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Abstract. The article surveys ideas emerging within the predicative
tradition in the foundations of mathematics, and attempts a reading of
predicativity constraints as highlighting different levels of understanding
in mathematics. A connection is made with two kinds of error which
appear in mathematics: local and foundational errors. The suggestion
is that ideas originating in the predicativity debate as a reply to foun-
dational errors are now having profound influence to the way we try
to address the issue of local errors. Here fundamental new interactions
between computer science and mathematics emerge.

1 Certainty and Certification

Mathematics is often considered the most exact of all sciences, but error is not
unusual even in print. Errors are also costly and unwelcome in computer science,
where program verification is increasingly appealed to in order to minimize fail-
ure in hardware and software.

I would like to suggest a distinction between two types of error which can
appear in mathematics. First of all there are what I should like to call “local”
errors. These are errors which plague individual proofs, or possibly a relatively
small group of proofs which share a similarity in structure. These mistakes are
somehow confined to a small portion of the mathematical enterprise and, if
corrigible, they can be amended without introducing any substantial revision of
the underlying mathematical principles one appeals to when devising the given
proof. Secondly, there are “foundational” mistakes, which instead relate to the
very principles of proofs and the axioms; these occur when inconsistencies arise
within our foundational systems.

Nowadays emphasis is on local errors. The ever growing specialization of
mathematics has made proofs much harder not only to obtain, but also to ver-
ify. In addition to the complexity, the mere size of some proofs demands new
strategies for their verification. A substantial debate on the role of computers for
both the discovery and the verification processes in mathematics is presently on-
going within the mathematical community, with an increasing number of mathe-



maticians hoping that a fruitful interaction between mathematics and computer
science will produce substantial benefits for today’s mathematics.1

As to the second kind of error, a large number of mathematicians seem by now
quite confident that we have obtained inductive corroboration of our mathemat-
ical practice and also of our main mathematical systems; for example, theories
like ZFC seem to have undergone sufficient scrutiny over the years to be consid-
ered reliable by most. However, a genuine concern regarding the trustworthiness
of our mathematical methodology and of our foundational systems was voiced
at the turn of the 20th century, as a direct reply to the deep methodological
changes that mathematics was undergoing at the time, as well as the rise of the
set-theoretic paradoxes.

The main topic of this article is predicative mathematics, a form of mathemat-
ics which originated at the beginning of the 20th century in attempts to address
the threat arising from potential foundational errors, by proposing methodolog-
ical constraints. Predicativity constraints are motivated by a varied family of
concepts, and, as further hinted at below, inspire a number of rather different
forms of mathematics. This complexity makes it very difficult to discuss pred-
icativity within the limits of a short article and venture to draw some general
conclusions. However, I would like to highlight some common themes which run
through the debate on predicativity since its earliest times. I would also like
to recall the difficulties encountered in understanding the demarcation between
the notions of predicative and impredicative. Notwithstanding these difficulties,
the hope is to be able to suggest a reading of predicativity constraints as an in-
strument for singling out (substantial) portions of classical mathematics which
are amenable to a less abstract, and a more concrete treatment. A predicative
treatment of those portions of mathematics then is often seen by its proponents
as providing full conviction for the correctness of the results. That is, by restrict-
ing the methodology to more stringent canons, one ought to gain more detailed
insight of the constructions carried out within a proof, and fuller grasp of the
results. In the case of constructive predicativity as represented by the tradition
arising within Martin-Löf type theory, the ensuing mathematics obtains a dis-
tinctive direct computational content. Here predicativity constraints enable an
identification of mathematics with programming which has inspired fundamen-
tal research at the intersection between mathematics and computer science. In
fact, recent years have seen the rise of attempts to proof-checking portions of
mathematics with the support of computer systems, opening up new paths for
the verification of mathematics. The suggestion I would like to make, then, is
that ideas originating in the predicativity debate as a reply to foundational er-

1 Dana Scott in his opening talk at the The Vienna Summer of Logic (9th-24th July
2014) suggested that we are now witnessing a paradigm change in logic and math-
ematics. At least in certain areas of mathematics, there is an urgent need to solve
complex and large proofs, and this requires computers and logic to work together to
make progress. See Dana Scott’s e-mail to the Foundations of Mathematics mailing
list of 28-07-14 (http://www.cs.nyu.edu/mailman/listinfo/fom).



rors are now having profound influence to the way we try to address the issue
of local errors.

