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Proof Lengths for Instances of the Paris-Harrington

Principle

Anton Freund

Department of Pure Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom

Abstract

As Paris and Harrington have famously shown, Peano Arithmetic does not
prove that for all numbers k,m, n there is an N which satisfies the state-
ment PH(k,m, n,N): For any k-colouring of its n-element subsets the set
{0, . . . , N − 1} has a large homogeneous subset of size ≥ m. At the same
time very weak theories can establish the Σ1-statement ∃N PH(k,m, n,N) for
any fixed parameters k,m, n. Which theory, then, does it take to formalize
natural proofs of these instances? It is known that ∀m∃N PH(k,m, n,N) has
a natural and short proof (relative to n and k) by Σn−1-induction. In con-
trast, we show that there is an elementary function e such that any proof of
∃N PH(e(n), n+ 1, n,N) by Σn−2-induction is ridiculously long.
In order to establish this result on proof lengths we give a computational ana-
lysis of slow provability, a notion introduced by Sy-David Friedman, Rathjen
and Weiermann. We will see that slow uniform Σ1-reflection is related to a
function that has a considerably lower growth rate than Fε0 but dominates all
functions Fα with α < ε0 in the fast-growing hierarchy.

Keywords: Peano Arithmetic, Proof Length, Paris-Harrington Principle,
Finite Ramsey Theorem, Slow Consistency, Fast Growing Hierarchy
2010 MSC: 03F30, 03F20, 03F40

We recall some terminology from [1]: For a set X and a natural number n
we write [X]n for the collection of subsets of X with precisely n elements. Given
a function f with domain [X]n, a subset Y of X is called homogeneous for f
if the restriction of f to the set [Y ]n is constant. A non-empty subset of N is
called large if its cardinality is at least as big as its minimal element. Where the
context suggests it we use N to denote the set {0, . . . , N − 1}. Then the Paris-
Harrington Principle, or Strengthened Finite Ramsey Theorem, expresses that
for all natural numbers k,m, n there is an N such that the following statement
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holds:

PH(k,m, n,N) :≡
“for any function [N ]n → k the set N has a large
homogeneous subset with at least m elements”

Using the methods presented in [2, Section I.1(b)] it is easy to formalize the
statement PH(k,m, n,N) in the language of first order arithmetic, as a for-
mula that is ∆1 in the theory IΣ1 of Σ1-induction. The celebrated result of [1]
says that the formula ∀k,m,n∃N PH(k,m, n,N) is true but unprovable in Peano
Arithmetic.
As is well-known, any true Σ1-formula in the language of first-order arithmetic
can be proved in a theory as weak as Robinson Arithmetic. It is thus pointless
to ask whether a Σ1-sentence is provable in a sound arithmetical theory, in con-
trast to the situation for Π1-sentences (cf. Gödel’s Theorems) and Π2-sentences
(provably total functions). What we can sensibly ask is whether a Σ1-sentence
has a proof with some additional property. The present paper explores this
question for instances ∃N PH(k,m, n,N) of the Paris-Harrington Principle. Our
principal result states that, for some elementary function e, the following holds:

For sufficiently large n, no proof of the formula ∃N PH(e(n), n+ 1, n,N)
in the theory IΣn−2 can have Gödel number smaller than Fε0(n− 3).

(1)

If we replace IΣn−2 by IΣn−3 (and Fε0(n− 3) by Fε0(n− 4)) then we can take
the constant function e(n) = 8. It is open whether we can make e constant and
keep the stronger fragment IΣn−2.
Recall that Fε0 is the function at stage ε0 of the fast-growing hierarchy. Ketonen
and Solovay in [3] have related it to the function that maps (k,m, n) to the
smallest witness N which makes the statement PH(k,m, n,N) true. A classical
result due to Kreisel, Wainer and Schwichtenberg [4, 5, 6] says that Fε0 even-
tually dominates any provably total function of Peano Arithmetic. Similar to
(1) we will show that the Σ1-formula ∃y Fε0(n) = y has no short proof in the
theory IΣn.
By [2, Theorem II.1.9] the formula ∀m∃N PH(k,m, n,N) is provable in IΣn−1,
for each fixed n ≥ 2 and k. The proofs of these instances formalize perfectly
natural mathematical arguments. According to [2, Section II.2(c)] they can be
constructed in the meta-theory IΣ1. Since all provably total functions of IΣ1

are primitive recursive, this complements (1) by the following statement:

There is a primitive recursive function which maps (k, n) with n ≥ 2 to
a proof of the formula ∀m∃N PH(k,m, n,N) in the theory IΣn−1.

(2)

Similarly, a primitive recursive construction yields proofs of ∃y Fε0(n) = y in the
theories IΣn+1: In view of Fε0(x) ≃ Fωx+1(x) = Fωx+1

x
(x) it suffices to prove the

statements “Fωn+1
n

is total”. This is done by Π2-induction up to ωn+1
n , which is

available in IΣn+1 by Gentzen’s classical construction (cf. [7, Theorem 4.11]).

We argue that (1) is not only a result about proof length, but also about the
existence of natural proofs: Observe first that we are concerned with sequences
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pn of proofs for a sequence of parametrized statements An, rather than with a
single proof of a single statement. Under which conditions can such a sequence
of proofs follow an intelligible uniform proof idea? It is the role of the proofs pn
to guarantee that the formulas An are true. On the other hand the statement
“the given proof idea leads to formally correct proofs pn of the statements An”
should, we believe, be justified by fairly elementary means. Since elementary
means cannot prove the totality of functions with a high growth rate this implies
that the function mapping n to (a code of) the proof pn cannot grow too fast.
In this sense (1) shows that IΣn−2-proofs of the Paris-Harrington Principle for
arity n and e(n) colours cannot follow a natural proof idea. The author sees
no formal condition which would, on the positive side, ensure that a sequence
of proofs is natural. On an informal level the construction which establishes
[2, Theorem II.1.9] appears to provide natural IΣn−1-proofs of the statements
∀m∃N PH(k,m, n,N).

Let us briefly discuss connections with a line of research initiated by Harvey
Friedman: Theorem 15 in [8] says that any proof of a certain Σ0

1-statement in
the theory Π1

2-BI0 must have at least 21000 (i.e. 1000 iterated exponentials to
the base 2) symbols. Obviously this goes much further than our result insofar
as it involves a much stronger theory. However, there is also a more concep-
tual difference: Friedman’s statement can, in principle, be verified explicitly
(by looking at all possible proofs with less than 21000 symbols) and is thus fi-
nitistically meaningful. In contrast, our statement (1) involves an unbounded
existential quantifier, implicit in the phrase “sufficiently large”. It is conceivable
that any witness to this existential quantifier is so huge that statement (1) does
not have “practical significance”. On the other hand the more abstract form of
(1) has the important advantage of making the statement more robust: A result
like [8, Theorem 15] requires concrete numerical bounds which might depend
on the formalization and are difficult to establish in full detail. To prove claim
(1), on the other hand, we can rely on the more robust concept of growth rates.
How exactly we arithmetize the relation “p codes a proof of the statement with
Gödel number ϕ in the theory IΣn” will not matter. All we require is that this
relation is defined by an arithmetical formula ProofIΣn

(p, ϕ) (with parameters
n, p and ϕ) which is ∆1 in the theory IΣ1 and IΣ1-provably equivalent to the
usual formalizations of provability. Statement (1) is true for any such arith-
metization; merely the concrete meaning of “sufficiently large” may change (cf.
Remark 1.4 below). Another interesting comparison is with a result of Kraj́ıček
[9, Theorem 6.1]: He considers Π2-instances of the Paris-Harrington Principle
and establishes linear bounds on the number of steps in proofs in full Peano
Arithmetic (rather than in restricted fragments).

To conclude this introduction, let us summarize the different sections of the
paper: In Section 1 we show how the analysis of reflection leads to lower bounds
on proof sizes. Given a theory T, the uniform reflection principle for the for-
mula ∃yϕ(x, y) expresses that “for all p and n there is an N such that if p is a
T-proof of ∃yϕ(n, y) then ϕ(n,N) is true”. If we have a bound on the provably
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total functions of reflection then we know that the witness N cannot be too
much bigger than the code of the proof p. Vice versa p cannot be too small if
∃yϕ(n, y) has only large witnesses. We suppose that this line of argumentation
is known (it occurs e.g. in [10]), but the author knows of no article that would
develop it in general form.
The method just described applies to sequences of proofs in a single theory T,
while statement (1) is concerned with a sequence of proofs that may contain ax-
ioms from increasingly strong theories. This discrepancy is resolved in Section
2: We consider a notion of “slow proof” in Peano Arithmetic, deduced from
the slow consistency statement introduced by Sy-David Friedman, Rathjen and
Weiermann in [11]. The idea is to penalize complex induction axioms by a
drastic increase in proof size. This generates an interplay between proof length
and the use of induction. At the same time it makes the construction of proofs
more difficult, thus weakening the reflection and consistency statement. We
can then apply the method of Section 1 to show that any slow PA-proof of
∃N PH(e(n+ 2), n+ 3, n+ 2, N) must be long. Claim (1) will easily follow.
The results of Section 2 rely on certain bounds on the provably total functions of
slow reflection. The proof of these bounds follows in Section 3. There we relate
slow uniform Σ1-reflection to a “slow variant” F ⋄

ε0
of the function Fε0 . We will

see that each function Fα with α < ε0 is dominated by F ⋄
ε0

while F ⋄
ε0

itself grows
much slower than Fε0 . This computational analysis of slow reflection is com-
plemented by the results of [12], where we investigate the consistency strength
(Π1-consequences) of slow reflection. Further results on slow provability can be
found in [13].

