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     Abstract—Stakeholders frequently use speculative language 

when they need to convey their requirements with some degree 

of uncertainty. Due to the intrinsic vagueness of speculative 

language, speculative requirements risk being misunderstood, 

and related uncertainty overlooked, and may benefit from 

careful treatment in the requirements engineering process. In 

this paper, we present a linguistically-oriented approach to 

automatic detection of uncertainty in natural language (NL) 

requirements. Our approach comprises two stages. First we 

identify speculative sentences by applying a machine learning 

algorithm called Conditional Random Fields (CRFs) to identify 

uncertainty cues. The algorithm exploits a rich set of lexical 

and syntactic features extracted from requirements sentences. 

Second, we try to determine the scope of uncertainty. We use a 

rule-based approach that draws on a set of hand-crafted lin-

guistic heuristics to determine the uncertainty scope with the 

help of dependency structures present in the sentence parse 

tree. We report on a series of experiments we conducted to 

evaluate the performance and usefulness of our system. 

Keywords-Uncertainty; natural language requirements; 

speculative requirements; uncertainty cues; machine learning; 

uncertainty scopes; rule-based approach 

I.  INTRODUCTION 

Many natural language (NL) requirements are stated in a 
tentative or speculative manner. In some requirements uncer-
tainty may have been included deliberately, to avoid commit-
ting to factual statements about which the author is unsure, 
or included semi-intentionally, for example when transcrib-
ing an interview, as the expression of an inherent uncertainty 
in the requirements. It is often the case that such statements 
contain linguistic cues that appear in the requirements text. 
Consider the following examples:  
 

E1. The vending machine will offer mineral water.  

E2. It is possible that the vending machine might offer min-

eral water. 
  

(E1) is framed as a factual statement: the action is certain 
(mineral water will be provided), and the author of (E1) is 
certain about it. In contrast, (E2) is in the form of a specula-
tive statement: it exhibits multiple uncertainty cues (e.g., 
possible, might) that qualify the author's confidence in the 
truth of a proposition [6]. In (E2) the author is uncertain 
about whether the vending machine provides mineral water 
or not. Moreover, notice that the distinction between factual 
and speculative statements is not the same as between indica-
tive (state of the domain) and optative (desired behaviour of 

the system), as defined by Jackson [8]. In fact, one could 
have speculative indicative statements (i.e. uncertainty in the 
state of the domain) and speculative optative statements (i.e. 
uncertainty about the desired behaviour), in addition to the 
factual versions which the literature commonly considers. 

Uncertainty in requirements documents has several unde-
sirable effects. It can lead to system behaviour that does not 
meet users' expectations, if no proper analysis of the root 
causes of the uncertainty is performed, and alternatives are 
not considered. It can also lead to untestable requirements 
and makes it difficult to plan and estimate development 
costs. It can cause developers to substitute their own prefer-
ences and expectations for the speculative requirements. In 
short, speculative requirements that survive till the imple-
mentation phase are potentially harmful. 

However, uncertainty can have a positive role to play in 
the early stages of requirements analysis. If speculative re-
quirements are identified, they may act as indicators of areas 
where further elicitation is needed. If more detailed condi-
tions, risks, and exceptional behaviours are uncovered, they 
may be encoded in the requirements. If on the other hand 
there is a real lack of specific preference, speculative re-
quirements may leave a larger design space for developers to 
explore solutions. Thus there can be a positive side to identi-
fying speculative requirements. 

We suggest that uncertainty cues should be identified and 
flagged at an early stage, possibly as soon as requirements 
are written down. Moreover, regardless of whether specula-
tive language is seen as an undesirable attribute of require-
ments [3] or whether it is seen as having a positive role in the 
elicitation process, we suggest that correctly identifying and 
classifying instances of uncertainty in requirements is impor-
tant. Our research is motivated by the need to investigate the 
use of speculative language in natural language require-
ments. Our practical goal is to support requirements analysts 
in making in-depth analyses of reported cases by providing 
automated tools that highlight linguistic expressions in NL 
requirements that are recognised as speculative statements.  

In this paper we report on our work of identifying expres-
sions of uncertainty in NL requirements by means of a lin-
guistically-oriented automated tool. We have evaluated our 
automated system on an uncertainty dataset of 11 full-text 
requirements documents in which uncertainty cues and their 
scopes have been manually annotated according to estab-



lished annotation guidelines1. We report the preliminary re-
sults of our system’s performance in terms of speculative 
sentence identification and uncertainty scope resolution. 

The rest of the paper is structured as follows. In Section 
II, we discuss the property of uncertainty, and analyse differ-
ent types of uncertainty that occur in NL requirements docu-
ments. Section III provides a detailed description of our 
technique for identifying speculative sentences. Section IV 
presents our rule-based approach to determining the scope of 
uncertainty cues. Our experimental results are reported in 
Section V. Section VI addresses potential threats to validity 
of our findings. Section VII discusses related work, and con-
clusions and future work are presented in Section VIII. 

II. UNCERTAINTY IN NATURAL LANGUAGE 

REQUIREMENTS 

A. Uncertainty Detection 

Uncertainty, or more generally, hedging or speculation, 
is a language component that is often used to express tenta-
tiveness, skepticism, or doubt when authors are not com-
pletely certain of their claims/statements. Speculative lan-
guage is a communicative strategy for weakening the force 
of a statement. It is usually triggered by particular words 
(e.g., possible, might, likely) or phrases (e.g., not sure, 
whether or not), called uncertainty cues, which weaken some 
clauses or propositions. In requirements, stakeholders often 
have a need to qualify the degree of confidence that they 
have in certain sentences. Attempts to deprive them of natu-
ral ways of expressing such qualifications (e.g., by forbid-
ding the use of certain words), will be impractical during 
requirements elicitation. Indeed we believe there is little 
point in trying to enforce absolute certainty if and when, in 
reality, stakeholders can offer only tentative speculations.  

