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Abstract

The statistics of clear-sky index can be used to determine solar irradiance when the theoretical

clear sky irradiance and the cloud cover are known. In this paper, observations of hourly clear-

sky index for the years of 2010–2013 at 63 locations in the UK are analysed for over 1 million

data hours. The aggregated distribution of clear-sky index is bimodal, with strong contributions

from mostly-cloudy and mostly-clear hours, as well as a lower number of intermediate hours.

The clear-sky index exhibits a distribution of values for each cloud cover bin, measured in

eighths of the sky covered (oktas), and also depends on solar elevation angle. Cloud cover is

measured either by a human observer or automatically with a cloud ceilometer. Irradiation

(time-integrated irradiance) values corresponding to human observations of “cloudless” skies

(0 oktas) tend to agree better with theoretical clear-sky values, which are calculated with a

radiative transfer model, than irradiation values corresponding to automated observations of 0

oktas. It is apparent that the cloud ceilometers incorrectly categorise more non-cloudless hours

as cloudless than human observers do. This leads to notable differences in the distributions

of clear-sky index for each okta class, and between human and automated observations. Two

probability density functions—the Burr (type III) for mostly-clear situations, and generalised

gamma for mostly-cloudy situations—are suggested as analytical fits for each cloud coverage,

observation type, and solar elevation angle bin. For human observations of overcast skies (8

oktas) where solar elevation angle exceeds 10◦, there is no significant difference between the

observed clear-sky indices and the generalised gamma distribution fits.
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Acronyms

AERONET Aerosol Robotic Network
AFGL Air Force Geophysics Laboratory
BADC British Atmospheric Data Centre
BSRN Baseline Surface Radiation Network
CDF Cumulative Distribution Function
DNI Direct Normal Irradiance
ECMWF European Centre for Medium-range Weather Forecasts
GHI Global Horizontal Irradiance
GLOMAP Global Model of Aerosol Processes
IGBP International Geosphere–Biosphere Programme
MIDAS Met Office Integrated Data Archive System
PDF Probability Density Function
RMSE Root Mean Square Error
RO Global Radiation Observations
UKMO UK Meteorological Office
UTC Coordinated Universal Time
WH UK Hourly Weather Observations

1. Introduction1

The most reliable way to determine the solar resource for a particular location, assuming2

there have been no detectable effects of climatic change, is to set up long-term pyranometer3

observations. For many sites of interest, pyranometer records are not frequently obtained for4

a sufficiently long period prior to installation of a solar energy system (Gueymard and Wilcox,5

2011). Other meteorological variables such as sunshine hours (Ångström, 1924; Muneer et al.,6

1998; Prescott, 1940), diurnal temperature range (Bristow and Campbell, 1984; de Jong and7

Stewart, 1993; Hargreaves et al., 1985; Supit and van Kappel, 1998), precipitation (de Jong and8

Stewart, 1993), cloud type (Kasten and Czeplak, 1980; Matuszko, 2012) and fractional cloud9

cover (Brinsfield et al., 1984; Kasten and Czeplak, 1980; Matuszko, 2012; Muneer and Gul,10

2000; Nielsen et al., 1981; Supit and van Kappel, 1998; Wörner, 1967) can be used to estimate11

solar irradiance. Temperature, pressure, cloud cover, cloud type, rainfall and sunshine hours12

are routinely measured at weather stations globally.13

Since clouds are the largest attenuating factors of solar irradiance in large areas of the globe14

(Wacker et al., 2015), cloud cover is a useful predictor of solar resource (Kasten and Czeplak,15

1980). If the sky is cloudless, irradiance can be predicted from the solar geometry, surface16

albedo, and optical properties of aerosols, ozone and water vapour using a radiative transfer17

calculation (Müller et al., 2012). Alternatively, several clear-sky models exist in the literature18

which are empirical relationships between one or more of these atmospheric variables (or of19
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Nomenclature

a Probability distribution scale parameter
c Burr (type III) distribution shape parameter
d Generalised gamma distribution shape parameter
ei Expected frequency of clear-sky index observations
G surface global horizontal irradiation (J m−2)
G0 top-of-atmosphere global horizontal irradiation (J m−2)
Gcs clear sky surface global horizontal irradiation (J m−2)
k Burr (type III) distribution shape parameter
Kc clear-sky index
KT clearness index
N cloud cover (oktas)
oi Observed frequency of clear-sky index observations
p Generalised gamma distribution shape parameter
Γ(·) Gamma function
θe solar elevation angle, ◦

χ2 Goodness-of-fit statistic

their derived quantities) and clear-sky irradiance (Gueymard, 2012). When clouds are present,20

the fraction of time clouds obscure the sun, the optical thickness of the clouds, and secondary21

effects such as reflections from cloud sides and between cloud layers, can all have important22

effects on the proportion of irradiance that reaches the surface. Cloud transmission is therefore23

the most uncertain component of surface irradiance in most locations.24

Typically, cloud cover is recorded at meteorological stations as an integer number of oktas,25

here denoted N , which is the number of eighths of the sky obscured by clouds (Met Office,26

2010). An additional okta code 9 is used for situations where the sky is obscured by fog, haze27

or other meteorological phenomena. For human observations, a convention is to reserve 0 oktas28

for completely cloudless sky and 8 oktas for completely overcast sky, so the limits of 1 okta and29