2 Predicativity

Predicativity has its origins in the writings of Poincaré and Russell, and is only
one of a number of influential programmes which arose at the beginning of the
past century in an attempt to bring clarity to a fast changing mathematics.
Mathematics, in fact, had undergone deep methodological alterations during the
19th century which soon prompted a lively foundational debate. The paradoxes
that were discovered in Cantor’s and Frege’s set theories in the early 20th cen-
tury were one of the principal motivations for the very rich discussions between
Poincaré and Russell, within which the concept of predicativity was forged (see
for example [19, 22, 23]). These saw impredicativity as the main source of the
paradoxes, and attempted to clarify a notion of predicativity, adherence to which
would hinder inconsistencies. According to one rendering of this notion, a defi-
nition is impredicative if it defines an object by quantifying on a totality which
includes the object to be defined. Through Russell and Poincaré’s confrontation
a number of ways of capturing impredicativity and explaining its perceived prob-
lematic character emerged. One influential thought (originating in Richard and,
via Poincaré, adopted and particularly pressed further by Russell) saw impred-
icativity as engendering from a vicious circularity, or self-reference.2 According
to this view, a vicious circle arises if we suppose that a collection of objects
may contain members which can only be defined by means of the collection as
a whole, thus bearing reference to the definiendum. As a response to these dif-
ficulties Russell introduced his well-known vicious circle principle, which in one
formulation states that: “whatever in any way concerns all or any or some of a
class must not be itself one of the members of a class.” [24, p. 198]

Perhaps an example could help clarify the issue of impredicativity. The most
paradigmatic instance of antinomy is Russell’s paradox, which was discovered
by Russell in Frege’s Grundgesetze in 1901. A modern rendering of the paradox
amounts to forming Russell’s set, R = {x | x /∈ x}, by unrestricted comprehen-
sion. One then obtains: R ∈ R if and only if R /∈ R. A circularity arises here
from the fact that R is defined by reference to the whole universe of sets, to
which R itself would belong. Russell’s vicious circle principle, then, endeavours
to prevent R from selecting a collection. The perceived difficulty arising from
this kind of circularity can be elucidated from a number of perspectives. For
example, according to one view, we ought to have access to a well-determined
meaning for the condition appearing in the above instance of the comprehension
principle (i.e. x /∈ x). The difficulty is then realated to the fact that we seem to
be unable to grant this independently of whether or not there exists a set R as
specified above [4].

2 Another analysis proposed by Poincaré [20] stressed a form of “invariance” as charac-
teristic of predicativity: a predicative set cannot be “disturbed” by the introduction
of new elements, contrary to an impredicative set [11, 3].



The analysis of the paradoxes turned out to be extremely fruitful for the de-
velopment of mathematical logic3, starting from Russell’s own implementation of
the vicious circle principle through his type theory. In the mature version of [23]
two crucial ideas are interwoven: that of a type restriction and of ramification.
By combining these two aspects ramified type theory seems to block all vicious
circularity, and thus paradoxes of both set-theoretic and semantic nature.