In any case, the occurrence of such cues is insufficient as 
a sure indicator of uncertainty. For example, both require-
ments (E3) and (E4) below contain the cue ‘appear’, yet 
(E3) is a factual statement with no uncertainty. Therefore, the 
correct identification of uncertainty needs to be sensitive to 
the linguistic context – i.e. the surrounding words – in which 
the cues occur. 
 

E3. The system shall allow an operator to assign colours for 
countries that appear on the tactical display. 
 

E4. It appears that Insulin should be delivered in circum-
stances where the level is likely to go outside this range. 

 

Similarly, (E5) below is a genuinely speculative state-
ment: there is uncertainty about whether the supplier will 
submit the overview or not, although there is a clear indica-
tion of preference. However, in (E6) there is nothing specu-
lative about the fact that modifications should be typeset in 
italics, as being ‘suggested’ is a factual property of a modifi-
cation. In other words, uncertainty has a scope that may re-
late to a situation captured in the requirement statement. 
 

                                                           
1 http://www.inf.u-szeged.hu/rgai/project/nlp/bioscope/Annotation%20guid 

elines2.1.pdf 

E5. It is strongly suggested that the supplier submits an 
overview of the alternative, the stages involved for each, and 
the releases. 

E6. Modifications suggested during the review of the DRAFT 
version of the SPS will be added in italics to preserve the 
original notes.  
 

Our method for detecting uncertainty reflects this analy-
sis and operates in two stages: the identification of specula-
tive sentences and the determination of uncertainty scope. 

The first stage - speculative sentence identification - la-
bels each sentence in a requirements document as either 
speculative or non-speculative. As shown in the examples 
above, uncertainty cues cannot be determined just by simple 
keyword matching approaches, but need to recognise the 
possible multiple word senses involved in a word (such as 
appear), and the characteristics of the surrounding context.  

In this paper, we used a machine learning approach, first 
to identify a number of linguistic features typical of specula-
tive sentences, and then to applying a Conditional Random 
Fields (CRFs) algorithm [10] in order to learn models that 
classify whether or not a given instance of an uncertainty cue 
is used speculatively. 

The second stage is uncertainty scope resolution which 
attempts to identify which fragments of a sentence are af-
fected by the speculative expressions; that is, the scope of 
uncertainty cues. Particularly in long, complex sentences, 
only parts of the sentence are speculative as in (E7) 2. 
 

E7. The text interface will provide equivalent functionality, 
but will [likely require additional server requests to perform 
the same task]. 
 

In this case, the scope of the speculation keyword ‘likely’ 
only spans the second coordinated clause of the sentence, 
‘likely require additional server requests to perform the 
same task’, while the first clause, ‘The text interface will 
provide equivalent functionality’, conveys factual informa-
tion. Therefore, it is necessary to discriminate between 
speculative and non-speculative fragments at the sentence 
level in order to avoid information loss. 

We have developed an automated rule-based approach to 
identify the linguistic scope of speculative cues. We devised 
a small set of hand-crafted rules, which rely heavily on syn-
tactic structure information as well as on various additional 
features related to specific syntactic constructions of the un-
certainty cue in focus. These rules are applied to the parse 
trees of sentences containing speculative clues, extracted by 
the Stanford Parser3. 

B. Uncertainty Cue Categories  

Uncertainty in natural language may be realised through 
various linguistic cues and is marked by a variety of syntac-
tic constructions. We drew on Hyland’s study of the lexical 
surface realisation of uncertainty [6], and analysed syntactic 

                                                           
2 Our examples are adapted from our collection of requirements docu-

ments. We underline uncertainty cues and highlight uncertainty scope with 
square brackets. 
3 http://nlp.stanford.edu/software/lex-parser.shtml 



structures expressing uncertainty in the BioScope Corpus 
[17]. Typical uncertainty cues fall within the following six 
categories, which are classified based on the generalised 
part-of-speech (POS) tag of the cue. Some examples of these 
categories are given below. 

• Auxiliaries 
- may, might, can, would, should, could, etc. 
 

E8. Please consider carefully before disclosing any per-

sonal information that [might be accessible to others].  

E9. [The user authorizations should be done through the 

LDAP mechanism]. 
 

• Epistemic verbs 
- suggest, presume, suppose, seem, appear, indicate, etc. 
 

E10. This [assumes that service center computers have ac-

cess to the Internet]. 

E11. [There appears to be a need to enter in all the infor-

mation in one system and have it update all other systems]. 

 

• Epistemic adjectives 
- probable, possible, likely, unlikely, unsure, not sure, etc. 
 

E12. Two [possible display page formats could be used]. 

E13. [The procedure for aligning calibration data is still 

unclear]. 
 

• Epistemic adverbs 
- probably, possibly, presumably, perhaps, potentially, etc. 
 

E14. [Perhaps this is a phenomenon restricted to program-

mers], as opposed to literature authors. 

E15. A system consisting solely of software and [possibly 

the computer equipment on which the software operated. 

 

 

• Epistemic nouns 
- possibility, probability, hypothesis, suggestion, etc. 
 

E16. There is the [possibility that existing products, such as 

a process manager, will be used]. 

E17. The parameter values are stored to provide the [possi-

bility to have different characteristics of the outside tem-

perature]. 
 

• Conjunctions 
- or, and/or, either … or, whether … or, whether or not, etc. 
 

E18. Web sites hosting software are maintained [either by 

the LMI department or by another state agency]. 

E19. If the owner has made a counter offer, the ROW Chief 

decides [whether or not to accept the counter offer]. 
 

Note that the scope of an uncertainty cue varies quite sig-
nificantly, and is related to syntactic patterns associated with 
the keyword cue. 

C. Uncertainty and Ambiguity 

In previous work [19], we have argued that ambiguity is 
common in NL requirements. In cases where different stake-
holders interpret the same text differently (described as 
‘nocuous ambiguity’), then systems risk being incorrectly 
implemented. If such ambiguity can be detected in a re-
quirements document, then the requirements writer should be 

notified with a view to clarifying the text and removing (so 
far as is possible) the ambiguity.  

