
This is a repository copy of Speculative requirements: Automatic detection of uncertainty
in natural language requirements.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/110478/

Version: Accepted Version

Proceedings Paper:
Yang, H. orcid.org/0000-0002-3372-4801, De Roeck, A., Gervasi, V. et al. (2 more authors)
(2012) Speculative requirements: Automatic detection of uncertainty in natural language
requirements. In: 2012 20th IEEE International Requirements Engineering Conference
(RE). 2012 20th IEEE International Requirements Engineering Conference, September
24–28, 2012, Chicago, Illinois, USA. IEEE , pp. 11-20. ISBN 978-1-4673-2783-1

https://doi.org/10.1109/RE.2012.6345795

© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers
or lists, or reuse of any copyrighted components of this work in other works.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Speculative Requirements:

Automatic Detection of Uncertainty in Natural Language Requirements

Hui Yang1 Anne De Roeck1 Vincenzo Gervasi2 Alistair Willis1 Bashar Nuseibeh1, 3

1 Department of Computing, The Open University, UK
2 Department of Computer Science, University of Pisa, Italy

3 Lero-The Irish Software Engineering Research Centre, University of Limerick, Ireland
{h.yang, a.deroeck, a.g.willis, b.nuseibeh}@open.ac.uk; gervasi@di.unipi.it

 Abstract—Stakeholders frequently use speculative language

when they need to convey their requirements with some degree

of uncertainty. Due to the intrinsic vagueness of speculative

language, speculative requirements risk being misunderstood,

and related uncertainty overlooked, and may benefit from

careful treatment in the requirements engineering process. In

this paper, we present a linguistically-oriented approach to

automatic detection of uncertainty in natural language (NL)

requirements. Our approach comprises two stages. First we

identify speculative sentences by applying a machine learning

algorithm called Conditional Random Fields (CRFs) to identify

uncertainty cues. The algorithm exploits a rich set of lexical

and syntactic features extracted from requirements sentences.

Second, we try to determine the scope of uncertainty. We use a

rule-based approach that draws on a set of hand-crafted lin-

guistic heuristics to determine the uncertainty scope with the

help of dependency structures present in the sentence parse

tree. We report on a series of experiments we conducted to

evaluate the performance and usefulness of our system.

Keywords-Uncertainty; natural language requirements;

speculative requirements; uncertainty cues; machine learning;

uncertainty scopes; rule-based approach

I. INTRODUCTION

Many natural language (NL) requirements are stated in a
tentative or speculative manner. In some requirements uncer-
tainty may have been included deliberately, to avoid commit-
ting to factual statements about which the author is unsure,
or included semi-intentionally, for example when transcrib-
ing an interview, as the expression of an inherent uncertainty
in the requirements. It is often the case that such statements
contain linguistic cues that appear in the requirements text.
Consider the following examples:

E1. The vending machine will offer mineral water.

E2. It is possible that the vending machine might offer min-

eral water.

(E1) is framed as a factual statement: the action is certain
(mineral water will be provided), and the author of (E1) is
certain about it. In contrast, (E2) is in the form of a specula-
tive statement: it exhibits multiple uncertainty cues (e.g.,
possible, might) that qualify the author's confidence in the
truth of a proposition [6]. In (E2) the author is uncertain
about whether the vending machine provides mineral water
or not. Moreover, notice that the distinction between factual
and speculative statements is not the same as between indica-
tive (state of the domain) and optative (desired behaviour of

the system), as defined by Jackson [8]. In fact, one could
have speculative indicative statements (i.e. uncertainty in the
state of the domain) and speculative optative statements (i.e.
uncertainty about the desired behaviour), in addition to the
factual versions which the literature commonly considers.

Uncertainty in requirements documents has several unde-
sirable effects. It can lead to system behaviour that does not
meet users' expectations, if no proper analysis of the root
causes of the uncertainty is performed, and alternatives are
not considered. It can also lead to untestable requirements
and makes it difficult to plan and estimate development
costs. It can cause developers to substitute their own prefer-
ences and expectations for the speculative requirements. In
short, speculative requirements that survive till the imple-
mentation phase are potentially harmful.

However, uncertainty can have a positive role to play in
the early stages of requirements analysis. If speculative re-
quirements are identified, they may act as indicators of areas
where further elicitation is needed. If more detailed condi-
tions, risks, and exceptional behaviours are uncovered, they
may be encoded in the requirements. If on the other hand
there is a real lack of specific preference, speculative re-
quirements may leave a larger design space for developers to
explore solutions. Thus there can be a positive side to identi-
fying speculative requirements.

We suggest that uncertainty cues should be identified and
flagged at an early stage, possibly as soon as requirements
are written down. Moreover, regardless of whether specula-
tive language is seen as an undesirable attribute of require-
ments [3] or whether it is seen as having a positive role in the
elicitation process, we suggest that correctly identifying and
classifying instances of uncertainty in requirements is impor-
tant. Our research is motivated by the need to investigate the
use of speculative language in natural language require-
ments. Our practical goal is to support requirements analysts
in making in-depth analyses of reported cases by providing
automated tools that highlight linguistic expressions in NL
requirements that are recognised as speculative statements.

In this paper we report on our work of identifying expres-
sions of uncertainty in NL requirements by means of a lin-
guistically-oriented automated tool. We have evaluated our
automated system on an uncertainty dataset of 11 full-text
requirements documents in which uncertainty cues and their
scopes have been manually annotated according to estab-

lished annotation guidelines1. We report the preliminary re-
sults of our system’s performance in terms of speculative
sentence identification and uncertainty scope resolution.

The rest of the paper is structured as follows. In Section
II, we discuss the property of uncertainty, and analyse differ-
ent types of uncertainty that occur in NL requirements docu-
ments. Section III provides a detailed description of our
technique for identifying speculative sentences. Section IV
presents our rule-based approach to determining the scope of
uncertainty cues. Our experimental results are reported in
Section V. Section VI addresses potential threats to validity
of our findings. Section VII discusses related work, and con-
clusions and future work are presented in Section VIII.