1. Bounding Proof Sizes via Reflection Principles

In this section we show how bounds on the provably total functions of uni-
form Σ1-reflection lead to lower bounds on the sizes of proofs. To formulate
the reflection principle we will need a Σ1-formula TrueΣ1(ϕ) that defines truth
for Σ1-formulas (in the large sense, i.e. the formula may start with several ex-
istential quantifiers). The theory IΣ1 should be able to prove Tarski’s truth
conditions (as guaranteed by [2, Theorem I.1.75]). With respect to the proof
predicate we must develop the theory in some generality:

Definition 1.1. A proof predicate is a Π1-formula Proof(p, ϕ) in the language
of first-order arithmetic, with only the variables p and ϕ free. Given a proof
predicate we have the associated Σ1-reflection principle

RFNΣ1 :≡ ∀ϕ(“ϕ is a closed Σ1-formula” ∧ ∃p Proof(p, ϕ) → TrueΣ1(ϕ)).

For a natural number p and a formula ϕ with Gödel number �ϕ� we say that
“p is a proof of ϕ” if the formula Proof(p, �ϕ�) is true in the standard model.

The following observation is easy but crucial:

Lemma 1.2. Let Proof(p, ϕ) be a proof predicate, and let T be a sound exten-
sion of IΣ1 that proves the Σ1-reflection principle associated with Proof(p, ϕ).
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For any Σ1-formula ψ(x, y) there is a T-provably total function g : N2 → N

such that ψ(n, g(p, n)) is true whenever p is a proof of ∃yψ(n, y).

Note that, since T must be sound, the lemma can only be applied to proof
predicates which are themselves sound for Σ1-formulas.

Proof. Since the theory T extends IΣ1 it is strong enough to handle Feferman’s
dot notation, and it proves the “It’s snowing”-Lemma (see [2, Corollary I.1.76]).
Combining this with the reflection principle for Proof(p, x) we obtain

T ⊢ ∀x(∃p Proof(p, �∃yψ(ẋ, y)�) → ∃yψ(x, y)).

Prefixing quantifiers transforms this into

T ⊢ ∀p,x∃y(Proof(p, �∃yψ(ẋ, y)�) → ψ(x, y)).

We remark that it is only mildly non-constructive to prefix the existential quan-
tifier in the consequent: A computation of the witness y will use the proof p but
rather not the computational content of the statement Proof(p, �∃yψ(ẋ, y)�).
In any case the formula Proof(p, �∃yψ(ẋ, y)�) → ψ(x, y) is Σ1 in IΣ1. As we
have seen the theory T shows that this formula defines a left-total relation. To
obtain a single-valued function we apply a standard minimization argument.
Note that we cannot simply pick the minimal value for y since this would yield
a function with a ∆2-graph; instead we simultaneously minimize over y and the
witness to the existential quantifier implicit in Proof(p, �∃yψ(ẋ, y)�) → ψ(x, y).
This results in a Σ1-formula χ(p, x, y) such that we have

T ⊢ ∀p,x,y(χ(p, x, y) → (Proof(p, �∃yψ(ẋ, y)�) → ψ(x, y)))

and T ⊢ ∀x,p∃!yχ(p, x, y). Since T is sound the formula χ(p, x, y) does indeed

define aT-provably total function g : N2 → N, which satisfies N � χ(p, n, g(p, n))
for all natural numbers p and n. By the above we also have

N � Proof(p, �∃yψ(n, y)�) → ψ(n, g(p, n)) for all p, n ∈ N.

Lifting the implication to the meta-language gives the desired claim.

We can deduce the promised lower bound on proof sizes:

Proposition 1.3. Let Proof(p, ϕ) be a proof predicate, and let T be a sound ex-
tension of IΣ1 that proves the Σ1-reflection principle for Proof(p, ϕ). Consider
a Σ1-formula ψ(x, y) and define a function Fψ : N → N ∪ {∞} by setting

Fψ(n) :=

{

m if m is the least number for which ψ(n,m) is true,

∞ if ∃yψ(n, y) is false.

Let f : N → N be a function with f(n) ≥ n and such that, whenever g is T-
provably total, the function g ◦ f is eventually dominated by Fψ (considering ∞
as bigger than any natural number). Then there is a bound N such that we have

p > f(n) whenever p is a proof of ∃yψ(n, y) with n ≥ N.
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To avoid misunderstanding, we stress that the notion of proof in the last
line of the proposition is induced by the proof predicate in the first line, via
Definition 1.1.

Proof. Let g : N2 → N be the function provided by Lemma 1.2. We can make
g monotone in both arguments: First define g0 : N

2 → N by the primitive
recursion

g0(p, 0) := g(p, 0),

g0(p, n+ 1) := max{g(p, n+ 1), g0(p, n)}.

This yields g0(p, n) ≥ g(p, n) for all numbers p and n, as well as g0(p, n) ≤
g0(p, n

′) whenever we have n ≤ n′. Now define g1 : N2 → N by setting

g1(0, n) := g0(0, n),

g1(p+ 1, n) := max{g0(p+ 1, n), g1(p, n)}.

It is obvious that we have g1(p, n) ≥ g0(p, n) ≥ g(p, n) for all numbers p and n,
and that p ≤ p′ implies g1(p, n) ≤ g1(p

′, n). By induction on p one can also show
that g1(p, n) ≤ g1(p, n

′) holds whenever we have n ≤ n′. Lemma 1.2 implies
that we have

Fψ(n) ≤ g1(p, n) whenever p is a proof of ∃yψ(n, y).

Since the theory T extends IΣ1 its provably total functions are closed under
primitive recursion, by [2, Theorem I.1.54]. Thus g1 is still T-provably total.
We define another T-provably total function g△ : N → N, diagonalizing over g1,
as

g△(p) := g1(p, p) + 1.

By assumption there is a bound N such that we have

(g△ ◦ f)(n) ≤ Fψ(n) for all n ≥ N.

Let us show that the same bound N satisfies the claim of the proposition:
Consider an arbitrary n ≥ N and assume that p is a proof of the formula
∃yψ(n, y). Aiming at a contradiction we assume p ≤ f(n). Then we have

Fψ(n) ≤ g1(p, n) ≤ g1(f(n), f(n)) < (g△ ◦ f)(n) ≤ Fψ(n),

which is indeed absurd.

It is a nice property of the proposition that the bounds it establishes are
invariant under basic transformations of proofs:

Remark 1.4. If f satisfies the conditions of the proposition and h is T-provably
total (e.g. primitive recursive) with h(p) ≥ p then h◦f satisfies these conditions
as well. Thus proofs of ∃yψ(n, y) will even be bigger than h(f(n)) for all n
above some (possibly increased) bound.
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This is useful because it allows us to preprocess proofs: Consider a modified
notion proof′ and a sequence of formulas ϕn, not necessarily of the form ϕ(n)
and not necessarily in the syntactic class Σ1. Assume that there is a Σ1-formula
ψ(x, y) and a primitive recursive function h which transforms any proof′ of ϕn

into (an upper bound for) a proof of ∃yψ(n, y). Possibly increasing h we can
assume that h is monotone and satisfies h(p) ≥ p. Using the proposition we
may be able to show that p > h(f(n)) holds whenever p is a proof of ∃yψ(n, y),
with n sufficiently large. We want to deduce q > f(n) where q is a proof′ of
ϕn. Indeed, q ≤ f(n) would imply h(q) ≤ h(f(n)). This would mean that there
exists a proof of ∃yψ(n, y) below h(f(n)), which we have seen to be false. The
proof of Lemma 2.6 contains a detailed application of this argument.

To conclude this section we illustrate what a simple application of the pro-
position can yield. Adopting the notation from [3] we have

σ(n, k) = min{N | PH(k, n+ 1, n,N) is true},

i.e. the number σ(n, k) is the smallest witness for the Paris-Harrington Principle
with arity n and k colours. We know from [1, Theorem 3.2] that the function
n �→ σ(n, n) eventually dominates any provably total function of Peano Arith-
metic. The following result on proof sizes is considerably weaker than (1), insofar
as it speaks about fixed fragments of Peano Arithmetic.