Uncertainty differs from ambiguity both in root cause and 
in remedial actions. Ambiguity arises (in part) as a result of 
the form of the requirement. The writer may be quite certain 
of the desired outcome, and may not even realise that the 
writing is ambiguous, but the particular choice of words and 
expression might lead other stakeholders to interpret the text 
incorrectly. 

Uncertainty is a property of the contents of a require-
ment, and is often indicated through the writer's use of 
speculative language. In fact, speculative language de-
notes an explicit admission by the stakeholder that the infor-
mation conveyed is not reliable (unlike ambiguity, where the 
writer might be unaware of this). We could thus consider 
speculative language to be an explicit annotation of risk - 
given in literary terms instead of as a numeric assessment. 

As a consequence, remedial actions are very different in 
the two cases. For an ambiguous requirement, an analyst 
ought to ask which of the possible interpretations was in-
tended (‘Did the writer mean A or B?’), and ensure that the 
requirement is rewritten in a less ambiguous way (probably 
in consultation with the original writer). For speculative re-
quirements, the analyst should focus on why the stakeholder 
is uncertain, what is causing the uncertainty, what are the 
risk factors, what other scenarios are possible, whether there 
are exceptional cases to be considered, and how the system 
should handle them. At times, this might result in rewriting a 
speculative requirement (‘Maybe A’) as a series of non-
speculative, conditional requirements (‘If Z then A else B’ or 
‘A, unless Z: in which case B’). 

In fact, it is possible for the two phenomena to be con-
flated in the same requirement. A truly speculative require-
ment can be framed in ambiguous language, or ambiguity 
could be consciously used as one of the many linguistic de-
vices used to convey uncertainty. This phenomenon is some-
times seen in those cases for which the consequences of both 
ambiguity and uncertainty tend to the same result. In other 
words, if a stakeholder used ambiguous language to convey 
uncertainty, then misclassifying that speculative requirement 
as ambiguous would still prompt the analyst to look more 
closely at it, and the classification error could be promptly 
corrected by human review. Hence, although instances of 
ambiguity and uncertainty are to be treated differently, where 
they interact, our proposed remedial actions will converge on 
a common result of a more complete requirements document 
which is less susceptible to misinterpretation. 

D. Uncertainty Dataset 

We collected a set of 11 requirements documents from 
RE@UTS web pages4. The documents specify systems from 
a variety of application domains, including transportation, 
engineering, communication, and web applications. Al-
though both our previous work on ambiguity [19] and the 
present one on uncertainty make use of the same set of re-

                                                           
4 http://research.it.uts.edu.au/re/ 



quirements documents, the collected sample instances used 
for the system development are different.  

In the work presented in this paper, we manually anno-
tated uncertainty cues and their corresponding scopes. The 
statistics of this uncertainty dataset are given in Table I. The 
speculative sentences contain different categories of uncer-
tainty cues described above, and the distribution of individ-
ual cue categories is shown in the Figure 1. The top 10 fre-
quently occurring uncertainty cues in these requirements 
documents are may (365), should (130), possible (83), or 
(67), whether (57), would (47), indicate that (39), could (20), 
might (18), possibility (18), respectively. 

TABLE I.  THE STATISTICS OF AN UNCERTAINTY DATASET ABOUT 

REQUIREMENTS DOCUMENTS 

Documents 11 

Sentences 
Speculative sentences 

26, 829 
914 (3.4%) 

Cues 
Unique cues 
Cues with multiple words  

1024 
51 
52 (4.4%) 

Scope 
Scope with multiple cues 

1003 
21 (2.1%) 

59%

14%

11%

10%

3% 3%

Auxilaries

Conjunctions

Verbs

Adjectives

Adverbs

Nouns

 

Figure 1.  The distributions of different cue categories 

III. DETECTION OF SPECULATIVE SENTENCES 

This section describes how we identify the sentences in 
requirements documents that contain uncertain information. 
We approach it as a sentence classification problem, that is, 
any sentence containing at least one uncertainty cue is 
marked as candidate-speculative, to indicate that it may con-
vey uncertainty, while any sentence with no cues is labelled 
clearly as non-speculative at this stage. As a result, the task 
of speculative sentence detection could be treated as a prob-
lem of recognizing whether uncertainty cues occur in con-
texts that allow them to convey uncertainty. 

A. Uncertainty Cues 

Multi-word cues. As described in Section II.B, uncer-
tainty is often triggered by a single word such as might, pos-
sible and probably. However, in some cases an uncertainty 
cue is expressed via a phrase that spans multiple tokens, e.g., 
not sure, whether or not. Some complex speculative key-
words exhibit strong hedging strength only when they func-
tion at the whole phrase level, but not at the individual token 
level, such as ‘remain to be determined’, ‘cannot definitely 
confirm’. The fact that most multi-word cues are very infre-
quent, some even occurring only once in our dataset, pre-
sents a problem because training a machine learning classi-

fier requires syntactic pattern frequency. We address this by 
relying on a raw string matching approach to identify multi-
word cues. 

Weak cues. Not all uncertainty cues convey the same 
degree of speculation, and some cue keywords may not be 
used in a speculative context. For example, the modal auxil-
iary ‘can’ is ambiguous between several meanings, e.g., abil-
ity (deontic), and possibility (epistemic). It is considered as 
an uncertainty cue only in its epistemic sense. This is also the 
case for some other modal auxiliaries (e.g., can, could, 
should, and would) which express uncertainty only when 
used in a particular sense, which may be identified from the 
surrounding context of the modal [2]. Such terms are called 
weak cues. Interestingly, some of the false positive cases in 
cue identification are due to word sense ambiguity in weak 
cues. For example, the verb ‘appear’ exhibits different word 
senses in the example (E3) and (E4) as discussed in the in-
troduction. The context around the uncertainty cue plays an 
important role in resolving weak cue instances and our ap-
proach is sensitive to possible relevant relations between a 
cue and surrounding tokens. 