II. UNCERTAINTY IN NATURAL LANGUAGE

REQUIREMENTS

A. Uncertainty Detection

Uncertainty, or more generally, hedging or speculation,
is a language component that is often used to express tenta-
tiveness, skepticism, or doubt when authors are not com-
pletely certain of their claims/statements. Speculative lan-
guage is a communicative strategy for weakening the force
of a statement. It is usually triggered by particular words
(e.g., possible, might, likely) or phrases (e.g., not sure,
whether or not), called uncertainty cues, which weaken some
clauses or propositions. In requirements, stakeholders often
have a need to qualify the degree of confidence that they
have in certain sentences. Attempts to deprive them of natu-
ral ways of expressing such qualifications (e.g., by forbid-
ding the use of certain words), will be impractical during
requirements elicitation. Indeed we believe there is little
point in trying to enforce absolute certainty if and when, in
reality, stakeholders can offer only tentative speculations.

In any case, the occurrence of such cues is insufficient as
a sure indicator of uncertainty. For example, both require-
ments (E3) and (E4) below contain the cue ‘appear’, yet
(E3) is a factual statement with no uncertainty. Therefore, the
correct identification of uncertainty needs to be sensitive to
the linguistic context – i.e. the surrounding words – in which
the cues occur.

E3. The system shall allow an operator to assign colours for
countries that appear on the tactical display.

E4. It appears that Insulin should be delivered in circum-
stances where the level is likely to go outside this range.

Similarly, (E5) below is a genuinely speculative state-
ment: there is uncertainty about whether the supplier will
submit the overview or not, although there is a clear indica-
tion of preference. However, in (E6) there is nothing specu-
lative about the fact that modifications should be typeset in
italics, as being ‘suggested’ is a factual property of a modifi-
cation. In other words, uncertainty has a scope that may re-
late to a situation captured in the requirement statement.

1 http://www.inf.u-szeged.hu/rgai/project/nlp/bioscope/Annotation%20guid

elines2.1.pdf

E5. It is strongly suggested that the supplier submits an
overview of the alternative, the stages involved for each, and
the releases.

E6. Modifications suggested during the review of the DRAFT
version of the SPS will be added in italics to preserve the
original notes.

Our method for detecting uncertainty reflects this analy-
sis and operates in two stages: the identification of specula-
tive sentences and the determination of uncertainty scope.

The first stage - speculative sentence identification - la-
bels each sentence in a requirements document as either
speculative or non-speculative. As shown in the examples
above, uncertainty cues cannot be determined just by simple
keyword matching approaches, but need to recognise the
possible multiple word senses involved in a word (such as
appear), and the characteristics of the surrounding context.

In this paper, we used a machine learning approach, first
to identify a number of linguistic features typical of specula-
tive sentences, and then to applying a Conditional Random
Fields (CRFs) algorithm [10] in order to learn models that
classify whether or not a given instance of an uncertainty cue
is used speculatively.

The second stage is uncertainty scope resolution which
attempts to identify which fragments of a sentence are af-
fected by the speculative expressions; that is, the scope of
uncertainty cues. Particularly in long, complex sentences,
only parts of the sentence are speculative as in (E7) 2.

E7. The text interface will provide equivalent functionality,
but will [likely require additional server requests to perform
the same task].

In this case, the scope of the speculation keyword ‘likely’
only spans the second coordinated clause of the sentence,
‘likely require additional server requests to perform the
same task’, while the first clause, ‘The text interface will
provide equivalent functionality’, conveys factual informa-
tion. Therefore, it is necessary to discriminate between
speculative and non-speculative fragments at the sentence
level in order to avoid information loss.

We have developed an automated rule-based approach to
identify the linguistic scope of speculative cues. We devised
a small set of hand-crafted rules, which rely heavily on syn-
tactic structure information as well as on various additional
features related to specific syntactic constructions of the un-
certainty cue in focus. These rules are applied to the parse
trees of sentences containing speculative clues, extracted by
the Stanford Parser3.

B. Uncertainty Cue Categories

Uncertainty in natural language may be realised through
various linguistic cues and is marked by a variety of syntac-
tic constructions. We drew on Hyland’s study of the lexical
surface realisation of uncertainty [6], and analysed syntactic

2 Our examples are adapted from our collection of requirements docu-

ments. We underline uncertainty cues and highlight uncertainty scope with
square brackets.
3 http://nlp.stanford.edu/software/lex-parser.shtml

structures expressing uncertainty in the BioScope Corpus
[17]. Typical uncertainty cues fall within the following six
categories, which are classified based on the generalised
part-of-speech (POS) tag of the cue. Some examples of these
categories are given below.

• Auxiliaries
- may, might, can, would, should, could, etc.

E8. Please consider carefully before disclosing any per-

sonal information that [might be accessible to others].

E9. [The user authorizations should be done through the

LDAP mechanism].

• Epistemic verbs
- suggest, presume, suppose, seem, appear, indicate, etc.

E10. This [assumes that service center computers have ac-

cess to the Internet].

E11. [There appears to be a need to enter in all the infor-

mation in one system and have it update all other systems].

• Epistemic adjectives
- probable, possible, likely, unlikely, unsure, not sure, etc.

E12. Two [possible display page formats could be used].

E13. [The procedure for aligning calibration data is still

unclear].

• Epistemic adverbs
- probably, possibly, presumably, perhaps, potentially, etc.

E14. [Perhaps this is a phenomenon restricted to program-

mers], as opposed to literature authors.

E15. A system consisting solely of software and [possibly

the computer equipment on which the software operated.

• Epistemic nouns
- possibility, probability, hypothesis, suggestion, etc.

E16. There is the [possibility that existing products, such as

a process manager, will be used].

E17. The parameter values are stored to provide the [possi-

bility to have different characteristics of the outside tem-

perature].

• Conjunctions
- or, and/or, either … or, whether … or, whether or not, etc.

E18. Web sites hosting software are maintained [either by

the LMI department or by another state agency].

E19. If the owner has made a counter offer, the ROW Chief

decides [whether or not to accept the counter offer].

Note that the scope of an uncertainty cue varies quite sig-
nificantly, and is related to syntactic patterns associated with
the keyword cue.

C. Uncertainty and Ambiguity

In previous work [19], we have argued that ambiguity is
common in NL requirements. In cases where different stake-
holders interpret the same text differently (described as
‘nocuous ambiguity’), then systems risk being incorrectly
implemented. If such ambiguity can be detected in a re-
quirements document, then the requirements writer should be

notified with a view to clarifying the text and removing (so
far as is possible) the ambiguity.

Uncertainty differs from ambiguity both in root cause and
in remedial actions. Ambiguity arises (in part) as a result of
the form of the requirement. The writer may be quite certain
of the desired outcome, and may not even realise that the
writing is ambiguous, but the particular choice of words and
expression might lead other stakeholders to interpret the text
incorrectly.