Corollary 1.5. For any number k the (total) function

n �→ “the smallest Gödel number of a proof of the
Σ1-formula ∃N PH(n, n+ 1, n,N) by Σk-induction”

eventually dominates any provably total function of Peano Arithmetic.

Proof. Let f be an arbitrary PA-provably total function. Assume that f(n) ≥ n
holds for all n, possibly after replacing f by the function n �→ max{f(n), n}. We
apply Proposition 1.3 to the usual proof predicate ProofIΣk

(p, ϕ) for the theory
of Σk-induction (or rather to a Π1-formula that is equivalent to ProofIΣk

(p, ϕ)
over IΣ1), to the theory T = PA, to the formula ψ(x, y) ≡ PH(x, x + 1, x, y),
and to the function f . Then n �→ σ(n, n) is the function Fψ of Proposition
1.3. The assumptions of the proposition are satisfied: It is well known that
Peano Arithmetic proves uniform Σ1-reflection for the theory IΣk (see e.g. [2,
Corollary I.4.34]). For any PA-provably total function g the composition g ◦ f
is PA-provably total as well, and thus indeed dominated by n �→ σ(n, n). The
result of Proposition 1.3 is nothing but the claim of the corollary.

The bound of the corollary is reasonably accurate, in the sense that the
function computing the minimal proofs is not much faster than the provably
total functions of Peano Arithmetic: Recall that PH(k,m, n,N) is ∆1 in IΣ1.
Thus not only σ(n, n) itself but the witnesses to all unbounded quantifiers of the
Σ1-formula ∃N PH(n, n+1, n,N) are bounded by a primitive recursive function
in n and σ(n, n). Furthermore, the Σ1-completeness theorem is established by
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a primitive recursive construction of proofs. Thus there is a primitive recursive
function h : N2 → N such that h(n, σ(n, n)) is the Gödel number of a proof of
∃N PH(n, n+ 1, n,N) in the theory IΣ0.

2. No Short Proofs for Instances of the Paris-Harrington Principle

In this section we refine Corollary 1.5 by varying k alongside with n. On first
sight it may seem astonishing that Proposition 1.3, which only deals with one
proof predicate at a time, can be used to this effect. We will see, however, that a
single proof predicate can inform us about proofs in various theories: The slow
PA-proofs that we will introduce penalize the use of complex induction axioms
by a drastic increase in proof length, thus creating an interplay between proof
length and the amount of induction used in the proof.
Before we can define the notion of a slow proof we need some preliminaries on
ordinal notations and the fast-growing hierarchy of functions. Ordinal notations
are required for the ordinals below ε0, the smallest fixed point of the function
α �→ ωα. As usual they will be based on the Cantor normal form

α = ωα1 · n1 + · · ·+ ωαk · nk with k ∈ N, ni ∈ N\{0} and α1 > · · · > αk.

Crucially, α < ε0 implies α1 < α so that the Cantor normal form inductively
yields finite term notations. Basic ordinal arithmetic can be translated into syn-
tactic operations on these terms. The operations are sufficiently elementary to
make ordinal arithmetic available in the theory IΣ1, after arithmetization of the
finite term syntax. In fact, Sommer in [14, Sections 2 and 3] shows that theories
much weaker than IΣ1 suffice if one encodes the terms efficiently. In this paper
we are not interested in very weak theories, but it is nevertheless convenient to
adopt the encoding of Sommer: This allows us to use his ∆0-definition of the
functions in the fast-growing hierarchy.
We remark that the ordinal arithmetic of [14] includes fundamental sequences:
The fundamental sequence ({α}(n))n∈N of a limit ordinal α is a strictly increas-
ing sequence of ordinals with supremum α. Precisely, any limit ordinal α can
uniquely be written as α = β+ωγ · (k+1) where γ > 0 is the smallest exponent
of the Cantor normal form of α, and β contains the larger summands. We then
have

{β + ωγ · (k + 1)}(n) = β + ωγ · k + ωδ · (n+ 1) if γ = δ + 1,

{β + ωγ · (k + 1)}(n) = β + ωγ · k + ω{γ}(n) if γ is a limit.

For zero and successor ordinals one sets {0}(n) := 0 and {β + 1}(0) := β.
Next, consider the “stack of ω’s”-function defined by the recursion

ωα
0 = α, ωα

n+1 = ωωα

n .

As usual, ωn abbreviates ω1
n. This function is not part of the ordinal arithmetic

encoded by Sommer (although it is, of course, part of his meta-theory). Since
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Sommer does encode the function α �→ ωα it is immediate to make the function
(n, α) �→ ωα

n (operating on the codes) available in IΣ1. However, we will need
more, namely a ∆0-formula defining the graph and explicit bounds on the values
of this function. Write �α� for the term notation of α, represented as a list
with digits from {1, . . . , 4} as in [14]. Then ωα

n is represented by the following
concatenation of lists:

�ωα
n� = 〈4, . . . , 4

︸ ︷︷ ︸

n characters 4

〉⌢�α�⌢〈3, 1, . . . , 3, 1
︸ ︷︷ ︸

n alternations

〉

Indeed, with each character 4 we move to the exponent of the leftmost summand
of the Cantor normal form, while 3 instructs us to leave the exponent and look at
the corresponding coefficient, which in the present case is always 1 (represented
by the base two notation of 1, which happens to be the list 〈1〉 itself). Now
to verify the relation ωα

n = β we only have to compare digits in the sequence
representations of α and β, and this can be cast into a ∆0-formula (see [14,
Section 2.2]). Using [14, Proposition 2.1], which relates the code of a list of
digits to its length, we can also establish the following inequality between the
codes of α and ωα

n :

IΣ1 ⊢ ∀n,α ωα
n ≤ 43n+1 · (α+ 1). (3)

Let us remark that we do not extend the ordinal notation system by a symbol
for ε0, in order to keep it closed under the usual operations of ordinal arithmetic.
By a harmless abuse of notation we will sometimes refer to the “fundamental
sequence” of ε0, which we define as {ε0}(n) := ωn+1.
Using fundamental sequences we can define the fast-growing hierarchy of func-
tions indexed by ordinals below and including ε0. The definition varies slightly
within the literature; our version differs from the classic [5, 6] and coincides e.g.
with [14]:

F0(x) := x+ 1,

Fα+1(x) := F x+1
α (x),

Fλ(x) := F{λ}(x)(x) for λ a limit ordinal.

Here and in the following an exponent to a function symbol denotes the number
of times the function is to be iterated. Given an arithmetization of ordinal arith-
metic it is easy to define the graph of (α, x, i) �→ F i

α(x) by a Σ1-formula in the
language of first-order arithmetic: As described in [15, Section 4.1] one can com-
pute F i

α(x) by simplifying expressions of the form F i1
α1
(F i2

α2
(· · · (F ik

αk
(z)) · · · )), so

one only needs to state the existence of such a computation sequence. What
is remarkable is that the size of an (improved) computation sequence can be
bounded by a polynomial in the value of F i

α(x). This is worked out in [15,
Appendix A] (see also the less detailed [14, Section 5.2]) and leads to a ∆0-
formula F i

α(x) = y with free variables x, y, α, i which defines the functions Fα

for α < ε0, as well as their iterations. By [14, Theorem 5.3] the defining equa-
tions of the fast-growing hierarchy are provable in IΣ1 (under the assumption
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that the involved computations terminate, which is of course unprovable in IΣ1).
As Sommer only encodes the hierarchy below ε0 we should show separately that
the formula

Fε0(x) = y :≡ ∃α(α = ωx+1 ∧ Fα(x) = y)

is ∆0 in IΣ1: The only task is to bound the existentially quantified α. By [11,
Lemma 2.3, Proposition 2.12] the inequalities

Fωx+1(x) ≥ Fω(x) ≥ F2(x) = 2x+1 · (x+ 1)− 1 ≥ 2x+1 for x ≥ 1

are provable in IΣ1. Combining this with (3) we obtain

IΣ1 ⊢ x ≥ 1 → (Fε0(x) = y ↔ ∃α≤y6·4·(�1�+1)(α = ωx+1 ∧ Fα(x) = y)), (4)

where �1� denotes the code of the ordinal 1.
Writing 〈·, ·〉 for the Cantor pairing function with projections π1(·), π1(·) we can
now define slow proofs in Peano Arithmetic. The idea is to penalize the use
of complex induction axioms by a drastic increase in proof length, and thus to
create an interplay between proof size and the amount of induction used in the
proof.

Definition 2.1 (cf. [11]). A pair 〈q,N〉 is a slow PA-proof of a formula ϕ if
there is a number n such that we have N = Fε0(n) and such that q codes a
(usual) proof of ϕ in the theory IΣn+1. This notion is defined by the formula

Proof⋄
PA

(p, ϕ) :≡ ∃x(ProofIΣx+1(π1(p), ϕ) ∧ Fε0(x) = π2(p)),

which is ∆1 in IΣ1 since by [14, Proposition 5.4] the second conjunct implies
the bound x ≤ π2(p).