TABLE II.  EXAMPLE OF UNCERTAINTY CUE TAGGING 

WORD LEMMA PoS CHUNK H-L H-

PoS 

DL Cooc Cue 

Tasks task NNS B-NP have VB nsubj O O 

may may MD B-VP have VB aux O B 

have have VB I-VP ROOT O root O O 

many many JJ B-NP milestone NNS amod O O 

milestones milestone NNS I-NP have VB dobj O O 

which Which WDT B-NP associate VBN nsubjpass O O 

may may MD B-VP associate VBN aux O B 

or or CC O associate VBN cc O I 

may may MD B-VP associate VBN aux O I 

not not RB I-VP associate VBN neg O I 

be be VB I-VP associate VBN auxpass O O 

associated associate VBN I-VP milestone NNS rcomd O O 

with with IN B-PP associate VBN prep O O 

the the DT B-NP task NN det O O 

task task NN I-NP with IN pobj O O 

5.1 5.1 CD I-NP task NN num O O 

. . O O O O O O O 

B. Identifying Speculative Keywords 

We formulate the problem of uncertainty cue detection as 
a token-level sequence labelling task. Table II shows a pre-
processed sample sentence (E20) with the rich information 
per token. Each word token in a sentence is assigned one of 
the so-called BIO scheme tags: B (first word of a cue), I (in-
side a cue), O (outside, not in a cue) as shown in the last col-
umn in Table II. 
 

E20. Tasks may have many milestones which may or may not 
be associated with the task 5.1. 
 

We extracted a wide variety of linguistic features (See 
Table II), both syntactic and surface-oriented, which attempt 
to characterise the semantics of speculative keywords. The 
features used for the token classification were grouped into 
the following four categories: 
 

• Word-token Features. This type of feature includes 
word lemma, Part-of-Speech (PoS) tag, and chunk tag of 
the word, which are obtained from the Genia Tagger5. 

                                                           
5 http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/tagger/ 



• Context Features. The features for the lemma and POS 
tag of the 3 neighbouring words before and after the cur-
rent word token are also considered. 

• Dependency Relation Features. We make use of the 
typed dependency relations returned by the Stanford 
Parser. The dependency relations provide a representa-
tion of grammatical relations between words in a sen-
tence. We explore three types of features including the 
lemma (H-L) and PoS tag (H-PoS) of the head token in 
one dependency relation, and dependency labels (DL).  

• Co-occurrence (Co-oc) Feature. Some cue keywords 
tend to co-occur in the sentences. For instance, core 
epistemic adjectives (e.g., possible) and verbs (e.g., sug-
gest, indicate) often co-occur with modal auxiliaries, 
e.g., may, and might, to act as strong speculative cues as 
shown in (E2). Their co-occurrence might be a useful 
indicator to predict their speculative context.  

 

The cue word classification model is constructed using 
the Conditional Random Fields (CRFs) [10] algorithm, im-
plemented by the CRF++ Package6. The training data for the 
building of the classifier consists of a set word token in-
stances, each of which contains a feature vector that is made 
up of four groups of features described above together with a 
cue class label – BIO tags. Due to space limitations, details 
about the CRF-based learning model can be found else-
where7. 

C. Extracting Uncertainty Cues 

Uncertainty cues were extracted from tag sequences la-
belled with the BIO scheme. If the cue contains multiple 
words, the tokens marked with the B or I tag are combined 
according to a tag priority, i.e. B > I > O. The extraction pro-
cedure is executed using the following rules: 
 

• The first token of the cue starts with the token tagged as 
B. If it is not found, look for the I tag. If a word token is 
marked as I, and its previous token is tagged with O, 
then this token is considered as the beginning of a cue.  

• The cue ends when it meets either a token tagged with O 
or a token started with a new tag B in which this token is 
regarded as the start point of a new cue. 

D. Identifying Speculative Sentences 

Once the system has extracted the uncertainty cues in 
sentences using the aforementioned CRFs model, we per-
formed a separate post-processing step, using string match-
ing to recognise infrequent multi-word cues that cannot be 
detected by the statistical machine learning model due to 
data sparseness. A small set of infrequent multi-word cues 
(e.g., look like, to confirm, not clear) were collected from the 
training data, and then used for the string matching-based 
cue recognition. If a sentence contains one or more extracted 
uncertainty cues, then it is classed as speculative. 

                                                           
6 http://crfpp.sourceforge.net  
7 http://crfpp.googlecode.com/svn/trunk/doc/index.html#usage 

IV. UNCERTAINTY SCOPE RESOLUTION 

As described earlier, the scope of uncertainty may vary, 
and may be evident from certain linguistic properties. In our 
approach to scope resolution we rely heavily on syntactic 
information, taken from the phrase parse tree generated by 
the Stanford Parser. We also use various additional features 
related to specific syntactic constructions displayed by dis-
tinct uncertainty cue categories. 

A. Heuristics to Capture the Scope of Uncertainy 

Following the BioScope guidelines for scope annotation 
[17], we manually inspected the gold standard of the Bio-
Scope corpus8 and defined a set of heuristics which we de-
veloped to determine the scope of uncertainty. We list them 
below, organised by the categories of uncertainty cues given 
in Section II. 
 

•••• Auxiliaries 
The scope of modal verbs differs in the passive/active 

voice of the main verb that follows the modal.  
- If the main verb is active, then the scope starts with the 

modal and all its dependents, as in (E21). 
- If the main verb is passive, then the scope includes the 

subject argument that appears in the preceding text, (E22). 
 

E21. A ROW Project Agent [may take on a responsibility of 

a discipline supervisor]. 

E22. [This function may be performed by a contractor or 

the ROW Engineer]. 
 

•••• Epistemic verbs 
The scope for an epistemic verb depends on three main 

factors: (1) passive/active voice of the verb; (2) whether or 
not it is a raising verb (e.g., seem, appear); (3) if the subject 
argument of the verb is an expletive pronoun (e.g., it). 
- If the verb is non-raising and active, scope starts at the cue 
word and spans to the end of the clause or sentence (E23). 
- If the verb is passive, or is a raising verb, the scope includes 
the subject argument of the verb (E24) and (E25) respec-
tively.  
 