Uncertainty is a property of the contents of a require-
ment, and is often indicated through the writer's use of
speculative language. In fact, speculative language de-
notes an explicit admission by the stakeholder that the infor-
mation conveyed is not reliable (unlike ambiguity, where the
writer might be unaware of this). We could thus consider
speculative language to be an explicit annotation of risk -
given in literary terms instead of as a numeric assessment.

As a consequence, remedial actions are very different in
the two cases. For an ambiguous requirement, an analyst
ought to ask which of the possible interpretations was in-
tended (‘Did the writer mean A or B?’), and ensure that the
requirement is rewritten in a less ambiguous way (probably
in consultation with the original writer). For speculative re-
quirements, the analyst should focus on why the stakeholder
is uncertain, what is causing the uncertainty, what are the
risk factors, what other scenarios are possible, whether there
are exceptional cases to be considered, and how the system
should handle them. At times, this might result in rewriting a
speculative requirement (‘Maybe A’) as a series of non-
speculative, conditional requirements (‘If Z then A else B’ or
‘A, unless Z: in which case B’).

In fact, it is possible for the two phenomena to be con-
flated in the same requirement. A truly speculative require-
ment can be framed in ambiguous language, or ambiguity
could be consciously used as one of the many linguistic de-
vices used to convey uncertainty. This phenomenon is some-
times seen in those cases for which the consequences of both
ambiguity and uncertainty tend to the same result. In other
words, if a stakeholder used ambiguous language to convey
uncertainty, then misclassifying that speculative requirement
as ambiguous would still prompt the analyst to look more
closely at it, and the classification error could be promptly
corrected by human review. Hence, although instances of
ambiguity and uncertainty are to be treated differently, where
they interact, our proposed remedial actions will converge on
a common result of a more complete requirements document
which is less susceptible to misinterpretation.

D. Uncertainty Dataset

We collected a set of 11 requirements documents from
RE@UTS web pages4. The documents specify systems from
a variety of application domains, including transportation,
engineering, communication, and web applications. Al-
though both our previous work on ambiguity [19] and the
present one on uncertainty make use of the same set of re-

4 http://research.it.uts.edu.au/re/

quirements documents, the collected sample instances used
for the system development are different.

In the work presented in this paper, we manually anno-
tated uncertainty cues and their corresponding scopes. The
statistics of this uncertainty dataset are given in Table I. The
speculative sentences contain different categories of uncer-
tainty cues described above, and the distribution of individ-
ual cue categories is shown in the Figure 1. The top 10 fre-
quently occurring uncertainty cues in these requirements
documents are may (365), should (130), possible (83), or
(67), whether (57), would (47), indicate that (39), could (20),
might (18), possibility (18), respectively.

TABLE I. THE STATISTICS OF AN UNCERTAINTY DATASET ABOUT

REQUIREMENTS DOCUMENTS

Documents 11

Sentences
Speculative sentences

26, 829
914 (3.4%)

Cues
Unique cues
Cues with multiple words

1024
51
52 (4.4%)

Scope
Scope with multiple cues

1003
21 (2.1%)

59%

14%

11%

10%

3% 3%

Auxilaries

Conjunctions

Verbs

Adjectives

Adverbs

Nouns

Figure 1. The distributions of different cue categories

III. DETECTION OF SPECULATIVE SENTENCES

This section describes how we identify the sentences in
requirements documents that contain uncertain information.
We approach it as a sentence classification problem, that is,
any sentence containing at least one uncertainty cue is
marked as candidate-speculative, to indicate that it may con-
vey uncertainty, while any sentence with no cues is labelled
clearly as non-speculative at this stage. As a result, the task
of speculative sentence detection could be treated as a prob-
lem of recognizing whether uncertainty cues occur in con-
texts that allow them to convey uncertainty.

A. Uncertainty Cues

Multi-word cues. As described in Section II.B, uncer-
tainty is often triggered by a single word such as might, pos-
sible and probably. However, in some cases an uncertainty
cue is expressed via a phrase that spans multiple tokens, e.g.,
not sure, whether or not. Some complex speculative key-
words exhibit strong hedging strength only when they func-
tion at the whole phrase level, but not at the individual token
level, such as ‘remain to be determined’, ‘cannot definitely
confirm’. The fact that most multi-word cues are very infre-
quent, some even occurring only once in our dataset, pre-
sents a problem because training a machine learning classi-

fier requires syntactic pattern frequency. We address this by
relying on a raw string matching approach to identify multi-
word cues.

Weak cues. Not all uncertainty cues convey the same
degree of speculation, and some cue keywords may not be
used in a speculative context. For example, the modal auxil-
iary ‘can’ is ambiguous between several meanings, e.g., abil-
ity (deontic), and possibility (epistemic). It is considered as
an uncertainty cue only in its epistemic sense. This is also the
case for some other modal auxiliaries (e.g., can, could,
should, and would) which express uncertainty only when
used in a particular sense, which may be identified from the
surrounding context of the modal [2]. Such terms are called
weak cues. Interestingly, some of the false positive cases in
cue identification are due to word sense ambiguity in weak
cues. For example, the verb ‘appear’ exhibits different word
senses in the example (E3) and (E4) as discussed in the in-
troduction. The context around the uncertainty cue plays an
important role in resolving weak cue instances and our ap-
proach is sensitive to possible relevant relations between a
cue and surrounding tokens.

TABLE II. EXAMPLE OF UNCERTAINTY CUE TAGGING

WORD LEMMA PoS CHUNK H-L H-

PoS

DL Cooc Cue

Tasks task NNS B-NP have VB nsubj O O

may may MD B-VP have VB aux O B

have have VB I-VP ROOT O root O O

many many JJ B-NP milestone NNS amod O O

milestones milestone NNS I-NP have VB dobj O O

which Which WDT B-NP associate VBN nsubjpass O O

may may MD B-VP associate VBN aux O B

or or CC O associate VBN cc O I

may may MD B-VP associate VBN aux O I

not not RB I-VP associate VBN neg O I

be be VB I-VP associate VBN auxpass O O

associated associate VBN I-VP milestone NNS rcomd O O

with with IN B-PP associate VBN prep O O

the the DT B-NP task NN det O O

task task NN I-NP with IN pobj O O

5.1 5.1 CD I-NP task NN num O O

. . O O O O O O O

B. Identifying Speculative Keywords

We formulate the problem of uncertainty cue detection as
a token-level sequence labelling task. Table II shows a pre-
processed sample sentence (E20) with the rich information
per token. Each word token in a sentence is assigned one of
the so-called BIO scheme tags: B (first word of a cue), I (in-
side a cue), O (outside, not in a cue) as shown in the last col-
umn in Table II.