7 oktas are extended to almost clear and almost overcast respectively (Jones, 1992). In some30

automated algorithms a different convention may be followed, for example recording up to 1/1631

cloudiness as 0 oktas and greater than 15/16 cloudiness as 8 oktas (Wacker et al., 2015).32

Clear-sky index,Kc = G/Gcs, estimates atmospheric attenuation due to clouds by measuring33

the ratio of surface solar irradiance or irradiation G to the corresponding amount that would be34

received under a clear (cloudless) sky, Gcs. It also accounts for the influence of surface albedo.35

Other cloudless-sky attenuators such as water vapour, ozone and aerosols are retained in the36

calculation of Gcs. The clear-sky index is less dependent on airmass than the commonly used37

clearness index KT = G/G0, where G0 is top-of-atmosphere solar irradiance. Some authors38
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have worked to reduce this dependence by introducing a rescaling of the clearness index, to39

either map the observed range of clearness indices into the interval 0–1 for each solar elevation40

angle class (Olseth and Skartveit, 1987) (i.e. a normalised clearness index), or to adjust for41

airmass based on clear-sky Linke turbidity values (Perez et al., 1990).42

Previous relationships between N and KT , Kc, or G, have tended to provide a one-to-43

one correspondence between N and the variable of interest (Brinsfield et al., 1984; Kasten44

and Czeplak, 1980; Matuszko, 2012; Muneer and Gul, 2000; Nielsen et al., 1981; Supit and45

van Kappel, 1998; Wörner, 1967). On the other hand, several authors have described the46

distributions of clearness or clear-sky index parameterised by its longer-term mean (Bendt et al.,47

1981; Graham and Hollands, 1990; Graham et al., 1988; Hollands and Suehrcke, 2013; Jurado48

et al., 1995; Liu and Jordan, 1960; Olseth and Skartveit, 1984, 1987; Suehrcke and McCormick,49

1988) or by airmass (Moreno-Tejera et al., 2016; Tovar et al., 1998). We aim to bring these parts50

together by reporting clear-sky index distributions for each N class, and secondarily binned by51

solar elevation angle. A simplified distributional approach was provided by the authors in52

Bright et al. (2015) for clear sky and 6, 7 and 8 oktas to estimate cloud transmission in sun-53

obscured minutes and clear breaks, but did not group observations into human and automatic54

cloud retrievals or elevation angle bins, which as will be shown is important.55

The hourly statistics of clear-sky index grouped by N and solar elevation angle would be56

useful in situations where long-term irradiation data were not available, but measurements of57

hourly N were (assuming the hourly solar elevation angle was known or could be determined).58

The probability of transitioning from one N state to the next N state can then be simulated59

with a Markov chain model (e.g. Bright et al. (2015); Ehnberg and Bollen (2005)), and the60

cloud transmission for each hour selected as a random variable from each Kc distribution for61

that N class.62

2. Determining the clear-sky index63

2.1. Relationships between clear-sky index and cloud cover64

Kasten and Czeplak (1980) found an empirical relationship between hourly Kc and hourly65

N using 10 years of data for Hamburg, Germany, for solar elevation angles above 5◦:66

Kc = 1− 0.75(N/8)3.4 (1)
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where the clear-sky irradiance [W m−2] is modelled as67

Gcs = 910 sin θe − 30. (2)

where θe is solar elevation angle in degrees. The attenuation coefficient of 0.75 in eq. (1) is68

an overall average over all cloud types, and varies from 0.39 for cirriform clouds to 0.84 for69

nimbostratus. This relationship was later found to be valid for 5 UK sites by Muneer and Gul70

(2000), where slightly better fits can be obtained by tuning coefficients for each site. Other,71

more complex relationships for G as a function of cloud cover were developed by Nielsen et al.72

(1981) and Brinsfield et al. (1984). Matuszko (2012) tabulated observed 10-minutely irradiance73

by okta class and solar elevation angle band for Krakow, Poland.74

Cloud cover can indicate how likely it is that the sun is obscured by clouds (e.g. Muneer75

and Gul (2000)). It does not however provide any information as to how opaque the clouds76

are to solar irradiance. Clear-sky index can take a wide variety of values for each N class. For77

example, a sky could be overcast (N = 8) with thin cirrus clouds or thick nimbostratus clouds.78

In this case, Kc has been observed to vary from 0.07 for overcast nimbostratus to 1.00 for79

overcast cirrus (Matuszko, 2012). Kasten and Czeplak (1980) reported long-term averages of80

0.16 for nimbostratus and 0.61 for cirriform clouds. Although Brinsfield et al. (1984) considers81

opaque clouds in their formulations, the various optical depths of both translucent and opaque82

clouds that are observed may still produce a distribution of results. As shown in Bright et al.83

(2015), the distributions of Kc for 6, 7 and 8 oktas can take a wide range of values. For these84

reasons, the distributional spread of Kc for a particular cloud coverage of N oktas can be more85

useful than its mean or median value.86

2.2. Observational data87

The meteorological observations of cloud cover and solar irradiation are taken from four88

years (2010–2013) of the network of UK Met Office Integrated Data Archive System (MIDAS)89

stations (Met Office, 2012). Several datasets are available to registered users at the British90