E23. The multiple media requirement [implies the ability to 
generate a seamless map background from more than one 
CD ROM]. 
E24. Insulin is only delivered in circumstances where [it 
appears that the level is likely to go outside this range]. 
E25. This determination requires figuring out [what the CBS 
is supposed to do, i.e., the full set of features]. 
 

•••• Epistemic adjectives 
- If the adjective has an attributive function, the scope covers 
the modified noun phrase and all its descendants (E26). 
- If the adjective has a predicative function, the scope covers 
the subject argument of the head verb (the copula), as well as 
all its dependents (E27). 
 

E26. This function lists [possible issues that may prevent the 
undertaking of acquisition and steps to resolve those issues]. 

                                                           
8 http://www.inf.u-szeged.hu/rgai/bioscope 



E27. [Job seekers will also be likely to use the custom home 
page feature]. 
 

•••• Epistemic adverbs 
The scope for an adverb depends on the properties of the 

head word that it modifies. 
- If the head word is a noun, the scope takes over the head 
word with all its (non-subject) syntactic descendents (E28). 
- If the head word is a verb, the scope includes the subject 
argument of the head verb (E29). 
 

E28. The facilities, hardware, software, firmware, proce-
dures, and documentation necessary to perform qualifica-
tion, and [possibly other, testing of software]. 
E29. [Title Database internal to the system possibly linked to 
the Recorders Office]. 
 

•••• Epistemic nouns 
The scope of epistemic nouns starts with the noun cue 

and includes its possible clause complement with that, (E30), 
or its indefinite complement with to (E31). 
 

E30. On the [assumption that the implementation will com-
pute the GHA only once], Table 3 summarises the floating 
point operations required for each algorithm component. 
E31. There is the [possibility to set the display text either in 
English or in German].  
 

•••• Conjoining phrases 
- If the conjoining phrase occurs as a single unit (e.g., 
whether or not) then the scope covers its argument and all its 
dependents (E32). 
- If the cue is or and it co-occurs with another cue (e.g., ei-
ther), the scope should combine them together (E33). 
 

E32. If the owner has made a counter offer, the ROW Chief 
decides [whether or not to accept the counter offer]. 
E33. Web sites hosting software are maintained [either by 
the LMI department or by another state agency]. 

B. Automatically Identifying Scope 

Our approach to scope resolution relies on the depend-
ency structure information obtained from the phrase parse 
trees generated by the Stanford Parser, and the set of linguis-
tic heuristics described in the previous section IV.A. These 
help identify the scope of each detected cue. We also impose 
the following constraints when annotating the uncertainty 
cues and their scope: 
- Each cue should have one scope, and the cue must be con-
tained in the corresponding scope. 
- One scope probably have one or more cues, as in (E34). 
- Cues and scopes have to be continuous. 
 

E34. The user [may specify whether to search for the term 
within the name of the information resource or the definition 
or both]. 
 

We present a simple example to illustrate how the system 
uses the phrase parse tree and linguistic heuristics to deter-
mine the scope of the uncertainty cue ‘may’ in the sample 
sentence (E21). Figure 2 shows the information that de-
scribes the properties of the uncertainty cue ‘may’, and the 
search pattern on the parse tree which gives the required 
scope. Figure 3 shows the parse tree for the sample specula-

tive sentence (E21) generated by the Stanford Parser, with 
each word token (leaf node) of the sentence tagged with its 
part of speech. 
 

A. Uncertainty Cue 
                    Cue type: Auxiliary 
                    Cue term: may 
           Cue headword: may (POS tag: MD)       
            Cue property: take (main verb, active voice)  
B. Searched Scope 
           Search context: right context 
   Search depth (layer): 2 (upper layer), and VP Node (start from the  
                                      headword leaf node) 

Figure 2.  The frame-based representation of an uncertainty cue and 
searched scope for the example (E21). 

 

Figure 3.  The phrase parse tree for the example (E21) by the Stanford 
Parser. The area in the rectangle with blue broken lines is the chunk subtree 
used as the scope of the uncertainty cue ‘may’. 

Given an uncertainty cue, the system first checks a vari-
ety of syntactic properties associated with the cue, e.g., POS, 
argumenthood, voice, etc, as shown in Figure 2. It then de-
cides the search strategy based on the context type (left or 
right context) and search depth in the parse tree. In the case 
of (E21), to find the scope of the uncertainty cue ‘may’, the 
system begins the search from the start-point, i.e. the leaf 
node of the cue headword ‘may’, and then tracks upward to 
the ancestor node VP (Node 2 in Figure 3) in the second 
layer. The chunk subtree (the rectangle area with broken 
lines in Figure 3) associated with the located ancestor node 
(Node 2) is trimmed from the whole tree as the scope of the 
uncertainty cue. As shown in Figure 3, the uncertainty scope 
is clearly defined, and is captured by the analysis of the syn-
tactic role of the uncertainty cue given by the parse tree. 

The search depth determines the scope of an uncertainty 
cue. In our system, the search depth for each cue is decided 
empirically, depending on several factors, such as the POS 
tag of the cue headword, the class type of the cue, and the 
linguistic properties of the cue (e.g., whether the scope needs 
to include the subject argument). In general, the search depth 
for various types of cues is limited to 2-4 upper layers start-
ing from the leaf node of the headword. 

As described above, the system usually starts a scope 
search from one of the leaf nodes; i.e. some word contained 
in the cue, in the parse tree. Hence, in the case of multi-word 



cues (e.g., whether or not, may or may not, and not clear, 
etc.), the system firstly needs to determine the headword of 
the cue, e.g., whether or not → whether, may or may not → 
may (first one), and not clear → clear, before searching the 
phrase parse tree for the resolution of uncertainty scope. 