For a formula F (x) = y let us abbreviate ∃yF (x) = y by F (x) ↓. Also, we
write PrIΣx

(ϕ) for the formula ∃p ProofIΣx
(p, ϕ). It is easy to see that the slow

provability predicate

Pr⋄
PA

(ϕ) :≡ ∃p Proof
⋄
PA

(p, ϕ)

satisfies the equivalence

IΣ1 ⊢ Pr⋄
PA

(ϕ) ↔ ∃x(PrIΣx+1(ϕ) ∧ Fε0(x)↓).

The slow uniform Σ1-reflection principle

RFN⋄
Σ1

(PA) :≡ ∀ϕ(“ϕ is a closed Σ1-formula” ∧ Pr⋄
PA

(ϕ) → TrueΣ1(ϕ))

and the slow consistency statement

Con⋄(PA) :≡ ¬Pr⋄
PA

(�0 = 1�)

can be characterized as

IΣ1 ⊢ RFN⋄
Σ1

(PA) ↔ ∀x(Fε0(x)↓→ RFNΣ1(IΣx+1)) (5)
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and
IΣ1 ⊢ Con⋄(PA) ↔ ∀x(Fε0(x)↓→ Con(IΣx+1)).

As the last equivalence reveals the notion of slow PA-proof comes from the art-
icle [11] by S.-D. Friedman, Rathjen and Weiermann: These authors introduce
the slow consistency statement

Con∗(PA) ≡ ∀x(Fε0(x)↓→ Con(IΣx))

and show that we have

PA+Con∗(PA) � Con(PA). (6)

It has been pointed out by Michael Rathjen [16] that slow provability satisfies
the Gödel-Löb conditions, provably so in IΣ1. In many respects it thus behaves
as the usual provability predicate for Peano Arithmetic. The index shift between
our Con⋄(PA) and the formula Con∗(PA) of [11] has been introduced to improve
the bounds on proof sizes that we are about to establish.
The central ingredient to our bounds on proof sizes is a computational analysis
of slow reflection. Since this analysis is independent and somewhat technical we
defer it to Section 3 below. In the present section we will only use the following
result of this analysis:

Theorem 3.10. For any provably total function g of PA+RFN⋄
Σ1

(PA) there
is a number N such that we have

g(Fε0(n
.− 1)) ≤ Fε0(n) for all n ≥ N.

In particular any provably total function of the theory PA + RFN⋄
Σ1

(PA) is
eventually dominated by Fε0 .

The reader who prefers to see all proofs in order may go through Section
3 now and return to this point afterwards. In the rest of this section we show
how results about proof sizes in fragments of Peano Arithmetic can be deduced.
It is worth observing that a weaker version of Theorem 3.10 suffices for these
applications: Namely, it would be enough to bound the provably total functions
of IΣ1 + RFN⋄

Σ1
(PA) rather than those of PA + RFN⋄

Σ1
(PA). However, as a

result in its own right Theorem 3.10 is certainly more satisfying with the stronger
base theory. Let us now investigate the size of proofs of the formulas Fε0(n)↓.
Afterwards we will come to the slightly more subtle case of the Paris-Harrington
Principle:

Lemma 2.2. There is a number N such that we have

p > 〈Fε0(n
.− 1), Fε0(n

.− 1)〉 for any slow PA-proof p of Fε0(n)↓ with n ≥ N.

To avoid misunderstanding we recall that 〈·, ·〉 denotes the Cantor pairing.
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Proof. We apply Proposition 1.3 to the proof predicate Proof⋄
PA

(p, ϕ), the the-
ory T = IΣ1 + RFN⋄

Σ1
(PA), the formula ψ(x, y) ≡ Fε0(x) = y (so that Fψ is

the function Fε0), and the function n �→ 〈Fε0(n
.− 1), Fε0(n

.− 1)〉 at the place of
f . Let us verify the assumptions of Proposition 1.3: By (5) we have

IΣ1 +RFNΣ1(PA) ⊢ RFN⋄
Σ1

(PA),

where RFNΣ1(PA) denotes the usual uniform Σ1-reflection principle for Peano
Arithmetic. This shows that the theory IΣ1 + RFN⋄

Σ1
(PA) is sound. Next,

using [3, Proposition 2.5] we have

n ≤ Fε0(n
.− 1) ≤ 〈Fε0(n

.− 1), Fε0(n
.− 1)〉.

Finally, consider an arbitrary function g that is provably total in the theory
IΣ1 + RFN⋄

Σ1
(PA). We have to show that there is a number N such that we

have
g(〈Fε0(n

.− 1), Fε0(n
.− 1)〉) ≤ Fε0(n) for all n ≥ N.

This follows from Theorem 3.10, applied not to g itself but rather to the function
m �→ g(〈m,m〉), which is still provably total in the theory IΣ1 + RFN⋄

Σ1
(PA).

Now Proposition 1.3 gives us precisely the claim.

It is easy to deduce bounds for proofs in the fragments of Peano Arithmetic:

Theorem 2.3. There is a number N such that for all n ≥ N no proof of
the statement Fε0(n) ↓ in the theory IΣn can have code less than or equal to
Fε0(n

.− 1).

Proof. We can assume that the bound N in Lemma 2.2 is bigger than zero.
Let us show that the present result holds with the same bound: Aiming at
a contradiction, suppose that q ≤ Fε0(n

.− 1) is an IΣn-proof of the formula
Fε0(n) ↓, for some n ≥ N . By definition 〈q, Fε0(n

.− 1)〉 is a slow PA-proof of
Fε0(n)↓. Thus the inequality

〈q, Fε0(n
.− 1)〉 ≤ 〈Fε0(n

.− 1), Fε0(n
.− 1)〉

contradicts Lemma 2.2.

To deduce corresponding results for instances of the Paris-Harrington Prin-
ciple, recall the function (n, k) �→ σ(n, k) defined just before Corollary 1.5 above.
We need to link this function to the function Fε0 :

Lemma 2.4 ([3]). We have

Fε0(n) ≤ σ(n+ 2, 1035n
2

) ≤ σ(n+ 3, 8) for all n ≥ 15.

Proof. This is the result of [3, Lemma 3.6, Theorem 3.10], except that [3] works
with a slightly different version of fundamental sequences, setting

{β + ωγ · (k + 1)}(n) = β + ωγ · k + ωδ · n in case γ = δ + 1.
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With this definition, descending to the n-th member of the fundamental se-
quence can introduce a coefficient (bounded by) n. In our case the new coeffi-

cients are bounded by n+ 1. The overall bound σ(n+ 2, 1023n
2

) of [3, Lemma

3.6] then increases to our σ(n+ 2, 1035n
2

).
Let us describe the concrete changes that are necessary (the reader will have
to consult [3] for context): First, the bound of [3, Proposition 2.9] increases
from |Tk,c,n| ≤ (n + 1)ck to |Tk,c,n| ≤ (n + 2)ck. At the same time the rather

generous bound |Tk,c,n| ≤ 2
(n6c)
k−1 of [3, Proposition 2.10] remains valid without

change. Thus [3, Lemma 3.1] remains valid, and so does [3, Lemma 3.2.1]. A
small change is required in [3, Lemma 3.2.2]: We need to weaken the condition
g(x0, . . . , xn−1) ≤ x0 to g(x0, . . . , xn−1) ≤ x0 + 1. It is easy to see that g is
then controlled by an (n + 1, 105)-algebra (instead of an (n + 1, 104)-algebra).
Consequently, [3, Lemma 3.2.3] now constructs an (n + 1, 105c)-algebra. One
can check that [3, Lemma 3.4] remains valid in spite of the prior changes: The
bound of [3, Lemma 3.2.3] is still strong enough for the base case of the proof;
in the step, the bound is generous enough to accomodate the fact that G3

is now an (n + 2, 105)-algebra. It follows that [3, Theorem 3.5] remains un-
changed: For n, k ≥ 1 the function Fωk

n
is captured by an (n+2, 10n·(12n+2k+8))-

algebra. Parallel to [3, Lemma 3.6] we can now deduce the desired bound:
We have {ωn+1}(n) = ωn+1

n and thus Fε0(n) = Fωn+1(n) = Fωn+1
n

(n) (as
opposed to Fε0(n) = Fωn

n
(n) in the original [3, Lemma 3.6]). Let G0 be an

(n+2, 1014n
2+20n)-algebra that captures Fωn+1

n
. Let G1 be an (n+2, 7)-algebra

such that min(S) ≥ 2n+ 3 holds whenever S is suitable for G1. In view of

7 · 1014n
2+20n ≤ 1014n

2+20n+1 ≤ 1035n
2

(for n ≥ 1)

we can choose an (n+ 2, 1035n
2

)-algebra G which simulates G0 and G1. If S is
suitable for G then we have

max(S) ≥ s2 > s1 ≥ Fωn+1
n

(s0) ≥ Fωn+1
n

(n) = Fε0(n).