Atmospheric Data Centre (http://badc.nerc.ac.uk). The UK Hourly Weather Observation91

data (WH) and Global Radiation Observations (RO) were used. Included within the WH data,92

amongst several other meteorological variables, are observations of hourly N , and whether the93
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Figure 1: MIDAS stations that provide quality-controlled hourly irradiation and cloud cover observations for
2010–2013. Station numbers refer to MIDAS station IDs. The strength of shading indicates the proportion of
observations that were observed by a human (15% grey corresponds to 0% human observations, scaling linearly
to 100% black representing 100% human observations). The lines of longitude and latitude mark the boundaries
of each GLOMAP aerosol climatology grid cell.

observation was automatic or human-observed. The hourly irradiation G is taken from the94

RO data. Both datasets indicate the date and time of the observation and the station ID95

code. Data were used when observations of G and N exist for the same station and hourly96

timestamp, and both pass internal Met Office quality control checks as indicated by state flags97

for each observation. An additional screening procedure was implemented to remove duplicate98

observations. One station contained only two hours of valid data for the four years, and this99

station was also disregarded. Further checks removed observations with unrealistically high100

clearness index values as described in section 2.4.5. A total of 1,121,334 hourly observations101

were retained from 63 MIDAS stations across the UK. The locations of these stations are shown102

in fig. 1.103
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2.3. Cloud cover observational practice104

Cloud cover observations can either be made by a human observer or a cloud ceilometer,105

which uses a laser to detect cloud bases automatically (WMO, 2014). In recent years, the106

UK Met Office has moved towards fully automated weather measurements at most stations,107

but human observers are still present at some research stations and airfields during operational108

hours1. This reflects observational practice in many other countries (Dai et al., 2006; Perez et al.,109

2001; Wauben et al., 2006). A previous study has found that human and automated methods110

can produce quite different results, with agreements in N between human and automated111

observations occurring for 39% of hours and agreements within ±2 oktas occurring for 88% of112

hours in the Netherlands (Wauben et al., 2006). Wacker et al. (2015) found that ceilometer113

observations of cloud cover tend to be biased low compared to those observed by a human in114

Switzerland. A human observer typically makes a subjective judgement of the cloud-obscured115

proportion of the entire visible sky dome at the end of a reporting period (e.g. every hour in116

the WH data), while a cloud ceilometer consists of a zenith-pointing device that records the117

amount of time that a laser beam was intercepted by clouds divided by the length of the period118

(Dai et al., 2006).119

The solar irradiation data collected by MIDAS stations are hourly totals. Solar irradiation120

is measured using Kipp & Zonen CMP10 and CMP11 pyranometers, with cleaning, level-121

checking and recalibration performed on a regular basis including at fully automated sites2. As122

irradiation is recorded hourly, there can be a timing mismatch between the dominant conditions123

of the hour and the cloud amount recorded at the end of the hour by a human observer if clouds124

accumulate or disperse during the hour. The automatic ceilometer method assumes that the125

clouds overpassing the zenith during the hour are representative of the entire sky conditions,126

which are not always case if clouds are localised in one part of the sky, giving a spatial mismatch127

between recorded clouds and actual cloud cover. Furthermore, thin cloud is sometimes not128

detected by the laser and fog can be mistaken for low-level overcast conditions. The distinction129

of whether an observation was made by a human or was automatic is an important one and is130

taken into account in the analysis.131

1Personal communication with a member of the British Atmospheric Data Centre team.
2Personal communication with a member of the Met Office surface radiation team.
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2.4. Generation of clear sky solar irradiance132

For this study, Gcs is simulated using a radiative transfer simulation with prescribed atmo-133

spheric constituents. The advantages of this are that climatological values of the main clear-sky134

solar attenuators can be input into the model to quickly generate an estimate of clear-sky ir-135

radiance that is location- and month-dependent. For 0 oktas, this also gives an indication of136

natural variability in atmospheric transmission of clear skies around the climatological mean137

value. A further reason for this approach that is shown in section 3 is that the cloud cover ob-138

servation method (human or automated) determines the shape of each cloud cover observation139

bin, including 0 oktas.140

2.4.1. Atmosphere141

The two-stream solution to the discrete-ordinate radiative transfer method (Kylling et al.,142

1995), implemented in the libRadtran software package (Mayer and Kylling, 2005), is used to143

calculate clear-sky irradiance. The background atmosphere for mixed gases concentration is144

provided by the Air Force Geophysics Laboratory (AFGL) mid-latitude summer atmosphere145

for April–September and mid-latitude winter for October–March (Anderson et al., 1986). Air146

temperature, and ozone and water vapour mass mixing ratios, on 60 model levels for each147

month of 2010–2013 from the European Centre for Medium-range Weather Forecasts (ECMWF)148

ERA-Interim reanalysis data, provide the climatological atmospheric conditions. These data149

are taken on a spatial grid of 1.5◦ × 1.5◦. A pseudo-spherical correction is implemented in150

the radiative transfer code, which accounts for the curvature of the earth’s atmosphere and151

improves the accuracy of clear-sky irradiance calculations at low sun.152

2.4.2. Aerosols153

Aerosols are highly spatially and temporally variable and may lead to the highest uncertainty154

in the calculated clear-sky irradiance values. Point measurements of aerosol conditions are made155

by the AERONET network, but are only possible under favourable conditions and some sites156

experience several months without a valid observation. Another technique considered was to157

estimate aerosol conditions based on retrieved values of horizontal visibility from the WH data,158

but this was found to consistently underestimate clear-sky irradiance and actually increased,159

rather than reduced, the ranges of Kc observed. Therefore, aerosol optical properties are taken160

from the Global Model of Aerosol Processes (GLOMAP) model (Scott et al., 2014; Spracklen161