C. Determing Scope Boundary 

The previous section described how to ensure the scope 
contains the cue and the main elements of the scope. It is 
possible for the scope to extend beyond the points defined in 
part B. Generally, the default scope is set to start at the cue 
word and span to the end of the clause or sentence. However, 
as analysed in Section IV.A, in some special cases the sub-
ject argument can occur before the cue term in the text, and 
still be included in the scope. Moreover the dependents con-
nected to the cue are sometimes attached to non-speculative 
information, such as when a secondary clause follows the 
primary clause containing the uncertainty cue. Consider the 
sentence (E35) below. Here, the scope for the cue ‘would’ 
should begin with the noun phrase, ‘a problem with this in-
terface’, acting as the subject argument for the passive verb 
‘detected’, and the end scope will be terminated before the 
sentence-level conjunction ‘until’. 
 

E35. Normally, [a problem with this interface would not 
even be detected] until after the system was implemented. 
 

Due to the presence of the clause ending word ‘until’ be-
tween the cue term ‘would’ and the end point of the scope 
‘implemented’, the original end of the scope has to be modi-
fied. The end of the scope is moved forward to the word ‘de-
tected’ before the clause ending word ‘until’. In our system, 
we use a set of potential clause ending terms (e.g., whereas, 
but, although, nevertheless, etc.). These words usually imply 
the beginning of a new clause in the sentence, and thus are 
considered as the scope ending signals. 

Given an uncertainty cue, the system outputs a scope 
fragment extracted from the corresponding speculative sen-
tence. However, as mentioned before, for some special cue 
pairs such as ‘either…or’, and ‘whether…or’, although they 
are two separate cues, they should form a single scope when 
they appear in the same sentence according to the annotation 
guideline. An additional heuristic was employed to ensure 
that the scopes for such conjunction cues are the same. 

V. EXPERIMENTS AND RESULTS 

Our system performance was evaluated in terms of Preci-
sion (P), Recall (R), and their harmonic mean, the F-measure 
(F): 
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where TP (true positive) is the number of correctly identified 
instances, FN (false negative) is the number of instances not 
identified by the system, and FP (false positive) is the num-
ber of instances that are incorrectly identified by the system. 

As described earlier, uncertainty detection in require-
ments documents in practice consists of two tasks: (a) the 
identification of speculative sentences, each of which con-
tains one or more uncertainty cues, and (b) in-sentence un-

certainty scope detection, which aims to recognise specula-
tive text spans inside the sentences. 

For the speculative sentence identification task, the re-
sults reported here were obtained by performing 10-fold 
cross validation experiments on the requirements from our 
manually-annotated dataset. In each iteration, we trained on 
90% and tested on 10% of the remaining data. 

For the task of uncertainty scope determination, as de-
scribed earlier, we used the gold standard of the BioScope 
corpus as training data to extract a set of linguistic heuristics 
for scope detection. We used the rules on our RE uncertainty 
dataset as the test data and report two sets of experimental 
results using different sources of uncertainty cues. 

A. Speculative Sentence Identification  

In uncertainty cue identification, evaluation is based on 
exact-match counts for uncertainty cues (possibly spanning 
multiple tokens). We also evaluate the percentage of specula-
tive sentences that are correctly identified by the system. 

1) Impact to Feature Types on the CRF-based Cue 

Classifier 
To evaluate the contribution of the various features for 

uncertainty cue identification, we performed a series of ex-
periments in which different sets of linguistic features are 
added to the word-token feature baseline and new classifiers 
are trained. We used word-token features as the evaluation 
baseline because of the important role that these features play 
in identifying uncertainty cues. We compared the perform-
ance of these new classifiers to the word-token feature base-
line. 

Table III shows the impact of different feature sets on the 
performance of uncertainty cue identification. The context-
related features exhibit strong distinguishing capability, 
which substantially improve the performance with an in-
crease of 7.1% in precision and 9.6% in recall. However, 
with the addition of the dependency relation features and co-
occurrence features, the overall F-measure average improves 
only slightly by 1%. We notice that when all the features 
work together in combination, the system would achieve the 
highest performance for cue classification. This suggests that 
a wide variety of features indeed characterise different as-
pects of uncertainty cues. 

TABLE III.  THE IMPACT OF FEATURE TYPES ON THE PERFORMANCE OF 

UNCERTAINTY CUE IDENTIFICATION (DR-DEPENDENCY RELATION) 

 P (%) R (%) F (%) 

Word 77.18 67.38 72.00 

Word + Context 84.29 76.98 80.47 

Word + Context + DR 85.43 76.70 80.83 

All features 85.58 77.65 81.42 
 

2) Performance of Different Cue Types 
Table IV summarises the performance of our system in 

predicting different types of uncertainty cues. In comparison 
to other types of uncertainty cues, adverb cues perform best 
and achieve an F-measure as high as 90.43%. One possible 
explanation for this is because adverbs are much more 
straightforward to recognise than other types of uncertainty 
cues. Auxiliaries, the most common cues in our uncertainty 
dataset, also perform well and the F-measure score reaches 



84.68%. The performance on the identification of conjunc-
tion cues is worse, and the recall drops to 49.6% only. This is 
caused primarily by the poor recognition of ‘or’, which is 
very ambiguous when it functions as the uncertainty cue. An 
example of ‘or’ as an uncertainty cue is shown in (E36), and 
as a non-uncertainty cue in (E37). There are 1320 occur-
rences of ‘or’ in our dataset, and only 64 of them are uncer-
tainty cues. The system predicts 58 occurrences of ‘or’ as 
uncertainty cues, and only 23 are correctly recognised. 
 