This means that the restriction

G ↾[Fε0
(n)]n+2 : [Fε0(n)]

n+2 → 1035n
2

admits no suitable set. Thus we have Fε0(n) < σ(n+ 2, 1035n
2

).

It remains to check σ(n+ 2, 1035n
2

) ≤ σ(n+ 3, 8). This is parallel to the proof
of [3, Theorem 3.10]: Observe that we have

Fn+1
3 (n+ 2) ≥ F3(n) ≥ 22

n

≥ 24·35n
2

≥ 1035n
2

for n ≥ 15.

Thus by [3, Lemma 3.9] each (n + 2, 1035n
2

)-algebra can be simulated by an
(n + 3, 8)-algebra, and this implies the claim. Note that the condition n ≥ 15
could easily be replaced by a smaller bound.

This implies the following result, which we will need in our applications:
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Corollary 2.5. For any provably total function g of IΣ1 + RFN⋄
Σ1

(PA) there
is a number N such that we have

g(Fε0(n
.− 1)) ≤ σ(n+ 2, 1035n

2

) ≤ σ(n+ 3, 8) for all n ≥ N.

Proof. This follows from Theorem 3.10 and Lemma 2.4.

Similar to Lemma 2.2, slow proofs of certain instances of the Paris-Harrington
Principle must be long:

Lemma 2.6. The following holds:

(a) There is a number K ′ such that we have p > 〈Fε0(n
.− 1), Fε0(n

.− 1)〉 for

any slow PA-proof p of ∃N PH(1035n2 , n+ 3, n+ 2, N) with n ≥ K ′.

(b) There is a number K ′ such that we have p > 〈Fε0(n
.− 1), Fε0(n

.− 1)〉 for
any slow PA-proof p of ∃N PH(8, n+ 4, n+ 3, N) with n ≥ K ′.

Proof. We only show (a). The proof of (b) is similar and somewhat easier.
Compared to the proof of Lemma 2.2, the main subtlety is that the formulas

ϕn :≡ ∃N PH(1035n2 , n+ 3, n+ 2, N)

are not of the form ϕ(n), i.e. parametrized by the n-th numeral. To make
Proposition 1.3 applicable we need to preprocess proofs of these formulas, as
sketched in Remark 1.4: Let e(x) = z be a Σ1-formula such that we have

N � e(n) = k ⇔ k = 1035n
2

and IΣ1 ⊢ ∀x∃z e(x) = z. In view of the latter, the witnesses to all unbounded
quantifiers of the Σ1-formula ∃z e(n) = z are bounded by a primitive recursive
function in n. By the proof of Σ1-completeness there is a primitive recursive

function pe : N
2 → N such that pe(n, k) is an IΣk-proof of e(n) = 1035n2 .

Next, let ψ(x, y) be a Σ1-formula with

IΣ1 ⊢ ψ(x, y) ↔ ∃z(e(x) = z ∧ PH(z, x+ 3, x+ 2, y)). (7)

Following Remark 1.4, we need a primitive recursive function h : N → N which
transforms a slow PA-proof of ϕn into a slow PA-proof of ∃yψ(n, y). Let us
first construct a primitive recursive function h′ : N2 → N such that h′(k, q) is
an IΣk+1-proof of ∃yψ(n, y) if q is an IΣk+1-proof of ϕn: Given a proof q as
described, we can read off its end formula ϕn and then the number n. Recall

that pe(n, k+1) is an IΣk+1-proof of e(n) = 1035n2 . Combining this with q and
introducing an existential quantifier yields an IΣk+1-proof of

∃z(e(n) = z ∧ ∃N PH(z, n+ 3, n+ 2, N)).

It is not unreasonable to assume that n+ 3 (resp. n+ 2) is the same term as
n + 3 (resp. n + 2). Even if not, there are primitive recursive functions which
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map a pair (k, n) to IΣk+1-proofs of n+ 3 = n+3 and n+ 2 = n+2. We then
apply the equality axioms and prefix the existentially quantified N , giving an
IΣk+1-proof of

∃y∃z(e(n) = z ∧ PH(z, n+ 3, n+ 2, y)).

Invoking the equivalence (7) we get the desired proof h′(k, q) of ∃yψ(n, y). Now
to construct h, assume that p = 〈q,M〉 is a slow PA-proof of ϕn. By definition
there is an m ≤ M such that q is an IΣm+1 proof of ϕn and such that we
have Fε0(m) = M . Recall that the relation Fε0(x) = y is primitive recursively
decidable, and that Fε0 is strictly monotone. Thus we can primitive recursively
determine the unique m with the stated property. Now it suffices to set

h(p) := 〈h′(m, q),M〉.

We need to increase h to make it monotone and ensure h(p) ≥ p. Clearly, the
increased function still satisfies the following: If p is a slow PA-proof of ϕn then
there is a slow PA-proof of ∃yψ(n, y) below h(p).
Now we apply Proposition 1.3 to the proof predicate Proof⋄

PA
(p, ϕ), the theory

T = IΣ1+RFN⋄
Σ1

(PA), the Σ1-formula ψ(x, y) defined above, and the function
n �→ h(〈Fε0(n

.− 1), Fε0(n
.− 1)〉) at the place of f . In view of (7) we have

N � ψ(n,m) ⇔ N � PH(1035n2 , n+ 3, n+ 2,m),

so that Fψ is the function n �→ σ(n+2, 1035n
2

). Concerning the assumptions of
Proposition 1.3, in view of h(p) ≥ p (see also the proof of Lemma 2.2) we have

h(〈Fε0(n
.− 1), Fε0(n

.− 1)〉) ≥ n for all n.

Coming to the other assumption, let g be any provably total function of IΣ1 +
RFN⋄

Σ1
(PA). We must show that n �→ g(h(〈Fε0(n

.− 1), Fε0(n
.− 1)〉)) is even-

tually dominated by the function n �→ σ(n+ 2, 1035n
2

). To see this one applies
Corollary 2.5 to the function m �→ g(h(〈m,m〉)), which is still provably total in
the theory IΣ1+RFN⋄

Σ1
(PA). Having verified the assumptions Proposition 1.3

gives us a bound K ′ such that we have

p′ > h(〈Fε0(n
.− 1), Fε0(n

.− 1)〉)

whenever p′ is a slow PA-proof of ∃yψ(n, y) with n ≥ K ′. To deduce the claim

of (a), let p be a slow PA-proof of ∃N PH(1035n2 , n+ 3, n+ 2, N), still with
n ≥ K ′. As we have seen above, this implies that there is a slow PA-proof of
∃yψ(n, y) below h(p). By the bound that we have just established we must have

h(p) > h(〈Fε0(n
.− 1), Fε0(n

.− 1)〉).

Since h is monotone this does indeed imply p > 〈Fε0(n
.− 1), Fε0(n

.− 1)〉.

We can derive the central result of the paper, claim (1) from the introduction:

Theorem 2.7. The following holds:
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(a) There is a number K such that for all n ≥ K no proof of the formula

∃N PH(1035(n
.−2)2 , n+ 1, n,N) in the theory IΣn .−2 can have Gödel num-

ber less than or equal to Fε0(n
.− 3).

(b) There is a number K such that for all n ≥ K no proof of the formula
∃N PH(8, n+ 1, n,N) in the theory IΣn .−3 can have Gödel number less
than or equal to Fε0(n

.− 4).

Proof. We only write out the proof for (a), the proof of (b) being completely
parallel: Let K ′ be the bound from Lemma 2.6, and set K := max{K ′ + 2, 3}.

Consider an arbitrary n ≥ K and a proof q of ∃N PH(1035(n−2)2 , n+ 1, n,N) in
the theory IΣn−2. It follows that the pair 〈q, Fε0(n− 3)〉 is a slow PA-proof of

∃N PH(1035(n−2)2 , n+ 1, n,N). Lemma 2.6 yields

〈q, Fε0(n− 3)〉 > 〈Fε0(n− 3), Fε0(n− 3)〉.

Since the Cantor pairing is monotone we get q > Fε0(n− 3), as desired.

By claim (2) from the introduction both ∃N PH(1035(n
.−2)2 , n+ 1, n,N) and

∃N PH(8, n+ 1, n,N) have short proofs in IΣn .−1. The fragment IΣn .−2 in part
(a) of the theorem is thus optimal. Concerning (b), it is currently open whether
∃N PH(8, n+ 1, n,N) has a short proof in IΣn .−2. In any case the parameters
of the Paris-Harrington Principle leave room for variation: For example, the
bounds established by Loebl and Nešetřil [17] (with shorter proofs than in [3])
lead to similar results.