8



et al., 2005), which provides aerosol optical depth, single scattering albedo and asymmetry162

factor in 6 solar shortwave bands on 31 atmospheric levels for each month. The native GLOMAP163

spatial grid of 2.8◦ × 2.8◦ is used without interpolation, which divides the UK into 11 aerosol164

zones (shown in fig. 1).165

2.4.3. Surface albedo166

Surface albedo from the International Geosphere-Biosphere Programme (IGBP) library at167

a resolution of 1

6

◦

× 1

6

◦

has been used (Belward and Loveland, 1996). One issue with using168

the same surface type for the full year may be to underestimate the albedo from snow-covered169

surfaces in winter. Radiative transfer simulations performed by the authors suggest that a170

perfectly reflecting surface predicts about 13% higher downwards irradiance than a perfectly171

absorbing surface due to multiple reflections between atmosphere and the ground under clear172

sky. This result is consistent for all solar elevation angles. Real surfaces are not totally absorbing173

and snow-covered surfaces are not totally reflective. The errors introduced for global horizontal174

radiation (GHI) by using an incorrect surface albedo are therefore likely to be smaller than 13%175

under clear sky conditions. The overall impact is expected to be small as this phenomenon will176

only affect a few winter days each year.177

2.4.4. Solar position178

To match the clear-sky simulation to observation as accurately as possible, an accurate179

representation of solar elevation angle is required. Met Office data recording conventions state180

that the observation recorded for each UTC hour (SYNOP climate message) is taken 10 minutes181

before the hour (Met Office, 2015a). For solar irradiation (HCM climate message), the time182

period of data collection runs from 70 minutes to 10 minutes before the observation time stamp183

(at the end of every UTC hour). libRadtran provides the Blanco-Muriel et al. (2001) algorithm184

for calculating solar elevation angle, which provides long-term accuracy for solar elevation185

within 0.1◦. The effective solar elevation angle is calculated centred at 40 minutes prior to186

each hour of each day at each MIDAS station by taking a sum of 61 minutely samples of the187

solar elevation angle between 70 and 10 minutes before the observation time stamp, inclusive.188

Solar elevation angles below 0◦ are excluded from the sum, and the sum of the minutely sines189

of elevation angle are divided by the number of minutes in which the sun is above the horizon190

to obtain the effective sine of elevation angle. This calculation is again performed internally in191
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libRadtran.192

This procedure of obtaining an effective solar elevation angle corresponds to practice A3 of193

Blanc and Wald (2016). It is found that this practice predicts direct normal irradiance (DNI)194

with a RMSE of 4% for all elevation angles and 24% for elevation angles below 15◦ (Blanc195

and Wald, 2016) at the high-quality BSRN site at Payerne, Switzerland. This is better than196

assuming that the elevation angle corresponding to the middle of the hour is representative,197

however a more accurate practice (A5) involves taking the inverse sine of the ratio of direct198

horizontal irradiation to direct normal irradiation (Blanc and Wald, 2016). This practice has199

not been implemented in this work as the hourly DNI is not available in libRadtran.200

2.4.5. Additional quality control check201

After calculating Kc and obtaining θe for each valid hour, an additional screening procedure202

was implemented to remove all observations where the clearness index KT exceeded 0.85. This203

is on the basis that hourly clearness indices exceeding 0.85 are very rarely, if ever, observed204

in high-quality data (NREL, 1993; Vignola et al., 2012). This additional constraint excluded205

0.34% of observations, the majority of which were at very low elevation angles where small206

errors in the calculated solar position can cause large errors in the ratios of Kc and KT .207

3. Distributions of clear-sky index208

3.1. Aggregated observations209

Figure 2 shows the overall distribution of clear-sky index from all 63 weather stations in210

all cloud conditions. The distribution is bimodal with contributions from cloudless hours near211

Kc = 1 and cloudy hours near Kc = 0.3. There are a lower number of observations for212

intermediate clear-sky indices. Bimodal behaviour for hourly normalised (scaled to the range213

0–1) clearness index observations has been observed in Norway and Vancouver (Olseth and214

Skartveit, 1987), and it is reasonable to expect a similar pattern for clear-sky index would also215

occur in the similar maritime climate of the UK. The clear sky mode at Kc = 1 shows that216

the radiative transfer simulation with prescribed albedo, aerosol, H2O and O3 climatologies217

provides a good estimate of irradiation in cloudless skies.218

There are a number of observations from hours where Kc is much larger than 1 indicating219

significantly more solar irradiation than would be expected under cloudless conditions for a220
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Figure 2: Histogram of all hourly Kc observations from 63 UK weather stations, 2010–2013
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number of hours, despite rejection of values where KT > 0.85. For hourly data, it is expected221

that the averaging time would cause short-term cloud enhancement effects to cancel out. It is222

however possible that cloud enhancement effects could influence the hourly Kc value if clouds223

tend to group in, or avoid, one region of the sky due to geographical features, such as mountains224

or coastlines.225

3.2. Distribution by solar elevation angle226

In fig. 3, the clear-sky index histograms are grouped into bins of elevation angle from 0–10◦,227

