−1.65

5σ 10−6.24 10−1.90 10−5.12

7σ 10−11.59 10−3.90 10−10.33

9σ 10−18.64 10−6.57 10−17.28
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FIG. 2. Lower and upper bounds of the expectation value versus
observed values of χ for the Gaussian analysis (dotted line) and our
method (solid line). In both cases, the failure probability is fixed at
ε = 10−10.

that, however, in the latter case, the failure probabilities are
not guaranteed and they rely on an underlying Gaussian
assumption, which is not necessarily the case. Table I can then
serve as a guideline from which one can specify the desired
failure probability and then quickly estimate the corresponding
values for EL[χ ] and EU [χ ].

Our method is particularly attractive when the observed
counts are small. As shown in Fig. 2, we compare our method
with the Gaussian analysis, at a fixed failure probability of ε =
10−10, in terms of lower and upper bounds on the expectation
value E[χ ] when the observed value for χ is small. When
estimating the upper bound, the Gaussian analysis is always
tighter than our method. When χ → 0, the upper bound of
the Gaussian analysis is 0 and that of our method is 23.7190,
which is equal to the value of β at ε = 10−10. Our method,
nevertheless, offers a tighter estimation of the lower bound
for χ < 2257. In comparison with the Chernoff-Hoeffding
method, our method offers a substantial advantage in the sense
that our required deviations are optimized by solving Eq. (30),
whereas in the Chernoff-Hoeffding method the deviations are
proportional to the number of counts; see, e.g., Eq. (D1) in
Appendix D.

Another interesting feature of our methodology is the
dependence of the failure probability on the observed value
χ . As shown in Fig. 1 and Table I, given a fixed failure
probability ε, the fluctuation deviation can be written as a
constant multiplied by σ = √

χ . One could ask the opposite
question that for a given fluctuation deviation of nασ , for a
fixed value of nα , how the failure probability would vary with
χ . This question has been answered in Corollary 1 and the
results have been shown in Fig. 3 for several different values
of nα . It can be seen that for large values of χ , the fluctuation
probability approaches the constant value given in Table I. For
small values of χ , however, the failure probability goes up as
now, for the given confidence interval, the chance of making
an error is higher. This is in contrast with what the Gaussian
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analysis method assumes in that the failure probability for
a fixed value of nα is independent of χ ; see Eq. (C3) in
Appendix C. This is how our method offers a more rigorous
approach to the finite-key analysis as compared to the Gaussian
analysis method.

B. Key-rate comparison

In order to compare the performance of our technique,
in terms of the final key rate and the maximum secure
transmission distance, with previous work, we simulate our
QKD system by assuming that the observed values for different
parameters of interest are given by their asymptotic values
in an Eve-free experiment. These values are summarized
below [23]:

Qa = Y0 + (1 − Y0)(1 − e−ημa ),

EaQa = e0Y0 + ed (Qa − Y0),
(35)

where η is the total transmittance, Qa and Ea are the overall
gain and QBER, respectively, ed is the misalignment error
rate, and the error rate of the background noise e0 is equal to
1/2. Note that the values used in Eq. (35) is for simulation
purpose only. In a real experiment, all the variables on the
left-hand side can be measured directly. For the simulation of
the asymptotic case with an infinite number of decoy states,
where all the channel properties can be estimated accurately,

TABLE II. Parameters for a practical QKD system where ηd is
the detection efficiency, f is the inefficiency of error correction, and
N is the number of pulses sent by Alice.

ηd Y0 f ed Loss ε N

4.5% 1.7 × 10−6 1.22 3.3% 0.21 dB/km 10−10 1010
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FIG. 4. Comparison of the key rates obtained by the three
methods: the Gaussian analysis, the Chernoff-Hoeffding method [24],
and our method. The infinite-key-length case is also shown.

we use the formula

Yi = 1 − (1 − Y0)(1 − η)i ,

eiYi = e0Y0 + ed (Yi − Y0),
(36)

where Yi and ei are the yield and the error rate of the i-photon
channel, respectively.