E20. Tasks may have many milestones which may or may not
be associated with the task 5.1.

We extracted a wide variety of linguistic features (See
Table II), both syntactic and surface-oriented, which attempt
to characterise the semantics of speculative keywords. The
features used for the token classification were grouped into
the following four categories:

• Word-token Features. This type of feature includes
word lemma, Part-of-Speech (PoS) tag, and chunk tag of
the word, which are obtained from the Genia Tagger5.

5 http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/tagger/

• Context Features. The features for the lemma and POS
tag of the 3 neighbouring words before and after the cur-
rent word token are also considered.

• Dependency Relation Features. We make use of the
typed dependency relations returned by the Stanford
Parser. The dependency relations provide a representa-
tion of grammatical relations between words in a sen-
tence. We explore three types of features including the
lemma (H-L) and PoS tag (H-PoS) of the head token in
one dependency relation, and dependency labels (DL).

• Co-occurrence (Co-oc) Feature. Some cue keywords
tend to co-occur in the sentences. For instance, core
epistemic adjectives (e.g., possible) and verbs (e.g., sug-
gest, indicate) often co-occur with modal auxiliaries,
e.g., may, and might, to act as strong speculative cues as
shown in (E2). Their co-occurrence might be a useful
indicator to predict their speculative context.

The cue word classification model is constructed using
the Conditional Random Fields (CRFs) [10] algorithm, im-
plemented by the CRF++ Package6. The training data for the
building of the classifier consists of a set word token in-
stances, each of which contains a feature vector that is made
up of four groups of features described above together with a
cue class label – BIO tags. Due to space limitations, details
about the CRF-based learning model can be found else-
where7.

C. Extracting Uncertainty Cues

Uncertainty cues were extracted from tag sequences la-
belled with the BIO scheme. If the cue contains multiple
words, the tokens marked with the B or I tag are combined
according to a tag priority, i.e. B > I > O. The extraction pro-
cedure is executed using the following rules:

• The first token of the cue starts with the token tagged as
B. If it is not found, look for the I tag. If a word token is
marked as I, and its previous token is tagged with O,
then this token is considered as the beginning of a cue.

• The cue ends when it meets either a token tagged with O
or a token started with a new tag B in which this token is
regarded as the start point of a new cue.

D. Identifying Speculative Sentences

Once the system has extracted the uncertainty cues in
sentences using the aforementioned CRFs model, we per-
formed a separate post-processing step, using string match-
ing to recognise infrequent multi-word cues that cannot be
detected by the statistical machine learning model due to
data sparseness. A small set of infrequent multi-word cues
(e.g., look like, to confirm, not clear) were collected from the
training data, and then used for the string matching-based
cue recognition. If a sentence contains one or more extracted
uncertainty cues, then it is classed as speculative.

6 http://crfpp.sourceforge.net
7 http://crfpp.googlecode.com/svn/trunk/doc/index.html#usage

IV. UNCERTAINTY SCOPE RESOLUTION

As described earlier, the scope of uncertainty may vary,
and may be evident from certain linguistic properties. In our
approach to scope resolution we rely heavily on syntactic
information, taken from the phrase parse tree generated by
the Stanford Parser. We also use various additional features
related to specific syntactic constructions displayed by dis-
tinct uncertainty cue categories.

A. Heuristics to Capture the Scope of Uncertainy

Following the BioScope guidelines for scope annotation
[17], we manually inspected the gold standard of the Bio-
Scope corpus8 and defined a set of heuristics which we de-
veloped to determine the scope of uncertainty. We list them
below, organised by the categories of uncertainty cues given
in Section II.

•••• Auxiliaries
The scope of modal verbs differs in the passive/active

voice of the main verb that follows the modal.
- If the main verb is active, then the scope starts with the

modal and all its dependents, as in (E21).
- If the main verb is passive, then the scope includes the

subject argument that appears in the preceding text, (E22).

E21. A ROW Project Agent [may take on a responsibility of

a discipline supervisor].

E22. [This function may be performed by a contractor or

the ROW Engineer].

•••• Epistemic verbs
The scope for an epistemic verb depends on three main

factors: (1) passive/active voice of the verb; (2) whether or
not it is a raising verb (e.g., seem, appear); (3) if the subject
argument of the verb is an expletive pronoun (e.g., it).
- If the verb is non-raising and active, scope starts at the cue
word and spans to the end of the clause or sentence (E23).
- If the verb is passive, or is a raising verb, the scope includes
the subject argument of the verb (E24) and (E25) respec-
tively.

E23. The multiple media requirement [implies the ability to
generate a seamless map background from more than one
CD ROM].
E24. Insulin is only delivered in circumstances where [it
appears that the level is likely to go outside this range].
E25. This determination requires figuring out [what the CBS
is supposed to do, i.e., the full set of features].

•••• Epistemic adjectives
- If the adjective has an attributive function, the scope covers
the modified noun phrase and all its descendants (E26).
- If the adjective has a predicative function, the scope covers
the subject argument of the head verb (the copula), as well as
all its dependents (E27).

E26. This function lists [possible issues that may prevent the
undertaking of acquisition and steps to resolve those issues].

8 http://www.inf.u-szeged.hu/rgai/bioscope

E27. [Job seekers will also be likely to use the custom home
page feature].

•••• Epistemic adverbs
The scope for an adverb depends on the properties of the

head word that it modifies.
- If the head word is a noun, the scope takes over the head
word with all its (non-subject) syntactic descendents (E28).
- If the head word is a verb, the scope includes the subject
argument of the head verb (E29).

E28. The facilities, hardware, software, firmware, proce-
dures, and documentation necessary to perform qualifica-
tion, and [possibly other, testing of software].
E29. [Title Database internal to the system possibly linked to
the Recorders Office].

•••• Epistemic nouns
The scope of epistemic nouns starts with the noun cue

and includes its possible clause complement with that, (E30),
or its indefinite complement with to (E31).

E30. On the [assumption that the implementation will com-
pute the GHA only once], Table 3 summarises the floating
point operations required for each algorithm component.
E31. There is the [possibility to set the display text either in
English or in German].