10–20◦ and so on up to the top group of 50–63◦. These histograms reveal different characteristics228

of the clear-sky index distribution in each elevation angle bin. The θe ≤ 10◦ bin is unimodal229

showing the greatest accumulation of Kc values around 0.3–0.4. The spread of values is the230

largest for any solar elevation class, and this group is also responsible for a large majority of231

the extremely high, Kc > 1.2, observations. For the 10◦ < θe ≤ 20◦ bin, the bimodal shape of232

the distribution starts to become apparent. Low Kc values are still more common, and there233

is a lower frequency of extremely high observations. As elevation angle increases, the Kc ≈ 1234

“spike” of the distribution becomes sharper and higher than the low Kc “hump”, which starts235

to flatten out and become more uniform, and instances of Kc > 1.2 virtually disappear. In the236

top elevation angle group the greatest value of Kc barely exceeds 1.1.237

It is therefore shown that high Kc values are more likely to occur at low solar elevation angle238

bins, and that Kc is not independent of solar elevation angle for the choices of inputs used in239

the radiative transfer model. There are several reasons why a large spread, including some very240

large, Kc values can occur for θe ≤ 10◦. At low sun under scattered clouds, reflections from241

the undersides of clouds can enhance diffuse irradiance, or clouds near the horizon in the solar242

direction can forward-scatter sunlight. If this happens due to clouds preferentially grouping in243

one part of the sky, this may lead to consistently high Kc values for low solar elevation angles as244

a result of non-cancelling cloud enhancement effects. The effect of snow in winter and how this245

enhances surface clear-sky irradiance has been described previously. Under clouds, multiple246

reflections between snow-covered ground and cloud bases may enhance irradiance under all-sky247

conditions, and this effect may be greater than the 13% calculated for clear-sky conditions. One248

reason for the lack of high Kc spike is that where clouds are present, transmitted irradiance249

may be lower at low solar elevations as both solar beam path through the cloud is longer, and250
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Figure 3: Histograms of observation of clear-sky index by solar elevation angle
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θe = 60°

θe = 15°

(a)

(b)

Figure 4: Schematic of cloud shading for the same (fictional) cloud for solar elevation angle of (a) 60◦ and (b)
15◦. Both the shaded area (light grey) and the maximum path length of the solar beam (arrow through cloud)
increases at low solar elevation angles.

cloud shadows project a greater area (fig. 4). None of these effects are sources of error and251

represent real-world phenomena; they must therefore be included in the distributions.252

Extreme high values of Kc could also be due to errors either in measurement or calcula-253

tion. DNI reported by pyranometers becomes less reliable at low solar elevations due to cosine254

response errors (Vignola et al., 2012). When generating Kc values, the hourly sine-weighted255

mean elevation angle may not be adequately representative of all conditions during the hours256

of sunrise and sunset. Furthermore, UK Met Office practice of recording measurements at 10257

minutes before the hour may not have been observed at all stations, or errors in the clock time258

at the MIDAS site may be present3. Large differences between sin θe at the start and end of the259

hour can account for this. Although the pseudo-spherical correction for the curvature of the260

earth’s atmosphere is made in the radiative transfer code, all instances where θe < 0◦ are set to261

zero in the hourly averaging of zenith angle. In reality a small amount of diffuse irradiance at262

dusk and dawn is present and would contribute to the total received by a pyranometer. Finally,263

the impact of horizon obstructions can cause instances of otherwise clear sky receiving a low264

Kc value.265

3The datasets were originally analysed without the 10-minute offset where it was observed that the distribu-
tional spread was much greater, indicating that the practice has been implemented at the majority of MIDAS
stations if not all.
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Clear-sky index distributions for 63 UKMO MIDAS stations

Figure 5: Histograms of Kc for each individual MIDAS station. The shading of the histogram denotes the
proportion of human observations, with light (15%) grey denoting fully automated and black denoting fully
human-observed. The x-axis runs from 0 to 1.6 with tick intervals of 0.2 and the y-axis is the probability
density running from 0 to 2 in tick intervals of 0.5. Station ID numbers are in the top-right of each histogram.
For station locations, refer to fig. 1.

3.3. Distribution by MIDAS weather station266

Owing to the influence of weather systems from the Atlantic and the rain-shielding effect267

of hills and mountains such as the Pennines, the western side of the British Isles typically268

experiences more rainfall than the eastern side (Met Office, 2015b). To investigate whether269

this pattern is prevalent in cloud transmission, the Kc distribution from each of the 63 MIDAS270

stations in fig. 1 is investigated individually.271

The 63 stations are grouped into a 7× 9 grid by sorting the station latitudes in order from272

south to north and then from west to east across each band. In fig. 5, the distribution of Kc for273

each weather station is shown. The proportion of human observations at each station is denoted274

by the strength of the shading. A total of 17 stations have at least some human observations,275

ranging from 19% to 99% of the total for that station.276

Most individual stations exhibit the bimodal characteristic of clear-sky index that is a277
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feature of the aggregated distribution in fig. 2. Some individual stations, typically located in278