3. The Provably Total Functions of Slow Reflection

The goal of this section is to provide a proof of Theorem 3.10, which we
already used (but did not prove) in the previous section. We will need the
following characterization of uniform Σ1-reflection over the fragments of Peano
Arithmetic:

Proposition 3.1. We have

IΣ1 ⊢ ∀x(Fωx
↓↔ RFNΣ1(IΣx)).

Proof. It is known that the equivalence Fωn
↓↔ RFNΣ1(IΣn) for fixed n is

provable in IΣ1 (and in weaker theories): A model-theoretic proof can be found
in [18] or [14, Proposition 6.8]. For a proof-theoretic approach (via iterated re-
flection principles) we refer to [19, Theorem 1, Proposition 7.3, Remark 7.4]. The
author has found no fully explicit argument that the formalization is uniform
in n. We provide a detailed proof of this fact in [20]: This is a proof-theoretic
argument, formalizing the infinitary proof system from [21] by the method of
[22].

Using this result and (5) we can view slow reflection as a statement about
the fast-growing hierarchy of functions:
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Corollary 3.2. We have

IΣ1 ⊢ RFN⋄
Σ1

(PA) ↔ ∀x(Fε0(x)↓→ Fωx+1 ↓).

Note that the “index shift”, stemming from the definition of slow proof, is
indeed optimal: In view of Fε0(x) ≃ Fωx+1(x) we can deduce

IΣ1 ⊢ ∀x(Fε0(x)↓→ Fωx+2 ↓) → ∀yFε0(y)↓

by induction on y. Thus a stronger slow reflection statement would collapse into
the usual notion of Σ1-reflection over Peano Arithmetic. This explains why our
bounds on proof size are relatively sharp.
Our next goal is to transform the Π2-statement ∀x(Fε0(x) ↓→ Fωx+1 ↓) into a
formula which defines a unary function.

Definition 3.3. The inverse F−1
ε0

of the function Fε0 (see [11, Definition 3.2])
is given by

F−1
ε0

(x) := max({z ≤ x | ∃w≤xFε0(z) = w} ∪ {0}).

Note that the ∆0-definition of Fε0 yields a ∆0-definition of F−1
ε0

. To define a
slow variant F ⋄

ε0
of the function Fε0 we set

F ⋄
ε0
(x) := Fω

F
−1
ε0

(x)+1
(x),

which has the Σ1-definition

F ⋄
ε0
(x) = y ⇔ ∃z(z = F−1

ε0
(x) ∧ ∃α(α = ωz+1 ∧ Fα(x) = y)).

Clearly, z is bounded by x. In view of (4) the code of α is bounded by a
polynomial in x. Thus the given definition of F ⋄

ε0
is ∆0 in IΣ1.

We remark that the idea behind F ⋄
ε0

is similar to Simmons’ slow variant of
the Ackermann function in [23, Paragraph 2]. Let us now connect F ⋄

ε0
with the

slow reflection principle:

Proposition 3.4. We have

IΣ1 ⊢ RFN⋄
Σ1

(PA) ↔ F ⋄
ε0
↓ .

Proof. By Corollary 3.2 the claim of the proposition is equivalent to

IΣ1 ⊢ ∀x(Fε0(x)↓→ Fωx+1 ↓) ↔ F ⋄
ε0
↓ .

To show the direction “→” we work in IΣ1 and assume that the formula
∀x(Fε0(x) ↓→ Fωx+1 ↓) holds. We have to prove F ⋄

ε0
(x) ↓ for an arbitrary x.

The finitely many x < Fε0(0) are treated by Σ1-completeness. For x ≥ Fε0(0)
the set {z ≤ x | ∃w≤xFε0(z) = w} is non-empty, so F−1

ε0
(x) =: z is an element

of this set. In particular it follows that Fε0(z) is defined. Then the assumption
∀x(Fε0(x)↓→ Fωx+1 ↓) tells us that Fωz+1 is total. Thus Fωz+1(x) is defined, as
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required for F ⋄
ε0
(x)↓.

For the direction “←”, assume that the function F ⋄
ε0

is total, let x be arbitrary,
and assume that Fε0(x) is defined. We have to prove that Fωx+1

is total. By [11,
Lemma 2.3] it suffices to show that Fωx+1(y) is defined for arbitrarily large y.
Since Fε0(x) was assumed to be defined, we may consider an arbitrary y above
this value. Then we have x ≤ F−1

ε0
(y) =: z. Invoking the totality of F ⋄

ε0
we learn

that F ⋄
ε0
(y) = Fωz+1(y) is defined. It follows by [11, Lemma 2.4, Proposition

2.12, Lemma 2.3] that Fωx+1(y) is defined (and has value at most F ⋄
ε0
(y)).

By the parenthesis at the end of the proof, the function F ⋄
ε0

dominates Fωx+1

for values above Fε0(x). In other words, F ⋄
ε0

eventually dominates any provably
total function of Peano Arithmetic. In particular we have

PA � RFN⋄
Σ1

(PA).

Since slow reflection implies slow consistency this was already known by [11,
Proposition 3.3]. It is important that the argument we just gave does not
formalize in Peano Arithmetic: To show that F ⋄

ε0
dominates Fωx+1 we had to

know that Fε0(x) is defined. If this was different then F ⋄
ε0
↓ would imply Fε0 ↓,

contradicting the result that we are about to prove.
Recall that our goal is to bound the provably total functions of the theory
PA+RFN⋄

Σ1
(PA), or equivalently those ofPA+F ⋄

ε0
↓. It is a classical result that

any provably total function of Peano Arithmetic is dominated by some function
Fα with α < ε0 from the fast-growing hierarchy. To analyse PA+RFN⋄

Σ1
(PA)

we build an analogous hierarchy on top of F ⋄
ε0
:

Definition 3.5. By induction on α < ε0 we define functions F ⋄
ε0+α: Set

F ⋄
ε0+0(n) := F ⋄

ε0
(n),

F ⋄
ε0+α+1(n) := (F ⋄

ε0+α)
n+1(n),

F ⋄
ε0+α(n) := F ⋄

ε0+{α}(n)(n) for α limit,

where the superscript n+ 1 denotes the number of iterations and {α}(n) refers
to the fundamental sequence of α, as defined at the beginning of Section 2.

To make use of this hierarchy we will need some monotonicity properties.
These will involve the “step down”-relation from [3, Section 2] (with slightly
different fundamental sequences) or [11, Section 2]: We write β →n γ to ex-
press that there is a sequence 〈δ0, . . . , δk〉 of ordinals with δ0 = β, δk = γ and
{δi}(n) = δi+1 for all i < k. The following properties are familiar from the usual
fast-growing hierarchy:

Lemma 3.6. For all numbers m,n and ordinals α, β < ε0 the following holds:

(i) We have n ≤ n2 < F ⋄
ε0+α(n).

(ii) If m ≤ n then F ⋄
ε0+α(m) ≤ F ⋄

ε0+α(n).

(iii) If α →n β then F ⋄
ε0+β(n) ≤ F ⋄

ε0+α(n).
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Proof. We repeat the well-known proof for the usual fast-growing hierarchy (see
[3, Proposition 2.5]), with minor modifications in the base case: Claim (i) is
shown by induction on α. For α = 0 we have

n2 < Fω
F

−1
ε0

(n)+1
(n) = F ⋄

ε0
(n)

by [14, Proposition 5.4]. Successor and limit case are easy. Claims (ii) and (iii)
are shown by a simultaneous induction on α. Concerning α = 0 it is easy to see
that m ≤ n implies F−1

ε0
(m) ≤ F−1

ε0
(n). Then

F ⋄
ε0
(m) = Fω

F
−1
ε0

(m)+1
(m) ≤ Fω

F
−1
ε0

(n)+1
(m) ≤ Fω

F
−1
ε0

(n)+1
(n) = F ⋄

ε0
(n)

follows by [11, Lemma 2.3, Proposition 2.12]. Claim (iii) is trivial for α = 0. In
case α = γ + 1 claim (ii) holds by

F ⋄
ε0+α(m) = (F ⋄

ε0+γ)
m+1(m) ≤ (F ⋄

ε0+γ)
m+1(n) ≤

≤ (F ⋄
ε0+γ)

n+1(n) = F ⋄
ε0+α(n),

due to the induction hypothesis and claim (i). Concerning (iii) note that
{α}(n) = γ forces β = γ or γ →n β. Thus

F ⋄
ε0+β(n) ≤ F ⋄

ε0+γ(n) ≤ (F ⋄
ε0+γ)

n+1(n) = F ⋄
ε0+α(n)

follows by the induction hypothesis and claim (i). Let us come to (ii) for a limit
ordinal α: By [11, Proposition 2.12] we have {α}(n) →m {α}(m). Then

F ⋄
ε0+α(m) = F ⋄

ε0+{α}(m)(m) ≤ F ⋄
ε0+{α}(n)(m) ≤ F ⋄

ε0+{α}(n)(n) = F ⋄
ε0+α(n)

uses the induction hypothesis of both (iii) and (ii). As for (iii), note that α →n β
implies β = {α}(n) or {α}(n) →n β. Thus

F ⋄
ε0+β(n) ≤ F ⋄

ε0+{α}(n)(n) = F ⋄
ε0+α(n)

follows from the induction hypothesis.