Russell’s type theory is a first fundamental contribution to the clarification
of the complex question of what is predicativity in precise, logico-mathematical
terms. However, as a way of developing a predicative form of mathematics Rus-
sell’s type theory encountered substantial difficulties; it eventually surrendered
to the assumption, in Principia Mathematica [29], of the axiom of reducibility,
whose effect (in that context) was to restore full impredicativity. However, an-
other attempt to develop analysis from a predicative point of view was proposed
by Weyl [28], who showed how to carry out (a portion of) analysis on the basis
of the bare assumption of the natural number structure. Weyl’s crucial idea was
to take the natural number structure with mathematical induction as given, as
an ultimate foundation of mathematical thought, which can not be further re-
duced. Restrictions motivated by predicativity concerns were then imposed at
the next level of idealization: the continuum. Weyl, in fact, introduced restric-
tions on how we form subsets of the natural numbers; in today’s terminology, he
saw as justified only those subsets of the natural numbers of the form {x : ϕ(x)}
if the formula ϕ is arithmetical, that is, it does not quantify over sets (but may
quantify over natural numbers). The idea was that the natural numbers with full
mathematical induction constitute an intuitively given category of mathemati-
cal objects; we can then use this and some immediately exhibited properties of
and relations between the objects of this category (as obtained by arithmetical
comprehension) to ascend to sets of natural numbers. In this way one also avoids
vicious circularity in defining subsets of the natural numbers, as the restriction
to number quantifiers in the comprehension principle does not allow for the defi-
nition of a new set by quantifying over a totality of sets to which the definiendum
belongs.

I wish to highlight two aspects of Weyl’s contribution. First, his approach
to the question of the limit of predicativity went directly at the core of the
mathematical practice, to show that large parts of 19th century analysis could
be recovered on the basis of this restricted methodology. He thus succeeded in
reducing to predicative methodology a conspicuous segment of mathematics,
including portions which prima facie required impredicativity. Second, Weyl saw
only this part of classical mathematics as fully justified; as he quickly became
aware that not all of classical mathematics could be so recovered, he was ready
to give up the rest, as (so far) not fully justified.

After Poincaré, Russell’s and Weyl’s fundamental contributions, predicativ-
ity lost momentum until the 1950’s, when fresh attempts were made to obtain
a clearer demarcation of the boundary between predicative and impredicative
mathematics. The literature from the period shows the complexity of the task,

3 See [3] for a rich discussion of the impact of the paradoxes on mathematical logic.



but also witnesses the fruitfulness of the mathematical methodology for the phi-
losophy of mathematics. The celebrated upshot of that research is the logical
analysis of predicativity4 by Feferman and Schütte (independently) following
lines indicated by Kreisel [10, 4, 26, 25]. Here Russell’s original idea of ramifica-
tion had a crucial role, as a transfinite progression of systems of ramified second
order arithmetic indexed by ordinals was used to determine a precise limit for
predicativity. This turned out to be expressed in terms of an ordinal, called Γ0,
which was the least non-predicatively provable ordinal. A formal system was
then considered predicatively justifiable if it is proof-theoretically reducible to a
system of ramified second order arithmetic indexed by an ordinal less than Γ0.

5

Another crucial contribution to the clarification of the extent of predicativity
was the mathematical analysis of predicativity, aiming at elucidating which parts
of mathematics can be expressed in predicative terms [5, 27]. Work by Feferman,
as well as results obtained within Friedman and Simpson’s programme of Reverse
Mathematics have shown that large parts of contemporary mathematics can be
framed within (weak) predicative systems. Ensuing these results, Feferman has
put forth the working hypothesis that all of scientifically applicable analysis can
be developed in the system W of [5], which codifies in mordern terms Weyl’s
system in Das Kontinuum. These recent developments help better understand
the reach of predicative mathematics, and reveal that predicativity goes much
further than previously thought.