In our numerical results, we optimize the choice of the
intensities and the ratios of the signal, weak decoy, and vacuum
states to maximize the final key rate. To perform parameter
optimization, the local search algorithm [34] is employed. In
the following simulation, we use the parameters of a practical
QKD system [35], as listed in Table II. Note that, in our work,
ε represents the failure probability of each step. In our method,
the failure probability of a single upper (lower) bound is ε/2
and therefore the failure probability of a confidence interval,
composed of an upper bound and a lower bound, is ε. The total
failure probability of the whole QKD system (including both
X and Z bases) is 8ε.

We compare the three discussed fluctuation analysis meth-
ods with the asymptotic case, where, in the latter, the data
size is infinitely large and its statistical fluctuations can be
ignored. For fair comparison, we calculate the final key rates
of each analysis methods with the same formula (the GLLP
formula [15]). The results are shown in Fig. 4. It is clear that
our method always provides a larger final key rate than the
Chernoff-Hoeffding method [24]. For N = 1010, our analysis
method increases the maximum secure transmission distance
by 7 km. In the limit of short transmission distances, the
number of pulses detected by Bob is very large and therefore
the improvement of our method is not substantial. In the regime
around the maximum secure transmission distance, the value

TABLE III. Optimized parameters at 100 km.

Key rate ν μ pν pμ

3.04 × 10−6 0.126 0.370 0.250 0.650
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FIG. 5. Maximum secure transmission distance versus the num-
ber of pluses sent by Alice N . The simulation parameters are listed
in Table III. No secure keys can be generated for N � 107. The
asymptotic limit for the maximum secure transmission distance is
142 km when N � 1014.

of χ is small and our method is advantageous. Meanwhile,
from Fig. 4, one can clearly see that our method achieves a
very close performance to the widely used Gaussian analysis
method [23].

For our method, at short QKD distances, the optimized
intensity of the signal state μ is equal to 0.45. As the distance
increases, the optimum intensity of the signal state decreases.
At a distance of 100 km, the optimized μ decreases to 0.37
with other optimized parameters listed in Table III. All the
results are consistent with the Gaussian analysis case [23].

Finally, in Fig. 5, we consider the relation between the
data size and the corresponding maximum secure transmission
distance for all three methods discussed. When the total data
size of a QKD protocol is larger than 1014, its maximum secure
transmission distance is very close to the asymptotic limit of
142 km. No secret keys can be exchanged at a data size N

roughly below 107. The curves of our method and the Gaussian
case are almost the same. When N is smaller than 1012, all
three curves are very steep. Consequently, the gap between
maximum secure transmission distances of our method and the
Chernoff-Hoeffding method is distinct. For example, as shown
in both Figs. 4 and 5, our method increases the maximum
transmission distance by 7 km when total data size N = 1010.

V. CONCLUSION

In this paper, we developed a tight bound for the decoy-
state QKD system when the finite-data-size effects are taken
into account. As compared to the early work on this topic,
which relied on Gaussian approximations, our method offers
a rigorous approach to estimating the failure probability. In
that sense, our method is similar to the recently proposed
techniques relying on Chernoff and Hoeffding inequalities.
Our proposed method could, however, substantially improve
the performance by yielding a smaller failure probability, for a
similar confidence interval, than what the Chernoff-Hoeffding

method could offer. In fact, after parameter optimization, our
method could offer a performance similar to the widely used
Gaussian analysis method, which uses nonrigorous Gaussian
approximations.

There are several problems to which our methodology can
be applied. In this work, we assumed that the phase of the
weak coherent state is continuously randomized. When the
phase is not randomized, we know that security loopholes may
allow for certain attacks [36,37]. In practice, it is difficult to
randomize the phase of a laser pulse continuously. Instead, one
can apply the discrete phase randomization [38], using which
the final secure key rate is slightly reduced. Our finite-key
analysis for the decoy-state method can then be applied to
the discrete phase randomization case. Our method is also
applicable to the biased BB84 protocol [39], in which the
choice of basis is not symmetric. The analysis method in
this work can also be used in other protocols, such as the
measurement-device-independent QKD protocol [40,41] and
round-robin differential-phase-shift QKD protocol [42,43].
We expect that our methodology will offer a performance
similar to the Gaussian analysis method, while the security
parameters have been rigorously estimated. In addition to
finite-size effects, laser source intensity fluctuations should
also be taken into consideration in practice [27,44,45]. It is
important to investigate all these practical issues together for
QKD systems.
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APPENDIX A: FROM χ TO χ̄