•••• Conjoining phrases
- If the conjoining phrase occurs as a single unit (e.g.,
whether or not) then the scope covers its argument and all its
dependents (E32).
- If the cue is or and it co-occurs with another cue (e.g., ei-
ther), the scope should combine them together (E33).

E32. If the owner has made a counter offer, the ROW Chief
decides [whether or not to accept the counter offer].
E33. Web sites hosting software are maintained [either by
the LMI department or by another state agency].

B. Automatically Identifying Scope

Our approach to scope resolution relies on the depend-
ency structure information obtained from the phrase parse
trees generated by the Stanford Parser, and the set of linguis-
tic heuristics described in the previous section IV.A. These
help identify the scope of each detected cue. We also impose
the following constraints when annotating the uncertainty
cues and their scope:
- Each cue should have one scope, and the cue must be con-
tained in the corresponding scope.
- One scope probably have one or more cues, as in (E34).
- Cues and scopes have to be continuous.

E34. The user [may specify whether to search for the term
within the name of the information resource or the definition
or both].

We present a simple example to illustrate how the system
uses the phrase parse tree and linguistic heuristics to deter-
mine the scope of the uncertainty cue ‘may’ in the sample
sentence (E21). Figure 2 shows the information that de-
scribes the properties of the uncertainty cue ‘may’, and the
search pattern on the parse tree which gives the required
scope. Figure 3 shows the parse tree for the sample specula-

tive sentence (E21) generated by the Stanford Parser, with
each word token (leaf node) of the sentence tagged with its
part of speech.

A. Uncertainty Cue
 Cue type: Auxiliary
 Cue term: may
 Cue headword: may (POS tag: MD)
 Cue property: take (main verb, active voice)
B. Searched Scope
 Search context: right context
 Search depth (layer): 2 (upper layer), and VP Node (start from the
 headword leaf node)

Figure 2. The frame-based representation of an uncertainty cue and
searched scope for the example (E21).

Figure 3. The phrase parse tree for the example (E21) by the Stanford
Parser. The area in the rectangle with blue broken lines is the chunk subtree
used as the scope of the uncertainty cue ‘may’.

Given an uncertainty cue, the system first checks a vari-
ety of syntactic properties associated with the cue, e.g., POS,
argumenthood, voice, etc, as shown in Figure 2. It then de-
cides the search strategy based on the context type (left or
right context) and search depth in the parse tree. In the case
of (E21), to find the scope of the uncertainty cue ‘may’, the
system begins the search from the start-point, i.e. the leaf
node of the cue headword ‘may’, and then tracks upward to
the ancestor node VP (Node 2 in Figure 3) in the second
layer. The chunk subtree (the rectangle area with broken
lines in Figure 3) associated with the located ancestor node
(Node 2) is trimmed from the whole tree as the scope of the
uncertainty cue. As shown in Figure 3, the uncertainty scope
is clearly defined, and is captured by the analysis of the syn-
tactic role of the uncertainty cue given by the parse tree.

The search depth determines the scope of an uncertainty
cue. In our system, the search depth for each cue is decided
empirically, depending on several factors, such as the POS
tag of the cue headword, the class type of the cue, and the
linguistic properties of the cue (e.g., whether the scope needs
to include the subject argument). In general, the search depth
for various types of cues is limited to 2-4 upper layers start-
ing from the leaf node of the headword.

As described above, the system usually starts a scope
search from one of the leaf nodes; i.e. some word contained
in the cue, in the parse tree. Hence, in the case of multi-word

cues (e.g., whether or not, may or may not, and not clear,
etc.), the system firstly needs to determine the headword of
the cue, e.g., whether or not → whether, may or may not →
may (first one), and not clear → clear, before searching the
phrase parse tree for the resolution of uncertainty scope.

C. Determing Scope Boundary

The previous section described how to ensure the scope
contains the cue and the main elements of the scope. It is
possible for the scope to extend beyond the points defined in
part B. Generally, the default scope is set to start at the cue
word and span to the end of the clause or sentence. However,
as analysed in Section IV.A, in some special cases the sub-
ject argument can occur before the cue term in the text, and
still be included in the scope. Moreover the dependents con-
nected to the cue are sometimes attached to non-speculative
information, such as when a secondary clause follows the
primary clause containing the uncertainty cue. Consider the
sentence (E35) below. Here, the scope for the cue ‘would’
should begin with the noun phrase, ‘a problem with this in-
terface’, acting as the subject argument for the passive verb
‘detected’, and the end scope will be terminated before the
sentence-level conjunction ‘until’.

E35. Normally, [a problem with this interface would not
even be detected] until after the system was implemented.

Due to the presence of the clause ending word ‘until’ be-
tween the cue term ‘would’ and the end point of the scope
‘implemented’, the original end of the scope has to be modi-
fied. The end of the scope is moved forward to the word ‘de-
tected’ before the clause ending word ‘until’. In our system,
we use a set of potential clause ending terms (e.g., whereas,
but, although, nevertheless, etc.). These words usually imply
the beginning of a new clause in the sentence, and thus are
considered as the scope ending signals.

Given an uncertainty cue, the system outputs a scope
fragment extracted from the corresponding speculative sen-
tence. However, as mentioned before, for some special cue
pairs such as ‘either…or’, and ‘whether…or’, although they
are two separate cues, they should form a single scope when
they appear in the same sentence according to the annotation
guideline. An additional heuristic was employed to ensure
that the scopes for such conjunction cues are the same.

V. EXPERIMENTS AND RESULTS

Our system performance was evaluated in terms of Preci-
sion (P), Recall (R), and their harmonic mean, the F-measure
(F):

FNTP

TP
R

+

=
FPTP

TP
P

+

=
RP

RP
F

+

×
=

where TP (true positive) is the number of correctly identified
instances, FN (false negative) is the number of instances not
identified by the system, and FP (false positive) is the num-
ber of instances that are incorrectly identified by the system.

As described earlier, uncertainty detection in require-
ments documents in practice consists of two tasks: (a) the
identification of speculative sentences, each of which con-
tains one or more uncertainty cues, and (b) in-sentence un-

certainty scope detection, which aims to recognise specula-
tive text spans inside the sentences.

For the speculative sentence identification task, the re-
sults reported here were obtained by performing 10-fold
cross validation experiments on the requirements from our
manually-annotated dataset. In each iteration, we trained on
90% and tested on 10% of the remaining data.