To approach Theorem 3.10 we bound the functions F ⋄
ε0+α in terms of the

usual fast-growing hierarchy:

Lemma 3.7. Consider numbers l,m, n with m > 0 and an ordinal α ≤ ωm

which satisfy (Fωm+α)
l(n) ≤ Fε0(m). Then we have

(F ⋄
ε0+α)

l(n) ≤ (Fωm+α)
l(n).

Proof. We argue by transfinite induction on α with a side induction on l. The
base l = 0 of the side induction amounts to the trivial inequality n ≤ n. So let
us come to the side induction step l � l + 1: There we have the assumption
(Fωm+α)

l+1(n) ≤ Fε0(m). Abbreviating N := (F ⋄
ε0+α)

l(n) our task is to show
F ⋄
ε0+α(N) ≤ (Fωm+α)

l+1(n). We will use some well-known monotonicity prop-
erties of the fast-growing hierarchy, which can be found in [11, Section 2] (or
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[3, Section 2], with slightly different fundamental sequences). For example we
have (Fωm+α)

l(n) < (Fωm+α)
l+1(n), which allows us to apply the side induction

hypothesis and obtain

N ≤ (Fωm+α)
l(n) < Fε0(m).

Now we distinguish the following cases:
Case α = 0: Let us first show

F−1
ε0

(N) + 1 ≤ m. (8)

Aiming at a contradiction, assume that we have m ≤ F−1
ε0

(N). Observe that
this implies F−1

ε0
(N) > 0. Invoking the definition of F−1

ε0
we would then get

Fε0(m) ≤ Fε0(F
−1
ε0

(N)) ≤ N,

which contradicts N < Fε0(m) from above. Now in view of (8) we obtain

F ⋄
ε0
(N) = Fω

F
−1
ε0

(N)+1
(N) ≤ Fωm

(N) ≤ (Fωm
)l+1(n),

which is the side induction step in the case α = 0.
Case α = β + 1: First observe

(Fωm+β)
N+1(N) = Fωm+α(N) ≤ (Fωm+α)

l+1(n) ≤ Fε0(m).

This allows us to apply the main induction hypothesis with N,N + 1 and β at
the places of n, l and α, respectively. We get

F ⋄
ε0+α(N) = (F ⋄

ε0+β)
N+1(N) ≤ (Fωm+β)

N+1(N) =

= Fωm+α(N) ≤ (Fωm+α)
l+1(n).

Case α limit: The condition α ≤ ωm implies ωm+{α}(N) = {ωm+α}(N) (the
ordinal ωm meshes with α, see [11, Section 2]). Then we have

Fωm+{α}(N)(N) = Fωm+α(N) ≤ (Fωm+α)
l+1(n) ≤ Fε0(m).

Now apply the main induction hypothesis with N, 1 and {α}(N) at the places
of n, l and α, to get

F ⋄
ε0+α(N) = F ⋄

ε0+{α}(N)(N) ≤ Fωm+{α}(N)(N) =

= Fωm+α(N) ≤ (Fωm+α)
l+1(n).

We have thus completed the side induction step in all possible cases.

From the lemma we can deduce the following result, which could be described
as the “combinatorial half” of Theorem 3.10:
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Proposition 3.8. For each α < ε0 there is a number N such that we have

F ⋄
ε0+α(Fε0(n

.− 1)) ≤ Fε0(n) for all n ≥ N.

In particular F ⋄
ε0+α is eventually dominated by Fε0 .

Proof. Consider some α < ε0. We shall see that the proposition holds for any
N > 0 with ωN →N α + 1. Let us first show that such a number N exists:
As a first approximation take some N0 > 0 with α < ωN0 . From [3, Lemma
2.6] we get a number N with ωN0 →N α+ 1, and by [3, Corollary 2.4] we may
assume N ≥ N0. By [11, Proposition 2.12] we have ωN →N ωN0 , and together
this implies ωN →N α + 1 as desired. To verify the proposition consider an
arbitrary number n ≥ N . We would like to apply the previous lemma with n, 1
and Fε0(n−1) at the places of m, l and n, respectively. To do so we must verify
the condition

Fωn+α(Fε0(n− 1)) ≤ Fε0(n) (9)

of the lemma. Using [11, Lemma 2.7] we get ωn + α →n ωn, and then

Fωn+α(Fε0(n− 1)) = Fωn+α(Fωn
(n− 1)) ≤ Fωn+α(Fωn

(n)) ≤

≤ (Fωn+α)
2(n) ≤ (Fωn+α)

n+1(n) = Fωn+α+1(n).

The next step is to show ωn+1 →n ωn + α + 1: From [11, Lemma 2.10, 2.13]
we get ωn+1 →n ωωn−1+1. In view of {ωωn−1+1}(1) = ωn + ωn we can use [11,
Proposition 2.12] to obtain ωn+1 →n ωn +ωn. Since ωn meshes with ωn it only
remains to show ωn →n α+1. This follows from the above ωN →N α+1 using
[3, Corollary 2.4] and [11, Proposition 2.12]. Now we get

Fωn+α+1(n) ≤ Fωn+1(n) = Fε0(n),

which completes the proof of (9). This allows us to apply the previous lemma,
and we finally obtain

F ⋄
ε0+α(Fε0(n− 1)) ≤ Fωn+α(Fε0(n− 1)) ≤ Fε0(n).

To deduce that F ⋄
ε0+α is eventually dominated by Fε0 use n ≤ Fε0(n − 1) and

the fact that F ⋄
ε0+α is monotone.

The previous proposition is complemented by the following result:

Proposition 3.9. Any provably total function of PA+RFN⋄
Σ1

(PA) is eventu-
ally dominated by one of the functions F ⋄

ε0+α with α < ε0.

Proof. By Proposition 3.4 the slow reflection principle RFN⋄
Σ1

(PA) is equivalent
to the statement that the function F ⋄

ε0
is total. It is a classical result that any

provably total function of Peano Arithmetic is eventually dominated by one of
the functions Fα with α < ε0 from the fast-growing hierarchy. We need to see
that this remains valid when one adds the base function F ⋄

ε0
(both as an axiom

and as initial function of the fast-growing hierarchy). Indeed a general result to
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this effect is shown as part of the proof of [24, Theorem 16]. However, in [24]
the approach to the fast-growing hierarchy is somewhat different: The paper
works with norms of ordinals rather than explicit fundamental sequences. This
appears to be a technicality, but rather than working out a detailed comparison
we take the more direct way and reprove [24, Theorem 16] in our setting:
As basis for our proof we take the analysis of the provably total functions of
Peano Arithmetic in [21]. We assume that the reader has access to this paper.
Note that the notation β <k α in [21] refers to the same “step down”-relation
that we write as α →k β. First of all we need to extend the formalization of
Peano Arithmetic in [21, Section 2] by the axiom F ⋄

ε0
↓. To do so, recall that the

graph of F ⋄
ε0

is defined by a ∆0-formula and is thus elementary. So the formal
system of [21, Section 2] already contains a relation symbol F ⋄

ε0
(·) = · and

defining axioms corresponding to its elementary definition. Using this relation
symbol we extend the formal system by the new axiom ∀x∃yF

⋄
ε0
(x) = y. Next,

we need to adapt the infinitary proof system of [21, Section 3]. This system
contains a special relation symbol · ∈ N which will be interpreted as a finite
approximation to the set of natural numbers. The infinitary system contains an
axiom which places zero in N and a rule which allows us to put in successors:

(N) if ⊢α Γ, n ∈ N then ⊢α+1 Γ, n+ 1 ∈ N .

We need to add a new rule which gives access to values of the function F ⋄
ε0

(it
is important that the increase in the ordinal bound is independent of n):

(N⋄) if ⊢α Γ, n ∈ N then ⊢α+1 Γ, F ⋄
ε0
(n) ∈ N .