3 Plurality of Predicativity

As clarified by Feferman [4, 6], the logical analysis of predicativity aimed at de-
termining the limits of a notion of predicativity given the natural numbers. That
is, one here takes an approach to predicativity similar to Weyl’s, in assuming for
given the structure of the natural numbers with full induction, and then imposing
appropriate predicativity constraints on the formation of subsets of the natural
numbers.6 With Kreisel and Feferman the study of predicativity becomes thus
an attempt to clarify what is implicit in the acceptance of the natural number
structure (with full induction).7

Different incarnations of predicativity have however appeared in the litera-
ture, giving rise to very different forms of mathematics. For example, predicativ-
ity constraints have motivated Nelson’s predicative arithmetic [16] and Parsons’

4 According to a notion of predicativity given the natural numbers which is discussed
in the next section.

5 See [6] for an informal account of this notion of predicativity and for further refer-
ences.

6 The resulting notion of predicativity is, in fact, more generous than in Weyl’s original
proposal. The proof theoretic strength of a modern version of Weyl’s system, like,
for example, Feferman’s system W from [5], equates that of Peano Arithmetic, and
thus lays well below Γ0.

7 This line of research has been brought forward with Feferman’s notion of unfolding,
as analysed further by Feferman and Strahm e.g. in [7].



criticism of the impredicativity of standard explanations of the notion of natu-
ral number [18]. According to Nelson already the whole system of the natural
numbers equipped with full mathematical induction is predicatively problematic
on grounds of circularity [16]: “The induction principle assumes that the nat-
ural number system is given. A number is conceived to be an object satisfying
every inductive formula; for a particular inductive formula, therefore, the bound
variables are conceived to range over objects satisfying every inductive formula,
including the one in question.” [16, p. 1] From this point of view, then, already
the theory of Peano Arithmetic, with its unrestricted induction, lies well beyond
predicativity. Therefore Nelson’s rejection of circularity leads him to justify only
systems which are interpretable in a weak fragment of primitive recursive arith-
metic, Robinson’s system Q.8

Themes stemming from the original predicativity debates also play a promi-
nent role within constructive mathematics, for example in the work of Lorenzen
and Myhill [12], and in Martin-Löf type theory [14]. For constructive founda-
tional theories, a more ‘liberal’ approach to predicativity, compared with that
by Kreisel-Feferman-Schütte, has been suggested. Here the driving idea is that
so-called generalised inductive definitions ought to be allowed in the realm of
constructive mathematics. The intuitive justification of inductive definitions is
related to the fact that they can be expressed by means of finite rules, and allow
for a specification of sets which proceeds from the ‘bottom up’. The underlying
idea is to start from a well understood structure, say the natural numbers, and
then use finite rules to extend this, by a process of successive iterations. We thus
build a first subset of the set of natural numbers according to the rule, then use
this to build a new one, and so on. The predicativity of this process is granted
provided that we can ensure that at no stage in the built up of the new set, we
need to presuppose a totality “outside” the set under construction. If this were
the case, then, we would rely exclusively on increasingly more complex fragments
of the very set under definition, and no vicious circularity would occur.9 An im-
portant point to make is that the proof-theoretic strength of so-called theories
of inductive definitions goes well beyond Feferman and Schütte’s bound (and
thus also very much beyond Peano Arithmetic), as shown in [1]. Following this
line of reasoning, relatively strong theories are considered predicative in today’s
foundations of constructive mathematics [17, 21].

A remarkable fact which emerges starting from the detailed logical analysis
initiated in the 1950’s, is that we now witness a number of different versions of
predicativity, that appear to relate to very different forms of mathematics. Thus
predicativity constraints motivate Nelson’s strictly finitary subsystems of Peano
Arithmetic, but also the much more generous predicativity given the natural

8 As such, Nelson’s ideas have proved extremely fruitful, as they have paved the way
for substantial contributions to the area of computational complexity [2].