For the task of uncertainty scope determination, as de-
scribed earlier, we used the gold standard of the BioScope
corpus as training data to extract a set of linguistic heuristics
for scope detection. We used the rules on our RE uncertainty
dataset as the test data and report two sets of experimental
results using different sources of uncertainty cues.

A. Speculative Sentence Identification

In uncertainty cue identification, evaluation is based on
exact-match counts for uncertainty cues (possibly spanning
multiple tokens). We also evaluate the percentage of specula-
tive sentences that are correctly identified by the system.

1) Impact to Feature Types on the CRF-based Cue

Classifier
To evaluate the contribution of the various features for

uncertainty cue identification, we performed a series of ex-
periments in which different sets of linguistic features are
added to the word-token feature baseline and new classifiers
are trained. We used word-token features as the evaluation
baseline because of the important role that these features play
in identifying uncertainty cues. We compared the perform-
ance of these new classifiers to the word-token feature base-
line.

Table III shows the impact of different feature sets on the
performance of uncertainty cue identification. The context-
related features exhibit strong distinguishing capability,
which substantially improve the performance with an in-
crease of 7.1% in precision and 9.6% in recall. However,
with the addition of the dependency relation features and co-
occurrence features, the overall F-measure average improves
only slightly by 1%. We notice that when all the features
work together in combination, the system would achieve the
highest performance for cue classification. This suggests that
a wide variety of features indeed characterise different as-
pects of uncertainty cues.

TABLE III. THE IMPACT OF FEATURE TYPES ON THE PERFORMANCE OF

UNCERTAINTY CUE IDENTIFICATION (DR-DEPENDENCY RELATION)

 P (%) R (%) F (%)

Word 77.18 67.38 72.00

Word + Context 84.29 76.98 80.47

Word + Context + DR 85.43 76.70 80.83

All features 85.58 77.65 81.42

2) Performance of Different Cue Types
Table IV summarises the performance of our system in

predicting different types of uncertainty cues. In comparison
to other types of uncertainty cues, adverb cues perform best
and achieve an F-measure as high as 90.43%. One possible
explanation for this is because adverbs are much more
straightforward to recognise than other types of uncertainty
cues. Auxiliaries, the most common cues in our uncertainty
dataset, also perform well and the F-measure score reaches

84.68%. The performance on the identification of conjunc-
tion cues is worse, and the recall drops to 49.6% only. This is
caused primarily by the poor recognition of ‘or’, which is
very ambiguous when it functions as the uncertainty cue. An
example of ‘or’ as an uncertainty cue is shown in (E36), and
as a non-uncertainty cue in (E37). There are 1320 occur-
rences of ‘or’ in our dataset, and only 64 of them are uncer-
tainty cues. The system predicts 58 occurrences of ‘or’ as
uncertainty cues, and only 23 are correctly recognised.

E36. Quickly pressing a mouse button in order to make a

selection or give a command. [Uncertainty cue]

E37. The radio programs can be changed with the steering

wheel buttons left or right. [Non-uncertainty cue]

TABLE IV. THE PERFORMANCE ON THE IDENTIFICATION OF DIFFERENT

TYPES OF UNCERTAINTY CUES

 P (%) R (%) F(%)

Auxiliaries 89.33 80.49 84.68

Verbs 88.82 84.48 86.60

Adjectives 73.11 79.09 75.98

Adverbs 96.30 85.25 90.43

Nouns 64.86 68.57 66.67

Conjunctions 78.75 49.60 60.86

TABLE V. THE OVERALL PERFORMANCE ON THE CUE DETECTION

LEVEL AND THE SPECULATIVE SENTENCE IDENTIFICATION LEVEL

 P (%) R (%) F (%)

cue level 85.58 77.65 81.42

sentence level 88.19 83.16 85.60

Table V shows the overall performance of uncertainty
identification at the cue level and the sentence level. It is not
surprising that the performance on speculative sentence iden-
tification is better than that of cue recognition. Part of the
reason for this is because speculative sentence identification
is much more tolerant of partially recognised cues in the case
of multi-word cues. In cases where only part of a multi-word
cue is recognised but the whole cue is missed, the sentence
can still be correctly identified as speculative.

B. Uncertainty Scope Detection

In the scope resolution task, a scope is considered to be
correct if it has the correct start and end points in the sen-
tence and is associated with the correct cues. Given an uncer-
tainty cue, the system searches the corresponding sentence
and locates the speculative text spans invoked by the cue.
Here we report on the performance using two sets of cue
input, one with gold standard cues (i.e. the manually anno-
tated cues) and the other with the cues predicted by our cue
recognition model, in order to compare the effect of cue
identification at the earlier stage on the performance of scope
detection at the later stage.

Table VI shows that performance of scope identification
using gold standard cues and predicted cues, respectively.
With gold standard cues as input data, the system performs
well on the whole dataset, with an overall F-measure of
61.63%. This suggests that the Stanford Parser’s phrase parse
tree essentially captures the necessary syntactic structure of
the sentence. With the help of the hand-crafted syntactic heu-
ristics described in Section IV.A, the parse trees can be used

to predict correctly the speculative text span invoked by the
uncertainty cue. The system works well for four particular
types of uncertainty cues: Auxiliaries, Verbs, Nouns, and
Conjunctions, and all of these four cue types have an F-
measure score of approximately 62%. However, in the case
of Adverb cues, the system performance significantly dete-
riorates and the F-measure score decreases to only 40.98%.
One of the main reasons for this is weak capability to detect
clause structures in more complicated sentences. These er-
rors are caused by incorrect parse trees being generated by
the Stanford Parser.

TABLE VI. THE OVERALL PERFORMANCE ON UNCERTAINTY SCOPE

IDENTIFICATION

Gold Standard Cues Predicted Cues
P (%) R (%) F (%) P (%) R (%) F(%)

Auxiliaries
Verbs
Adjectives
Adverbs
Nouns
Conjunctions

65.23
62.36
52.73
40.98
61.11
61.78

66.30
62.36
52.73
40.98
62.86
61.78

65.76
62.36
52.73
40.98
61.97
61.78

60.78
56.63
39.66
37.04
37.84
62.19

55.62
54.02
41.82
32.79
40.00
40.47

58.08
55.29
40.71
34.78
38.89
49.03

Overall 61.25 62.01 61.63 54.37 49.95 52.07

To investigate how well the system performs under the
more natural but less-than-perfect condition of automatic
recognition of uncertainty cues, we conducted another set of
experiments using the cues produced at the earlier cue identi-
fication stage. Unsurprisingly, the overall system perform-
ance drops 9.6 percentage points in F-measure due to imper-
fect behavior in cue identification. The system performs
poorly especially for the cues, adjectives, adverbs, and
nouns, with an F-measure of less than 40%. This indicates
that there is still much room for improvement in scope iden-
tification.