Using this rule the embedding lemma is easily extended by a proof of the axiom
∀x∃yF

⋄
ε0
(x) = y in the infinite system: Since the prime formula F ⋄

ε0
(n) = F ⋄

ε0
(n)

is true we get ⊢1 n /∈ N, F ⋄
ε0
(n) = F ⋄

ε0
(n) for each n. The axiom ⊢0 n /∈ N, n ∈ N

and the new rule (N⋄) yield ⊢1 n /∈ N, F ⋄
ε0
(n) ∈ N. Introducing a conjunction

and an existential quantifier we obtain ⊢3 n /∈ N, ∃y∈NF
⋄
ε0
(n) = y. To keep the

coefficients in the ordinal bound small we now apply accumulation: In view of
ω →2 3 we can conclude ⊢ω n /∈ N, ∃y∈NF

⋄
ε0
(n) = y. By disjunction introduction

and the ω-rule we arrive at ⊢ω+3 ∀x∈N∃y∈NF
⋄
ε0
(x) = y. Using accumulation

again we get
⊢ω·2 ∀x∈N∃y∈NF

⋄
ε0
(x) = y,

precisely as needed for the extended embedding lemma. It is straightforward to
check that inversion, reduction and cut-elimination remain valid: In this respect
the new rule (N⋄) behaves just as the original rule (N). In the bounding lemma
the bound Fα(k) is replaced by F ⋄

ε0+α(k):

Assume that we have ⊢α n1 /∈ N, . . . , nr /∈ N,Γ with cut rank 0,
where Γ only contains closed positive Σ1(N)-formulas. Then Γ is
true in F ⋄

ε0+α(k) for k = max({2} ∪ {3n1, . . . , 3nr}).

Recall that positive Σ1(N)-formulas only contain the connectives ∨,∧, ∃ and
do not contain subformulas of the form n /∈ N. A closed sequent is called
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true in m if the disjunction of its formulas is true under the interpretation
N = {n | 3n < m} of the special relation symbol. To prove the bounding lemma
one argues by induction on α and distinguishes cases according to the last
rule of the deduction ⊢α n1 /∈ N, . . . , nr /∈ N,Γ. Using Lemma 3.6 this is
straightforward and essentially as in [21]. Let us only consider the case of a
deduction that ends in the new rule (N⋄): Then Γ contains a formula of the
form F ⋄

ε0
(n) ∈ N and we have ⊢β n1 /∈ N, . . . , nr /∈ N,Γ, n ∈ N with α = β + 1.

Since the premise of the rule contains no new formula of the form m /∈ N the
number k is unchanged and the induction hypothesis tells us that Γ, n ∈ N is
true in F ⋄

ε0+β(k). There are two possibilities: If Γ is true in F ⋄
ε0+β(k) then it is

also true in F ⋄
ε0+α(k) ≥ F ⋄

ε0+β(k). Otherwise the formula n ∈ N must be true
in F ⋄

ε0+β(k), which means that we have n ≤ 3n < F ⋄
ε0+β(k). Using Lemma 3.6

we observe 3 ≤ (F ⋄
ε0+β)

2(k) and infer

3 · F ⋄
ε0
(n) ≤ 3 · F ⋄

ε0
(F ⋄

ε0+β(k)) ≤ (F ⋄
ε0+β)

2(k) · (F ⋄
ε0+β)

2(k) <

< (F ⋄
ε0+β)

3(k) ≤ (F ⋄
ε0+β)

k+1(k) = F ⋄
ε0+α(k).

This means that Γ contains the formula F ⋄
ε0
(n) ∈ N which is true in F ⋄

ε0+α(k).
Now we can deduce the desired result as usual: Let g be a provably total function
of the theory PA + F ⋄

ε0
↓. From the given definition of g we can read off an

elementary relation χg such that we have

g(m) = n ⇔ N � ∃zχg(m,n, z),

PA+ F ⋄
ε0
↓⊢ ∀x∃y,zχg(x, y, z).

By embedding and cut elimination we get an ordinal α < ε0 and an infinit-
ary deduction ⊢α ∀x∈N∃y∈N∃z∈Nχg(x, y, z) of cut rank 0. Inversion yields a
deduction

⊢α m /∈ N, ∃y∈N∃z∈Nχg(m, y, z)

for each number m. Assume m ≥ 3. By the bounding lemma there are numbers
n, k < F ⋄

ε0+α(3m) such that χg(m,n, k) is true. Using Lemma 3.6 we get

g(m) < F ⋄
ε0+α(3m) ≤ F ⋄

ε0+α(m
2) ≤ (F ⋄

ε0+α)
2(m) ≤ F ⋄

ε0+α+1(m),

which shows that g is eventually dominated by F ⋄
ε0+α+1.

Putting pieces together we can deduce the main result of this section:

Theorem 3.10. For any provably total function g of PA+RFN⋄
Σ1

(PA) there
is a number N such that we have

g(Fε0(n
.− 1)) ≤ Fε0(n) for all n ≥ N.

In particular any provably total function of the theory PA + RFN⋄
Σ1

(PA) is
eventually dominated by Fε0 .
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Proof. Consider a function g which is provably total in PA+RFN⋄
Σ1

(PA). The
previous proposition provides an ordinal α < ε0 and a bound N such that we
have

g(m) ≤ F ⋄
ε0+α(m) for all m ≥ N.

Increasing N if necessary Proposition 3.8 yields

F ⋄
ε0+α(Fε0(n

.− 1)) ≤ Fε0(n) for all n ≥ N.

For n ≥ N we have Fε0(n
.− 1) ≥ n ≥ N and thus

g(Fε0(n
.− 1)) ≤ F ⋄

ε0+α(Fε0(n
.− 1)) ≤ Fε0(n)

and
g(n) ≤ F ⋄

ε0+α(n) ≤ F ⋄
ε0+α(Fε0(n

.− 1)) ≤ Fε0(n),

as required for Theorem 3.10.

We remark that the theorem implies

PA+RFN⋄
Σ1

(PA) � RFNΣ1(PA),

because the equivalence RFNΣ1(PA) ↔ Fε0 ↓ is provable in Peano Arithmetic
(even in IΣ1, as implied by Proposition 3.1). The analogous result for slow
consistency has been proved in [11] (see also statement (6) in Section 2). In [12]
we investigate the consistency strength of slow reflection (also for reflection for-
mulas of complexity above Σ1): In particular it is shown that PA+RFN⋄

Σ1
(PA)

does not even prove the consistency of Peano Arithmetic. Further results on
slow provability can be found in work of Henk and Pakhomov [13]. To conclude
this paper, let us rephrase our computational analysis in terms of subrecursive
degree theory (see [24]):

Corollary 3.11. The honest ε0-elementary degree of F ⋄
ε0

is a non-zero degree
strictly below the degree of Fε0 .

Proof. First we must verify that F ⋄
ε0

and Fε0 are honest functions (in the sense
of [24]). We already know that the two functions are monotone and have ele-
mentary graphs (since they can be defined by ∆0-formulas). It remains to show
that they dominate the function n �→ 2n: By straightforward computations we
see that F2(n) ≥ 2n holds for all n. Since ωm+1 →n 2 holds for n ≥ 1 and any
m we obtain

F ⋄
ε0
(n) = Fω

F
−1
ε0

(n)+1
(n) ≥ F2(n) ≥ 2n for n ≥ 1.

In the separate case n = 0 the inequality F ⋄
ε0
(0) ≥ 20 is immediate. Similarly

one shows that Fε0(n) ≥ 2n holds for all n. Now let us argue that the ε0-
elementary degree of F ⋄

ε0
is non-zero: In the discussion just after Proposition 3.4

above we have seen that F ⋄
ε0

eventually dominates any provably total function
of Peano Arithmetic. Thus Peano Arithmetic cannot prove the totality of any
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honest representation of F ⋄
ε0
. In the notation of [24, Section 10] this means

that we do not have F ⋄
ε0

≤PA 0. Then [24, Theorem 16] tells us that we
cannot have F ⋄

ε0
≤ǫ0E 0. In other words, the ε0-elementary degree of F ⋄

ε0
is

non-zero. Similarly Theorem 3.10 tells us that Fε0 ≤PA F ⋄
ε0

must fail, so that
Fε0 ≤ε0E F ⋄

ε0
must fail as well. Thus F ⋄

ε0
and Fε0 do not have the same ε0-

elementary degree. On the other hand it is easy to see F ⋄
ε0

≤ε0E Fε0 : Since F ⋄
ε0

has an elementary graph and is dominated by Fε0 it is even elementary in Fε0 ,
by bounded minimization.
We remark that the use of [24, Theorem 16] is, in some sense, a detour: Rather
than considering provability in Peano Arithmetic one could use the “Generalized
Growth Theorem” [24, Theorem 13] in combination with Proposition 3.8 above.
Then, however, one has the technical task to reconcile the different definitions
of the fast-growing hierarchy in our paper and in [24].

Acknowledgements

I am very grateful to Michael Rathjen, my Ph.D. supervisor, for his advise and
guidance. I also want to thank the referee for his helpful comments, which
particularly improved Section 3 of the paper.

References

[1] J. Paris, L. Harrington, A Mathematical Incompleteness in Peano Arith-
metic, in: J. Barwise (Ed.), Handbook of Mathematical Logic, North Hol-
land, 1977, pp. 1133–1142.
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