E36. Quickly pressing a mouse button in order to make a 

selection or give a command. [Uncertainty cue] 
 

E37. The radio programs can be changed with the steering 

wheel buttons left or right. [Non-uncertainty cue] 

TABLE IV.  THE PERFORMANCE ON THE IDENTIFICATION OF DIFFERENT 

TYPES OF UNCERTAINTY CUES 

 P (%) R (%) F(%) 

Auxiliaries 89.33 80.49 84.68 

Verbs 88.82 84.48 86.60 

Adjectives 73.11 79.09 75.98 

Adverbs 96.30 85.25 90.43 

Nouns 64.86 68.57 66.67 

Conjunctions  78.75 49.60 60.86 

TABLE V.  THE OVERALL PERFORMANCE ON THE CUE DETECTION 

LEVEL AND THE SPECULATIVE SENTENCE IDENTIFICATION LEVEL 

 P (%) R (%) F (%) 

cue level 85.58 77.65 81.42 

sentence level  88.19 83.16 85.60 
 

Table V shows the overall performance of uncertainty 
identification at the cue level and the sentence level. It is not 
surprising that the performance on speculative sentence iden-
tification is better than that of cue recognition. Part of the 
reason for this is because speculative sentence identification 
is much more tolerant of partially recognised cues in the case 
of multi-word cues. In cases where only part of a multi-word 
cue is recognised but the whole cue is missed, the sentence 
can still be correctly identified as speculative. 

B. Uncertainty Scope Detection 

In the scope resolution task, a scope is considered to be 
correct if it has the correct start and end points in the sen-
tence and is associated with the correct cues. Given an uncer-
tainty cue, the system searches the corresponding sentence 
and locates the speculative text spans invoked by the cue. 
Here we report on the performance using two sets of cue 
input, one with gold standard cues (i.e. the manually anno-
tated cues) and the other with the cues predicted by our cue 
recognition model, in order to compare the effect of cue 
identification at the earlier stage on the performance of scope 
detection at the later stage. 

Table VI shows that performance of scope identification 
using gold standard cues and predicted cues, respectively. 
With gold standard cues as input data, the system performs 
well on the whole dataset, with an overall F-measure of 
61.63%. This suggests that the Stanford Parser’s phrase parse 
tree essentially captures the necessary syntactic structure of 
the sentence. With the help of the hand-crafted syntactic heu-
ristics described in Section IV.A, the parse trees can be used 

to predict correctly the speculative text span invoked by the 
uncertainty cue. The system works well for four particular 
types of uncertainty cues: Auxiliaries, Verbs, Nouns, and 
Conjunctions, and all of these four cue types have an F-
measure score of approximately 62%. However, in the case 
of Adverb cues, the system performance significantly dete-
riorates and the F-measure score decreases to only 40.98%. 
One of the main reasons for this is weak capability to detect 
clause structures in more complicated sentences. These er-
rors are caused by incorrect parse trees being generated by 
the Stanford Parser.  

TABLE VI.  THE OVERALL PERFORMANCE ON UNCERTAINTY SCOPE 

IDENTIFICATION 

Gold Standard Cues Predicted Cues  
P (%) R (%) F (%) P (%) R (%) F(%) 

Auxiliaries 
Verbs 
Adjectives 
Adverbs 
Nouns 
Conjunctions 

65.23 
62.36 
52.73 
40.98 
61.11 
61.78 

66.30 
62.36 
52.73 
40.98 
62.86 
61.78 

65.76 
62.36 
52.73 
40.98 
61.97 
61.78 

60.78 
56.63 
39.66 
37.04 
37.84 
62.19 

55.62 
54.02 
41.82 
32.79 
40.00 
40.47 

58.08 
55.29 
40.71 
34.78 
38.89 
49.03 

Overall  61.25 62.01 61.63 54.37 49.95 52.07 
 

To investigate how well the system performs under the 
more natural but less-than-perfect condition of automatic 
recognition of uncertainty cues, we conducted another set of 
experiments using the cues produced at the earlier cue identi-
fication stage. Unsurprisingly, the overall system perform-
ance drops 9.6 percentage points in F-measure due to imper-
fect behavior in cue identification. The system performs 
poorly especially for the cues, adjectives, adverbs, and 
nouns, with an F-measure of less than 40%. This indicates 
that there is still much room for improvement in scope iden-
tification. 

VI. THREATS TO VALIDITY 

This section discusses potential threats that might affect 
the validity of our work and the uncertainty detection by our 
system, and how they are mitigated or accommodated. 

A. Errors Analysis  

Our error analysis on false positives and negatives re-
veals that one of the most important sources of error is 
caused by incorrect analyses by the Genia Tagger and Stan-
ford Parser. Despite common recommendations to the con-
trary, the requirements in our dataset included many long, 
complex sentences, and often left the tagger and parser un-
able to correctly analyse the text, leading to misinterpreted 
lexical or syntactical ambiguities. Another potential negative 
factor is the incomplete nature of our source corpus, that is, 
the five cue categories are not comprehensive and complete, 
especially for the instances that are previously unseen in our 
annotated dataset. This could lead to some possible false 
negatives in cue identification in terms of new requirements 
datasets. Moreover, multi-word cues were found by the naive 
string matching approach that probably results in an over-
fitting problem when the system processes some new re-
quirements dataset.  



B. Uncertainty Strength 

While recognising whether a sentence is speculative or 
not is useful, it seems more interesting and clearly much 
more challenging to determine the strength of the uncer-
tainty. It is clear that not all speculative requirements are 
equally strong and that the choice of speculation device af-
fects the strength of the uncertainty. From the point of view 
of evaluating quality of requirements expressiveness and of 
prioritising the effort spent on inspection and further elicita-
tion, it would be useful to quantify the degree of uncertainty 
as an indication of the confidence that the author has in his or 
her proposition. However, determining the strength of a 
speculative requirement is not trivial. The main reason is due 
to the peripheral nature in uncertainty language, which re-
sults in low inter-annotator agreement in determining the 
strength degree of uncertainty [11]. Nevertheless, the study 
of how to represent uncertainty strength in speculative re-
quirements will be an interesting topic in future work. 

C. Applicability to Requirements Engineering Practice 

While we have demonstrated the effectiveness of our ap-
proach at identifying speculative sentences, our validation 
does not extend to the use of such information in require-
ments engineering practice. There is thus a threat that the 
identification of speculative sentences is in practice of no 
use, or too hard to use for practitioners. 