Scotland and Northern Ireland, have a low or non-existent clear-sky spike showing a tendency279

for cloudiness. From south to north, there is a slight trend for a decrease in overall cloud280

transmission by comparing the frequency densities of the low Kc humps, but this varies from281

station to station, and could be an consequence of the annually averaged lower solar elevation282

angles at these latitudes. There does not appear to be an overall trend in the west to east283

direction. It should be borne in mind that differences in instrumental response and local284

microclimates may affect the Kc values produced from individual stations. On the whole,285

there are no clear systematic differences between stations by observation method for total Kc286

distributions.287

3.4. Distribution of cloud cover by solar elevation angle288

The differences in the shape of the Kc distributions for each elevation angle bin could be289

an indication of generally fairer weather conditions at higher solar elevation angles, or could290

be a result in the reduction of the variance in Kc values in genuinely clear hours that cause291

observations to contract towards Kc = 1. The cloud cover habits for each elevation angle class292

have been investigated. It is confirmed that clearer conditions are not generally more likely at293

higher solar elevation angle bins as shown in fig. 6.294

Figure 6 shows there is a significant difference between cloud cover reporting for the human295

and automatic methods across all solar elevation angles. Automated cloud systems are much296

more likely (14–19% of hours) to record 0 oktas than human observers (1% of hours). There297

is also a tendency for the automated recording system to record 8 oktas more commonly than298

the human observers (33–40% of the time compared to 19–24%). For both 8 oktas and 0 oktas,299

there is an elevation angle dependency for automated observations, with these classes more300

likely to be recorded at lower elevation angle bins. For human observations, this pattern is seen301

with 1 okta and 8 oktas. Conversely, for human observers 7 oktas is most commonly recorded302

with 36% or 37% of observations (no detectable elevation angle dependency), whereas 7 oktas303

is recorded only 18–22% of the time in the automated observations, increasing with elevation304

angle. Intermediate (1 ≤ N ≤ 6) cloudiness is more likely to be noted by human observers305

across all elevation angle bins. The differences in N frequency between the two methods may306

be partially due to the recording convention for human observers of 0 oktas representing totally307
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Figure 6: Heat map of okta frequency count for each elevation angle bin for (a) human and (b) automated
cloud cover observations. Percentages and shading colour relates to the fraction of each elevation angle class
(column) assigned to each cloud okta class. Columns may not sum to 100% due to rounding.

cloudless skies and 8 oktas representing fully overcast skies. Any cloud presence, however small,308

should be recorded as 1 okta, and likewise a small break in an otherwise overcast sky should309

be recorded as 7 oktas. It is unlikely that a ceilometer would “hit” a small isolated cloud or310

cloud-break over the course of an hour, therefore classifying more “true” 1 okta hours as 0311

oktas, and “true” 7 okta hours as 8 oktas.312

The lack of Kc ≈ 1 spike for the θe ≤ 10◦ bin is unlikely to be due to significantly higher313

cloudiness for these observations in both the human-observed and automated cases. Separate314

analysis shows that the seasonal distribution shapes are similar to the annual ones in fig. 3, with315

a slightly greater tendency to low Kc values in winter where okta 8 is observed more frequently.316

3.5. Distribution by okta and elevation angle317

The distributions at each okta class were subdivided by elevation angle group (fig. 7),318

with separate results provided for human and automated observations. It is seen that this319

division is a necessary one, particularly at low okta classes. The 0 oktas distribution for human320
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observations is slightly left-skewed at low solar elevation angles, becoming more symmetric321

around Kc = 1 at higher elevations. In contrast, the histograms of automated observations for322

0 oktas exhibit more left skew that does not vanish at the highest elevation angle class. This323

implies that humans are more able to detect cases of genuine clear sky and that the spatial324

mismatch between the observation of N by the ceilometer and the rest of the sky is more serious325

than the temporal mismatch of N recorded by a human at the end of the hour and irradiance326

measured over the course of the hour. For automated observations, it is clear that a significant327

number of hours that are not cloudless are being reported as 0 oktas. This results in the left328

skew present at 0 oktas and the heavier weight of the left tails for 1–3 oktas compared to the329

human observations. The left-skew for 0 oktas is still present for human observations, albeit330

smaller.331

When cloud coverage is between 1 and 6 oktas, more of the mass of the distributions332

are located to the left for automated observations than for human observations in all solar333

elevation angle bins. This indicates that the automatic method tends to attribute cloudier334

observations to a particular okta value than a human would for intermediate cloudiness. The335

7 okta distributions are roughly similar to first order. However, a large difference occurs in336

“overcast” skies (8 oktas), where humans tend to record a greater proportion of low Kc hours337

than the ceilometer. This would suggest that humans are generally more able to correctly338

identify genuine instances of overcast sky than ceilometers.339

The general pattern for both observation types where θe > 10◦ is for severe left-skew at 0340

oktas, which becomes gradually milder up to 6 oktas. The distribution for 7 oktas shows a mild341

right-skew, and 8 oktas and the sky-obscured state are more heavily right-skewed. Except for342

N = 8 and the obscured sky state, the distributions of observed Kc is qualitatively different343

for the θe ≤ 10◦ group than for other elevation angles.344

One explanation for the differences in distribution shape by elevation angle class for cloud345

coverages of 0–7 oktas are the relative probabilities of the solar beam being obscured by cloud346