9 Theories of inductive definitions are discussed in [4], where they are considered un-
acceptable from a predicative point of view on grounds of circularity. See also [18] for
an alternative view which sees inductive definitions as justified from a constructive
perspective.



numbers, which, under the analysis by Kreisel, Feferman and Schütte, extends
well beyond Peano Arithmetic. Further up in the proof theoretic scale, we have
constructive predicativity, which (on the basis of intuitionistic logic) reaches the
strength of rather substantial subsystems of second order arithmetic [21]. In fact,
the use of intuitionistic logic and its interaction with predicativity makes it more
difficult to assess the relation between this kind of predicativity and the others.
But it would seem that in all cases predicatively motivated constraints can be
“applied” to different initial “bases”, different mathematical structures which are
taken as accepted, or granted. A possible understanding of predicativity would
then see it as a (series of) methodological constraints, often motivated by the de-
sire to avoid vicious circularity, which can be implemented on top of a previously
given base, considered secure and granted. Predicativity constraints then impose
methodological restrictions on the mathematical constructions which populate
the next higher level of abstraction. For example, predicativity given the natural
numbers takes the natural number structure with full induction as unquestion-
able and builds predicatively motivated restrictions on top of it, thus constraining
the notion of arbitrary set.

A very significant aspect which emerges here is the crucial role of the princi-
ple of induction for debates on predicativity. In fixing the conceptual framework
which we take as basis, we have to explicitly clarify how much induction we
are prepared to accept. That is, it would seem that induction (possibly appro-
priately restricted) is a crucial component of the structure one takes as base,
and, as highlighted by Nelson and Parsons, plays a crucial role in discussions of
impredicativity. In less neutral terms, it would seem that when looking at the
conceptual framework of reference, we need to include not only the relevant ob-
jects, for example the natural numbers, but also the way we are to reason about
them. The example of constructive predicativity also seems to support similar
conclusions, suggesting to include even the logic within the base one takes for
granted.

There is here some complex philosophical work which is required to justify
the choice of the privileged base as well as the methodological restrictions to
be put on place. It is not unusual within the literature on predicativity to find
reference to the time-honoured distinction between potential and actual infinity
in mathematics. Often then predicativity constraints are seen as ways of avoid-
ing full commitment to actual infinity; this, in turn, is frequently linked to the
philosophical debate on realism versus anti-realism in mathematics. From a per-
spective of this kind, for example, one might be prompted to accept predicativity
given the natural numbers, from the desire to subscribe to some form of realism
with respect to the natural number structure, while maintaining an anti-realist
(e.g. a definitionist) position on arbitrary sets [6]. Here I would like to suggest
another possible reading of predicativity, which cashes it out in terms of our
understanding of mathematical concepts.10 Predicativity now becomes a crucial
instrument in arguing for differences in levels of understanding, and conceptual
clarity. Predicativity given the natural numbers, for example, would now rep-

10 A view along similar lines is also hinted at by Feferman in [6].



resent a way of vindicating a commonly preceived difference in understanding
between the concept of natural number and that of real number or, more gen-
erally, of arbitrary set [6]. That is, one here attempts to capture a distinction
between forms of understanding, rather than ontological status, claiming that
some concepts are more fundamental, or clearer, or more evident than others.
Predicativity constraints then could be seen as ways of extending beyond those
more fundamental concepts (the conceptual basis) in ways which are somehow
already implicit in the basis itself, that is, withouth extending the very con-
ceptual apparatus in substantial ways. Here again a difficult philosophical task
lays ahead in attempting to further explicate the distinction between different
forms of understanding, especially in light of the logical analysis briefly discussed
above, which brings to the fore a plurality of versions of predicativity.11 A crucial
aspect of this view is that predicativity becomes a tool for clarifying different
forms of mathematics and various ways of understanding, but it does not en-
tail a claim that only predicative mathematics of some kind is justified. In fact,
predicativity, like other restrictions to standard methodology, in the hands of
the logician become a tool for exploring in precise terms which parts of stan-
dard mathematics are amenable to be reframed in terms of more elementary
assumptions or ways of reasoning.