VI. THREATS TO VALIDITY

This section discusses potential threats that might affect
the validity of our work and the uncertainty detection by our
system, and how they are mitigated or accommodated.

A. Errors Analysis

Our error analysis on false positives and negatives re-
veals that one of the most important sources of error is
caused by incorrect analyses by the Genia Tagger and Stan-
ford Parser. Despite common recommendations to the con-
trary, the requirements in our dataset included many long,
complex sentences, and often left the tagger and parser un-
able to correctly analyse the text, leading to misinterpreted
lexical or syntactical ambiguities. Another potential negative
factor is the incomplete nature of our source corpus, that is,
the five cue categories are not comprehensive and complete,
especially for the instances that are previously unseen in our
annotated dataset. This could lead to some possible false
negatives in cue identification in terms of new requirements
datasets. Moreover, multi-word cues were found by the naive
string matching approach that probably results in an over-
fitting problem when the system processes some new re-
quirements dataset.

B. Uncertainty Strength

While recognising whether a sentence is speculative or
not is useful, it seems more interesting and clearly much
more challenging to determine the strength of the uncer-
tainty. It is clear that not all speculative requirements are
equally strong and that the choice of speculation device af-
fects the strength of the uncertainty. From the point of view
of evaluating quality of requirements expressiveness and of
prioritising the effort spent on inspection and further elicita-
tion, it would be useful to quantify the degree of uncertainty
as an indication of the confidence that the author has in his or
her proposition. However, determining the strength of a
speculative requirement is not trivial. The main reason is due
to the peripheral nature in uncertainty language, which re-
sults in low inter-annotator agreement in determining the
strength degree of uncertainty [11]. Nevertheless, the study
of how to represent uncertainty strength in speculative re-
quirements will be an interesting topic in future work.

C. Applicability to Requirements Engineering Practice

While we have demonstrated the effectiveness of our ap-
proach at identifying speculative sentences, our validation
does not extend to the use of such information in require-
ments engineering practice. There is thus a threat that the
identification of speculative sentences is in practice of no
use, or too hard to use for practitioners.

Discounting this threat will require further studies in the
field. However, we are confident that a suitable, low-cost
(both in computational and in cognitive terms) integration
with tools in common use (such as IBM Rational DOORS) is
feasible. In this scenario, speculative sentences could be
flagged in a non-intrusive way (e.g., by underlining with
yellow squiggles the relevant parts), thus providing the ana-
lyst a subtle but unmistakable cue that something anomalous
could lie behind the uncertainty. It would then be left to the
analyst to decide what the follow-up should be (e.g., further
questioning of stakeholders, dismissing as irrelevant, or ex-
plicitly stating that the final choice is left to the designers).

VII. RELATED WORK

A. Quality Control and Analysis in NL Requirements

In industrial practice, the vast majority of requirements
documents are still written in natural language due to various
reasons such as ease of expression and the convenience of
communication between different stakeholders [13]. How-
ever, requirements quality also suffers from the typical NL
problems such as ambiguity and uncertainty. A number of
studies have been done in the past to address research issues
concerning quality control and analysis in NL requirements.
Here we briefly discuss some of them that we consider as
particularly related to our research.

Several studies proposed a quality model (QM) to meas-
ure quality attributes in NL requirements documents by using
a set of quality metrics (e.g., vagueness, subjectivity, option-
ality, weakness, etc.). They developed analysis techniques
based on linguistic approaches to detect the defects (we are
interested here in those related to the inherent ambiguity in

the requirements). For example, QuARS (Quality Analyzer
of Requirements Specification) [3] is a linguistic language
tool based on a quality model for NL requirements specifica-
tions. It aims to detect lexical, syntactic, structural, and se-
mantic defects including ambiguities. Wilson et al. [18] de-
veloped a QM tool, ARM (Automated Requirement Meas-
urement), to identify potential problems, such as ambiguity,
inaccuracy, and inconsistency, in natural language specifica-
tion statements. Fantechi et al. [4] proposed a linguistic ap-
proach to detect the defects, such as vagueness, subjectivity,
weakness, which are caused by ambiguity at the sentence
level in functional requirements of textual (NL) user cases.
Kaiya and Saeki [7] made use of the semantic relationships
between concepts on a domain ontology to check the ambi-
guity property of a requirements item, i.e. whether the re-
quirements item is mapped into several concepts. Ben
Achour et al. [1] discussed the vague and unverifiable prob-
lem in requirements, which is caused by ambiguity of words
and phrases.

In our previous work, we developed an automated tool
[19] to identify potentially nocuous ambiguity in NL re-
quirements, which also adopted machine-learning to com-
bine a set of heuristics with human judgments to build a
nocuity classifier. In this paper we investigate another lin-
guistic phenomenon, uncertainty, in NL requirements, in
which the stakeholders use speculative language to express
tentativeness and possibility when they verbalise their own
needs. We described a CRF-based learning model for the
recognition of uncertainty cues at the term level and a heuris-
tics-based method for the determination of uncertainty scope
with the help of sentence parse tree.

B. Uncertainty Research

In recent years, uncertainty detection research has re-
ceived considerable attentions in the natural language proc-
essing (NLP) community. Light et al. [11] first explored the
possibility of automatically classifying sentences into specu-
lative or non-speculative by looking for a list of collected
specific keywords. Medlock and Briscoe [12] proposed a
weakly supervised learning approach, which used single
words as input features for hedging classification. A prob-
abilistic model was exploited to acquire training data for the
learning of hedge classifier. Szarvas [16] extended their
work by introducing n-gram word features and developing a
weakly supervised method for feature selection. Kilicoglu
and Bergler [9] proposed a linguistic motivated approach that
combined the knowledge from existing lexical resources and
hand-crafted syntactic patterns. Additionally, they applied a
weighted scheme to estimate the speculative level of the sen-
tences. Ganter and Strube [5] proposed an automated ap-
proach to investigate the hedging problem in Wikipedia us-
ing tagged weasel words combined with syntactic patterns.