(assuming that some observations of 0 oktas have been incorrectly classified as clear). At low347

solar elevations, the solar path length through the atmosphere is longer than at high elevations,348

and the probability of the sun being obscured by a cloud increases. This is true for both349

human and automated observations, but as the ceilometer method only records the conditions350
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Figure 7: Matrix of histograms of Kc values for each okta class and solar elevation angle band for human
and automated cloud observations. The x-axes run from 0 to 1.5 with ticks in intervals of 0.2; the y-axes are
probability density which has not been standardised between subplots for clarity. Marked fits correspond to the
distributions described in sections 3.6.1 and 3.6.2.
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in the zenith direction, the probability of a cloud not being detected is much higher. A related351

effect was noticed by Muneer and Gul (2000) who found that the relationship between hourly352

sunshine fraction and cloud coverage was dependent on solar elevation and was not linear. Low353

observed values of Kc at 0 oktas for θe ≤ 10◦ could be effects from horizon obstruction, ground354

reflection, small errors in zenith angle for sunrise/sunset hours, or other differences as described355

in section 3.2.356

3.6. Fitting statistical distributions357

The aim of fitting statistical distributions to each okta, elevation angle class and observation358

type histogram is to be able to use each distribution to generate random variables of clear-sky359

index. Such a method can be used in a Markov chain model of hourly cloud coverage (Bright360

et al., 2015; Ehnberg and Bollen, 2005). The highly negatively-skewed low okta classes pro-361

vide a particular challenge as positively-skewed distributions tend to appear more commonly362

in natural processes (McLaughlin, 2014). A candidate distribution that fits all okta and el-363

evation classes fairly well is the four-parameter skew-t distribution (Azzalini and Capitanio,364

2003), which can handle both severe positive and negative skew as well as high kurtosis. A365

computational drawback of the skew-t distribution is the lack of an analytic form for the cumu-366

lative distribution function which prevents fast computation of random variables. Therefore,367

to promote distributions where analytic forms were possible, the cases of “mostly clear”, where368

distributions are typically and sometimes extremely left-skewed, and “mostly cloudy”, where369

distributions are approximately symmetric to mildly right-skewed, are considered separately.370

The boundary between cases depends on the method used to retrieve the cloud cover observa-371

tion, and “mostly clear” is defined as 5 oktas or less for human observations and 3 oktas or less372

for automated observations (approximately 30% of observations in both cases).373

3.6.1. “Mostly clear” hours: the Burr distribution374

The probability density function (PDF) of the Burr (type III) distribution is given by (Burr,375

1942; Tadikamalla, 1980)376

f(x) =
ck

a

(x

a

)

−c−1
(

1 +
(x

a

)

−c
)

−k−1

(3)

where c and k are positive shape parameters and a is a positive scale parameter.377
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3.6.2. “Mostly cloudy” hours: the generalised gamma distribution378

The generalised gamma is a superset of several common distributions used in mathemat-379

ics and engineering, and includes the gamma, exponential, Weibull, chi-squared, normal and380

lognormal distributions as special or limiting cases. The PDF is given by (Stacy, 1962)381

f(x) =
pxd−1 exp(−(x/a)p)

adΓ(d/p)
(4)

where a is a positive scale parameter, d and p are shape parameters, and Γ(·) is the gamma382

function that generalises factorials to all real numbers.383

3.6.3. Discussion of statistical fits384

Two additional advantages of the Burr (type III) and generalised gamma models compared385

to the skew-t is the use of one less parameter, and the imposition of Kc = 0 as a lower bound,386

which represents physical reality. In contrast, the skew-t distribution is defined on (−∞,∞).387

For all distribution histograms, the probability functions were fit using the method of maximum388

likelihood estimation.389

In fig. 7, the histograms have been fit with the Burr (type III) distribution where the cloud390

coverage is 5 oktas or less for human observations and 3 oktas or less for automated observations,391

and the generalised gamma distribution for higher okta classes. In general, the distribution fits392

visually appear to be satisfactory for all solar elevation angle bins excluding the lowest.393

To assess the quality of the fit to the proposed distribution, Pearson’s χ2 test can be per-394

formed to determine whether the hypothesis that data fits the given distribution is appropriate.395

To perform this, the Kc values from each okta and elevation angle class are binned into deciles,396

so that each decile contains a number of observations, oi, that is 10% (to within rounding) of397

the total. The ranges of the bottom and top deciles are extended to Kc values of 0 and +∞398

respectively. Then, for the Kc ranges covered in each decile, the number of observations that399

would be expected in each decile according to the distribution, ei, is calculated from the CDF400

of the distribution. The χ2 statistic is calculated from401

χ2 =
10
∑

i=1

(oi − ei)
2

ei
. (5)

The χ2 test is most reliable when both the observed and expected frequency in a bin is402
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Solar elevation angle, human observations
< 10◦ 10◦– 20◦ 20◦– 30◦ 30◦– 40◦ 40◦– 50◦ > 50◦

0 oktas .0011 .1207 .5332 .0000 .0009 .0108
1 okta .0000 .0000 .0000 .0000 .0000 .0000
2 oktas .0000 .0000 .0000 .0000 .0000 .0000
3 oktas .0001 .0001 .0043 .0054 .0219 .0001
4 oktas .0000 .0069 .0821 .0285 .0044 .4008