1. Chernoff bound method

In this section, we provide a confidence interval for the
expectation value χ̄ based on the observed value χ . We use
the methodology described in Sec. III B and the original
forms of the Chernoff bound in Eqs. (20) and (21). Our
proposed method works even if χ approaches 0 and unlike
the Chernoff-Hoeffding method, we do not need to use the
Hoeffding inequality in this regime. Without loss of generality,
we assume that the failure probabilities for events 1 and 2 are
equal and are given by ε/2. The total failure probability in
bounding the expected values is then given by ε. As mentioned
in Sec. III B, the lower and upper bounds on χ̄ can be obtained
by, respectively, solving the following set of equations:

g(δL,χ̄ ) =
[

eδL

(1 + δL)1+δL

]χ̄

= ε/2,

χ̄ = χ

1 + δL
,

δL � 0

(A1)

012333-10



IMPROVED KEY-RATE BOUNDS FOR PRACTICAL DECOY- . . . PHYSICAL REVIEW A 95, 012333 (2017)

and

g(−δU ,χ̄ ) =
[

e−δU

(1 − δU )1−δU

]χ̄

= ε/2,

χ̄ = χ

1 − δU
,

0 < δU < 1

(A2)

or, equivalently, for given values of χ and ε, we need to solve
the two equations

g(δL,χ/(1 + δL)) = ε/2,

g(−δU ,χ/(1 − δU )) = ε/2
(A3)

to obtain δL and δU . The lower and upper bounds of E[χ ] are
then given by

EL[χ ] = χ

1 + δL
,

EU [χ ] = χ

1 − δU
.

(A4)

Claim 1. For all χ > 0, there exist unique answers for δL >

0 and 0 < δU < 1 in Eq. (A3).
Proof. Let us first rewrite Eq. (A3) as follows:

g2(δL) = ln(1 + δL) − δL/(1 + δL) = β/χ,

g2(−δU ) = ln(1 − δU ) + δU/(1 − δU ) = β/χ,
(A5)

where β = − ln(ε/2) � 0. It is easy to verify that g2(0) = 0,
g2(∞) = ∞, and g2(−1) = ∞. This would guarantee that
there exist solutions for δL and δU in their respective regions.
Furthermore, it can be verified that g2(δ) is a monotonic
function of δ in both regions of −1 < δ < 0 and δ > 0. This
guarantees that the solutions found are unique. This would
imply that the corresponding lower and upper bounds in
Eq. (A4) would provide us with the tightest bound possible
in Eqs. (25) and (27). �

Corollary 1. For a given observed value χ and a confidence
interval [EL[χ ],EU [χ ]], the failure probability is given by

ε = e−χg2(δL) + e−χg2(−δU ), (A6)

where δL and δU can be obtained from Eq. (A4).
Proof. From Eq. (A5), the values of βL (βU ) can be

calculated as

βL = χg2(δL),

βU = χg2(−δU ).
(A7)

From their definition, we also have βL = − ln(εL) and
βU = − ln(εU ), where εL (εU ) is the corresponding failure
probability to event 1 (2), which results in

εL = e−χg2(δL),

εU = e−χg2(−δU ).
(A8)

The failure probability of the given confidence interval ε is
then given by εL + εU = e−χg2(δL) + e−χg2(−δU ). �

Claim 2. In the limit of χ → ∞, the lower and upper bounds
of χ̄ in Eq. (A4) are given by

EL[χ ] = χ

(
1 −

√
2β

χ

)
,

EU [χ ] = χ

(
1 +

√
2β

χ

)
.