In this paper, we have, for the first time, investigated the
uncertainty detection problem in requirements documents.
We analysed several uncertainty types that frequently occur
in NL requirements. We built on recent work [14, 15], ex-
ploring the use of supervised ML approaches to the detection
of uncertainty cues, and we demonstrated that the success of
a rule-based approach for the scope determination.

VIII. CONCLUSION AND FUTURE WORK

The use of speculative language in NL requirements can
indicate the presence of uncertainty – where misunderstand-
ings by system developers might occur because the require-
ments have not been fully understood nor clearly expressed.
By detecting uncertainty in NL requirements, the quality of
those requirements can be evaluated in order to minimise
adverse effects on the final software product.

In this paper, we showed that it is possible to automati-
cally identify uncertainty in NL requirements by using a lin-
guistically motivated approach. We manually annotated a
requirements corpus with uncertainty cues. The annotated
corpus was then used for developing and evaluating our
automatic uncertainty identification system. We employed a
supervised machine learning algorithm (CRFs) to recognise
uncertainty cues from sentences using a wide variety of lin-
guistic features. Our system performed well at the specula-
tive sentence identification task, but was less effective at
uncertainty scope identification (although we suggest that the
latter task is less significant in practice, since a sentence will
be presented to and reviewed by an analyst anyway).

There are a number of areas for future work. For exam-
ple, we need to extend our work to estimate the degree of
uncertainty in speculative requirements, to better understand
the effect of uncertainty on requirements (mis)understanding.
We also need to examine prediction accuracy of uncertainty
cues: will different machine learning techniques improve the
system performance?

The overall goal of our research has been to develop a se-
ries of automated tools that support the detection of linguistic
problems in NL requirements, such as nocuous ambiguity
detection tools [19], and the uncertainty identification tool
described in this paper. Our aim is to help requirements ana-
lysts to inspect and analyse potentially problematic require-
ments to improve their quality.

ACKNOWLEDGMENT

We acknowledge the support of the UK Engineering and
Physical Sciences Research Council (EPSRC) as part of the
MaTREx project (EP/F068859/1), the Science Foundation
Ireland (SFI grant 10/CE/I1855), and The European Re-
search Council (ERC).

REFERENCES

[1] C. Ben Achour, C. Rolland, C. Souveyet, and N. A. M.
Maiden, "Guiding Use Case Authoring: Results of an
Empirical Study," in Proc. of the 7th IEEE Intl. Requirements
Engineering Conference (RE'99) 1999, pp. 36-43.

[2] A. de Roeck, R. Ball, K. Brown, C. Fox, M. Groefsema, N.
Obeid, and R. Turner, "Helpful answers to modal and
hypothetical questions," in Proc. of the 5th conference on
European chapter of the Association for Computational
Linguistics (EACL'91), 1991.

[3] F. Fabbrini, M. Fusani, S. Gnesi, and G. Lami, "The linguistic
approach to the natural language requirements, quality:
benefits of the use of an automatic tool," in Proc. of the 26th

annual IEEE computer society—NASA GSFC software
engineering workshop, 2001, pp. 97–105.

[4] A. Fantechi, S. Gnesi, G. Lami, and A. Maccari,
"Applications of Linguistic Techniques for Use Case
Analysis," Requirements Engineering, vol. 8, pp. 161-170
2003.

[5] V. Ganter and M. Strube, "Finding hedges by chasing
weasels: Hedge detection using Wikipedia tags and shallow
linguistic features," in Proc. of the ACL-IJCNLP 2009
Conference, 2009, pp. 173-176.

[6] K. Hyland, Hedging in scientific research articles.
Amsterdam: John Benjamins B.V, 1998.

[7] H. Kaiya and M. Saeki, "Using Domain Ontology as Domain
Knowledge for Requirements Elicitation," in Proc. of the 14th
IEEE Intl. Requirements Engineering Conference (RE'06)
2006, pp. 186-195.

[8] M. Jackson, Software Requirements and Specifications: A
Lexicon of Practice, Principles and Prejudices: Addison
Wesley, 1995.

[9] H. Kilicoglu and S. Bergler, "Recognizing speculative
language in biomedical research articles: a linguistically
motivated perspective," BMC Bioinformatics, vol. 9, p. s10,
2008.

[10] J. Lafferty, A. McCallum, and F. Pereira, "Conditional
random fields: Probabilistic models for segmenting and
labelling sequence data," in Proc. of the Intl. Conference on
Machine Learning (ICML-2001), 2001, pp. 282-289.

[11] M. Light, X. Y. Qiu, and Srinivasan, "The language of
bioscience: facts, speculations, and statements in between," in
BioLINK 2004: Linking Biological Literature, Ontologies and
Databases, 2004, pp. 17–24.

[12] B. Medlock and T. Briscoe, "Weakly supervised learning for
hedge classification in scientific literature," in Proc. of the
45th Meeting of the Association for Computational Linguistics
(ACL'07), 2007, pp. 992–999.

[13] L. Mich, M. Franch, and P. Inverardi, "Market research for
requirements analysis using linguistic tools," Requirements
Engineering, vol. 9, pp. 40-56, 2004.

[14] L. Øvrelid, E. Velldal, and S. Oepen, "Syntactic Scope
Resolution in Uncertainty Analysis," in Proc. of the 23rd Intl.
Conference on Computational Linguistics (Coling 2010),
2010 pp. 1379–1387.

[15] V. Prabhakaran, "Uncertainty Learning Using SVMs and
CRFs," in Proc. of the 14th Conference on Computational
Natural Language Learning: Shared Task, 2010, pp. 132–137.

[16] G. Szarvas, "Hedge classification in biomedical texts with a
weakly supervised selection of keywords," in Proc. of the
46th Meeting of the Association for Computational Linguistics
(ACL'08), 2008, pp. 281–289.

[17] V. Vincze, G. Szarvas, R. Farkas, G. Mora, and J. Csirik,
"The BioScope corpus: biomedical texts annotated for
uncertainty, negation and their scopes," BMC Bioinformatics,
vol. 9, p. S9, 2008.

[18] W. M. Wilson, L. H. Rosenberg, and L. E. Hyatt, "Automated
analysis of requirement specifications," in Proc. of the 19th
Intl. Conference on Software Engineering (ICSE), 1997, pp.
161–171.

[19] H. Yang, A. de Roeck, V. Gervasi, A. Willis, and B.
Nuseibeh, "Analysing Anaphoric Ambiguity in Natural
Language Requirements," Requirements Engineering, vol. 16,
pp. 163-189, 2011.