Predicativity is an essential component of constructive type theory [14, 15].
In fact, predicativity made a very dramatic appearance within Martin-Löf type
theory, which bears surprising similarities to how it entered the mathematical
landscape at the beginning of the 20th century. The appeal to an impredicative
type of all types in the first formulation of intuitionistic type theory, in fact, gave
rise to Girard’s paradox [8]. Martin-Löf promptly corrected his type theory by
eliminating the all-encompassing type of all types, and introduced in its place a
hierarchy of type universes, each “reflecting” on previously constructed sets and
universes [14]. Type theoretic universes are indeed at the centre of the generous
notion of predicativity which arises in intuitionistic type theory [21].

Martin-Löf type theory embodies the Curry–Howard isomorphism, and thus
identifies propositions with types (and their proofs with the elements of the
corresponding types). As a consequence, type theory is simultaneously a very
general programming language and a mathematical formalism. Girard’s para-
dox is usually read as implying that in this context impredicativity (in the form
of arbitrary quantification on types) is inconsistent with the Curry–Howard iso-
morphism. In a sense, predicativity signs the limit of the strong identification
of mathematics with programming which is at the heart of constructive type
theory.12

11 Further challenges are also posed by technical developments in proof theory which
have brought Gerhard Jäger to introduce a notion of metapredicative [9]. A thorough
analysis of predicativity also ought to clarify its relation with metapredicativity.

12 Predicativity is also at the centre of Martin-Löf’s meaning explanations for type
theory, which explain the type theoretic constructions of this theory “from the bot-
tom up”. A key concept here is that of evidence: constructive type theory represents
a form of mathematics which is, according to its proponents, intuitively evident,



An observation naturally comes to mind: recent years have seen the flourish-
ing of research on formalization of mathematics, with the purpose of verification.
Here a new interplay between computer science and mathematics emerges. For
example, as observed by Georges Gonthier, one strategy which proved useful
in proof checking is to turn mathematical concepts into data structures or pro-
grams, thus converting proof checking into program verification. Here construc-
tive type theory has played a pivotal role, and inspired the development of other
systems, like the (impredicative) calculus of constructions which underlines the
Coq system.13 One would then be tempted to conclude that ideas which origi-
nated through the fear of foundational errors are now having profound impact
on new ways of addressing the ever pressing issue of local errors.

Acknowledgements

The author would like to thank Andrea Cantini and Robbie Williams for reading
a draft of this article. She also gratefully acknowledges funding from the School
of Philosophy, Religion and History of Science, University of Leeds.

References

1. W. Buchholz, S. Feferman, W. Pohlers, and W. Sieg. Iterated inductive definitions
and subsystems of analysis. Springer, Berlin, 1981.

2. S. Buss. Bounded Arithmetic. Studies in Proof Theory Lecture Notes. Bibliopolis,
Naples, 1981.

3. Andrea Cantini. Paradoxes, self-reference and truth in the 20th century. In Dov
Gabbay, editor, The Handbook of the History of Logic, pages 5–875. Elsevier, 2009.

4. S. Feferman. Systems of predicative analysis. Journal of Symbolic Logic, 29:1–30,
1964.

5. S. Feferman. Weyl vindicated: Das Kontinuum seventy years later. In Temi e
prospettive della logica e della scienza contemporanee, pages 59–93, 1988.

6. S. Feferman. Predicativity. In S. Shapiro, editor, Handbook of the Philosophy of
Mathematics and Logic. Oxford University Press, Oxford, 2005.

7. Solomon Feferman and Thomas Strahm. The unfolding of non-finitist arithmetic.
Annals of Pure and Applied Logic, 104(1-3):75–96, 2000.

8. J.Y. Girard. Interpretation fonctionnelle et elimination des coupures de
l’arithmetique d’ordre superieur, 1972.

amenable to contentual and computational understanding. This contentual under-
standing is then seen as supporting the belief in the consistency of this form of
mathematics [13].

13 The calculus of constructions takes an opposite route compared with Martin-Löf type
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