(A9)

Proof. For large values of χ , β/χ is small and therefore the
corresponding solutions for δL and δU would be small too. In
this regime, one can use the Taylor series for the logarithmic
function, up to two terms, to simplify Eq. (A5) to obtain

δL = δU =
√

2β

χ
. (A10)

The conclusion will follow if we substitute the above answer
into Eq. (A4). �

2. Simplified result when χ is large

In Appendix A 1, we showed how to tightly bound the
expectation value χ̄ . The above numerical method can,
however, become tedious when χ is very large. To overcome
this problem, we use the symmetric form of the Chernoff
bound in Eq. (33) and give an explicit result in the specific
case of χ > 6β.

Claim 3. For χ > 6β, the lower and upper bounds of χ̄ are
given by

EL[χ ] = χ

1 + δ
,

EU [χ ] = χ

1 − δ
,

δ = 3β +
√

8βχ + β2

2(χ − β)
.

(A11)

Proof. As shown in Sec. III B, we need to solve the equations

2e−(δL)2χ̄/(2+δL) = ε,

χ̄ = χ

1 + δL
, 0 < δL < 1

(A12)

and

2e−(δU )2χ̄/(2+δU ) = ε,

χ̄ = χ

1 − δU
, 0 < δU < 1,

(A13)

whose positive roots are obtained to be

δL = 3β +
√

8βχ + β2

2(χ − β)
,

δU =
√

8βχ + 9β2 − β

2(χ + β)
.

(A14)

In order to have 0 < δU and δL < 1, the value of χ should
be larger than 6β. One can in principle use the above equations
for δL and δU to find the corresponding lower and upper
bounds for χ̄ . In Eq. (A11) we have used a symmetric form
for the deviation parameter by choosing δ = δL for both lower
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and upper bounds. This asymmetric form would give us a
slightly looser upper bound as it can be shown that δU is
smaller than δL. In the limit of χ → ∞, the above symmetric
formulation would nevertheless give us the same asymptotic
values as obtained in Claim 2, which indicates that the two
methodologies are more or less the same for large values
of χ . �

APPENDIX B: RANDOM SAMPLING

Here we review the standard random sampling method used
for the phase error rate estimation [46]. Suppose that there are
nx + nz qubits (or basis-independent quantum states) in total.
Alice and Bob randomly pick nx qubits, measured in the X

basis, and obtain a bit error rate of ebx . They need to estimate
the phase error rate epz for the remaining nz qubits measured
in the Z basis. When the data size is infinite, for basis-
independent states, epz = ebx . When statistical fluctuations are
taken into account, a deviation θ is expected between the two
error rates. According to the random sampling analysis, the
(failure) probability for epz � ebx + θ is given by [46]

Pr(epz � ebx + θ ) �
√

nx + nz√
ebx(1 − ebx)nxnz

2−(nx+nz)ξ (θ), (B1)

where ξ (θ )=h(ebx +θ−qxθ )−qxh(ebx)−(1−qx)h(ebx +θ )
and qx = nx/(nx + nz). For a given failure probability ε, one
can then numerically find θ that satisfies

ε =
√

nx + nz√
ebx(1 − ebx)nxnz

2−(nx+nz)ξ (θ). (B2)

In the decoy-state scheme considered here, we can use the
above random sampling method to upper bound θ , by using
the substitutions

ebx → ebxU
1 ,

epz → e
psz

1 ,

nx → MxL
1 ,

nz → MzsL
1

(B3)

in Eq. (B2). The upper bound of the phase error rate e
psz

1 is
then given by

e
pszU

1 = ebxU
1 + θ. (B4)

Note that in order to estimate the phase error rate in the Z-basis
signal states, we can use all the data points in the X basis. That
is why we use MxL

1 rather than MxsL
1 in Eq. (B3).

APPENDIX C: GAUSSIAN ANALYSIS

Here we summarize the Gaussian analysis method in
Ref. [23,47], where the quantum channel is assumed to
fluctuate according to a Gaussian distribution. According to
the central-limit theorem, a lower bound of y1, an upper bound
of e1y1, and hence an upper bound of e1 can be obtained by

min y1 such that(
1 − nα√

Ma

)
Qa � e−μaY0 + · · · + e−μa

(μa)i

i!
Yi + . . .