Discounting this threat will require further studies in the 
field. However, we are confident that a suitable, low-cost 
(both in computational and in cognitive terms) integration 
with tools in common use (such as IBM Rational DOORS) is 
feasible. In this scenario, speculative sentences could be 
flagged in a non-intrusive way (e.g., by underlining with 
yellow squiggles the relevant parts), thus providing the ana-
lyst a subtle but unmistakable cue that something anomalous 
could lie behind the uncertainty. It would then be left to the 
analyst to decide what the follow-up should be (e.g., further 
questioning of stakeholders, dismissing as irrelevant, or ex-
plicitly stating that the final choice is left to the designers). 

VII. RELATED WORK 
 

A. Quality Control and Analysis in NL Requirements 

In industrial practice, the vast majority of requirements 
documents are still written in natural language due to various 
reasons such as ease of expression and the convenience of 
communication between different stakeholders [13]. How-
ever, requirements quality also suffers from the typical NL 
problems such as ambiguity and uncertainty. A number of 
studies have been done in the past to address research issues 
concerning quality control and analysis in NL requirements. 
Here we briefly discuss some of them that we consider as 
particularly related to our research.  

Several studies proposed a quality model (QM) to meas-
ure quality attributes in NL requirements documents by using 
a set of quality metrics (e.g., vagueness, subjectivity, option-
ality, weakness, etc.). They developed analysis techniques 
based on linguistic approaches to detect the defects (we are 
interested here in those related to the inherent ambiguity in 

the requirements). For example, QuARS (Quality Analyzer 
of Requirements Specification) [3] is a linguistic language 
tool based on a quality model for NL requirements specifica-
tions. It aims to detect lexical, syntactic, structural, and se-
mantic defects including ambiguities. Wilson et al. [18] de-
veloped a QM tool, ARM (Automated Requirement Meas-
urement), to identify potential problems, such as ambiguity, 
inaccuracy, and inconsistency, in natural language specifica-
tion statements. Fantechi et al. [4] proposed a linguistic ap-
proach to detect the defects, such as vagueness, subjectivity, 
weakness, which are caused by ambiguity at the sentence 
level in functional requirements of textual (NL) user cases. 
Kaiya and Saeki [7] made use of the semantic relationships 
between concepts on a domain ontology to check the ambi-
guity property of a requirements item, i.e. whether the re-
quirements item is mapped into several concepts. Ben 
Achour et al. [1] discussed the vague and unverifiable prob-
lem in requirements, which is caused by ambiguity of words 
and phrases. 

In our previous work, we developed an automated tool 
[19] to identify potentially nocuous ambiguity in NL re-
quirements, which also adopted machine-learning to com-
bine a set of heuristics with human judgments to build a 
nocuity classifier. In this paper we investigate another lin-
guistic phenomenon, uncertainty, in NL requirements, in 
which the stakeholders use speculative language to express 
tentativeness and possibility when they verbalise their own 
needs. We described a CRF-based learning model for the 
recognition of uncertainty cues at the term level and a heuris-
tics-based method for the determination of uncertainty scope 
with the help of sentence parse tree.  

B. Uncertainty Research 

In recent years, uncertainty detection research has re-
ceived considerable attentions in the natural language proc-
essing (NLP) community. Light et al. [11] first explored the 
possibility of automatically classifying sentences into specu-
lative or non-speculative by looking for a list of collected 
specific keywords. Medlock and Briscoe [12] proposed a 
weakly supervised learning approach, which used single 
words as input features for hedging classification. A prob-
abilistic model was exploited to acquire training data for the 
learning of hedge classifier. Szarvas [16] extended their 
work by introducing n-gram word features and developing a 
weakly supervised method for feature selection. Kilicoglu 
and Bergler [9] proposed a linguistic motivated approach that 
combined the knowledge from existing lexical resources and 
hand-crafted syntactic patterns. Additionally, they applied a 
weighted scheme to estimate the speculative level of the sen-
tences. Ganter and Strube [5] proposed an automated ap-
proach to investigate the hedging problem in Wikipedia us-
ing tagged weasel words combined with syntactic patterns. 

In this paper, we have, for the first time, investigated the 
uncertainty detection problem in requirements documents. 
We analysed several uncertainty types that frequently occur 
in NL requirements. We built on recent work [14, 15], ex-
ploring the use of supervised ML approaches to the detection 
of uncertainty cues, and we demonstrated that the success of 
a rule-based approach for the scope determination. 



VIII. CONCLUSION AND FUTURE WORK 

The use of speculative language in NL requirements can 
indicate the presence of uncertainty – where misunderstand-
ings by system developers might occur because the require-
ments have not been fully understood nor clearly expressed. 
By detecting uncertainty in NL requirements, the quality of 
those requirements can be evaluated in order to minimise 
adverse effects on the final software product. 

In this paper, we showed that it is possible to automati-
cally identify uncertainty in NL requirements by using a lin-
guistically motivated approach. We manually annotated a 
requirements corpus with uncertainty cues. The annotated 
corpus was then used for developing and evaluating our 
automatic uncertainty identification system. We employed a 
supervised machine learning algorithm (CRFs) to recognise 
uncertainty cues from sentences using a wide variety of lin-
guistic features. Our system performed well at the specula-
tive sentence identification task, but was less effective at 
uncertainty scope identification (although we suggest that the 
latter task is less significant in practice, since a sentence will 
be presented to and reviewed by an analyst anyway). 

There are a number of areas for future work. For exam-
ple, we need to extend our work to estimate the degree of 
uncertainty in speculative requirements, to better understand 
the effect of uncertainty on requirements (mis)understanding. 
We also need to examine prediction accuracy of uncertainty 
cues: will different machine learning techniques improve the 
system performance? 

The overall goal of our research has been to develop a se-
ries of automated tools that support the detection of linguistic 
problems in NL requirements, such as nocuous ambiguity 
detection tools [19], and the uncertainty identification tool 
described in this paper. Our aim is to help requirements ana-
lysts to inspect and analyse potentially problematic require-
ments to improve their quality. 
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