�
(

1 + nα√
Ma

)
Qa,

a ∈ {s,w,v} (C1)

and max e1y1 such that(
1 − nα√

EaMa

)
EaQa � e−μa e0Y0 + · · · + e−μa

(μa)i

i!
eiYi

+ · · · �
(

1 + nα√
EaMa

)
EaQa,

a ∈ {s,w,v}. (C2)

The number of standard deviation nα in Eq. (C1) is directly
related to the failure probability,

1 − erf(nα/
√

2) = ε, (C3)

where erf(x) = 2√
π

∫ x

0 e−t2
dt is the error function [48].

APPENDIX D: CHERNOFF-HOEFFDING METHOD

In [24], the parameter χ̄ is estimated by Chernoff-Hoeffding
method. While in our method we use the Chernoff bound for
all positive values of χ , in [24] the authors use the Hoeffding
inequality when the date size is small. In this section, we denote
μ by χ̄ . Then χ can be written as μ + δ, where δ ∈ [−�,�̂].
The parameters ε1, ε2, and ε3 are, respectively, the failure
probabilities of the lower bound with the Hoeffding inequality,
the lower bound estimation of the Chernoff bound, and the
upper bound estimation of the Chernoff bound.

First, a general lower bound μL is given according to the
Hoeffding inequality

μL = χ −
√

n ln(1/ε1)/2, (D1)

where n is the total number of random variables χi and χ =∑n
i=1 χi . This lower bound is used to determine the estimated

means of the Chernoff-Hoeffding method.
With the upper bound μL in Eq. (D1), the following

three tests are performed: test 1, (2ε−1
2 )1/μL � e(4/4

√
2)2

; test 2,
(ε−1

3 )1/μL

< e1/3; and test 3, (ε3)1/μL

< e[(2e−1)/2]2
. According

to the results of these tests, the upper bound and lower bound
are estimated with different means. If a test is fulfilled, the
corresponding bound can be calculated with Chernoff bound,
which gives a tighter estimation. When no tests are fulfilled,
the corresponding bounds have to be calculated by the looser
Hoeffding inequality.

When estimating the upper bound, we define μU = χ + �.
According to the result of test 1, the value of � is given
as follows: When test 1 is fulfilled, � = g(χ,ε4

2/16), where
g(x,y) =

√
2x ln(y−1), and when test 1 is not fulfilled, � =√

n/2 ln(1/ε2). When considering the lower bound, we define
μL = χ − �̂. According to the results of test 2 and test 3,
the value of �̂ is given as follows: When test 2 is fulfilled,
�̂ = g(χ,ε

3/2
3 ); when test 2 is not fulfilled but test 3 is fulfilled,
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�̂ = g(χ,ε2
3); and when test 3 is not fulfilled (test 2 is also not

fulfilled), �̂ = √
n/2 ln(1/ε3).

Corollary 2. When all of the tests are fulfilled, ε3 = ε2 =
ε/2 and χ → ∞, the confidence interval of χ̄ in Eq. (A11) is
given by

EL[χ ] = χ

(
1 −

√
3β

χ

)
,

EU [χ ] = χ

(
1 + 2

√
2β + 2 ln 2

χ

)
.

(D2)

Proof. When all of the tests are fulfilled, we know that

χ − χ̄L(χ ) = g
(
χ,ε

3/2
3

)
,

χ̄U (χ ) − χ = g
(
χ,ε4

2/16
)
.

(D3)

According to the definitions g(x,y) =
√

2x ln(y−1) and
β = − ln(ε/2),

g
(
χ,ε

3/2
3

) =
√

2χ ln
[(

ε
3/2
3

)−1] =
√

3χβ,

g
(
χ,ε4

2/16
) =

√
2χ ln

[(
ε4

2/16
)−1] =

√
8χβ + 8 ln 2χ.

(D4)
The conclusion will follow if we substitute the above answer
into Eq. (D3),

χ̄L(χ ) = χ − g
(
χ,ε

3/2
3

) = χ

(
1 −

√
3β

χ

)
,

χ̄U (χ ) = χ + g
(
χ,ε4

2/16
) = χ

(
1 + 2

√
2β + 2 ln 2

χ

)
.

(D5)
�
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