5 oktas .0548 .0000 .0000 .0727 .0202 .0000
6 oktas .0000 .0000 .0000 .0000 .0000 .0000
7 oktas .0000 .0000 .0000 .0000 .0000 .0000
8 oktas .0000 .5297 .3607 .3520 .4012 .3652

Sky obscured .1345 .0131 .2497 .0725 .6485 .0004

Table 1: p-values for χ2 goodness-of-fit tests for the distributions shown in fig. 7 for human observations (solid
lines). Bold values indicate where there is no evidence to reject the hypothesis that the stated distribution
(Burr type III for N ≤ 5, generalised gamma for N ≥ 6) is appropriate.

at least 5; this criterion was met for all oktas ≤ 8, but not for some sky-obscured bins which403

had a total lower number of total observations. The value of χ2 calculated in eq. (5) is then404

compared to a χ2 distribution with 6 degrees of freedom4. High values of χ2 indicate large405

differences between the observed and expected bin frequencies. The p-value indicates how406

much of the χ2 distribution lies to the right of the calculated statistic, and can be interpreted407

as how likely a χ2 value that is at least as high as that calculated could occur by random408

chance if the distribution was indeed appropriate. Conventionally, a p-value of 0.05 is used to409

determine whether the distribution fit is acceptable, with values below this implying that there410

is evidence to suggest that the proposed distribution is not acceptable.411

The χ2 values calculated from each okta and elevation angle bin are shown in tables 1412

and 2. It can be seen that instances where the p-value exceeds 0.05 are limited, and as such the413

suggested distribution fits may not be appropriate. However, for human observations, it should414

be noted that for all solar elevation angle classes above 10◦ and cloud coverage of 8 oktas, the415

generalised gamma distribution does provide an appropriate fit using the χ2 test. This suggests416

that where cloud transmission is purely a function of cloud thickness (and is not affected by417

gaps in the clouds), a generalised gamma model is appropriate.418

410 degrees of freedom for each Kc interval, subtract one degree of freedom for the constraint that the sum of
oi equals the total number of observations, and subtract another 3 degrees of freedom for each of the parameters
fitted by maximum likelihood estimation.
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Solar elevation angle, automated observations
< 10◦ 10◦– 20◦ 20◦– 30◦ 30◦– 40◦ 40◦– 50◦ > 50◦

0 oktas .0000 .0000 .0000 .0000 .0000 .0000
1 okta .0000 .0000 .0001 .0000 .0000 .0000
2 oktas .0000 .0000 .0001 .3944 .0020 .0256
3 oktas .0000 .0000 .0000 .0001 .0012 .0069
4 oktas .0000 .0000 .0003 .1144 .5354 .0053
5 oktas .0000 .0000 .0217 .0912 .3566 .0037
6 oktas .0000 .0000 .0000 .0003 .0011 .0028
7 oktas .0000 .0000 .0000 .0000 .0001 .0000
8 oktas .0000 .0000 .0000 .0000 .0000 .0000
Sky obscured .0000 .0000 .0000 .0001 .9826 .0130

Table 2: p-values for χ2 goodness-of-fit tests for the distributions shown in fig. 7 for automated observations
(dashed lines). Bold values indicate where there is no evidence to reject the hypothesis that the stated distri-
bution (Burr type III for N ≤ 3, generalised gamma for N ≥ 4) is appropriate.

4. Conclusion419

The hourly clear-sky index distribution for each cloud cover and solar elevation angle bin420

can be a useful tool to predict the distribution of irradiance where long-term data is unavailable421

but knowledge of cloud cover and solar elevation angle is. The hourly cloud transmission of422

solar irradiance due to clouds in the UK is found to follow a bimodal distribution that can be423

attributed to hours that are mostly cloudless (clear-sky index close to 1) and hours that are424

mostly overcast (clear-sky index of 0.2–0.4).425

The clear-sky index distribution for each okta class, and overall cloud coverage distribution,426

is useful to characterise the expected solar irradiance at a site of interest. For low cloudiness,427

the Kc distributions follow a left-skew distribution and for high cloudiness they resemble an428

approximately symmetric to right-skew distribution. For human observations of 8 oktas, with429

solar elevation angle greater than 10◦, there is no evidence to reject the hypothesis that the430

clear-sky index follows a generalised gamma distribution.431

The most reliable cloud observations are from those sites where a human observer is present.432

This can be determined by the fact that the distribution shapes are more symmetric and433

grouped nearer to Kc = 1 for 0 oktas, whereas there is a heavier left tail present for the 0434

okta distributions from automated observations. Figures 6 and 7 show that the ceilometer435

method probably overestimates the occurrences of 0 oktas and 8 oktas and underestimates436

intermediate cloud coverages. As meteorological observations are increasingly likely to be made437

automatically in the future, it is important that a distinction be made to classify observations438
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as human-observed or automated, or that algorithms are developed to consistently convert439

automated observations to an equivalent value that a human would estimate. The differences440

in distribution values for human and automated observations would suggest that the overall441

distribution of okta observations have changed over time as the network has become more442

automated (Dai et al., 2006). This would be an interesting hypothesis to pursue.443

Although clear-sky index is less airmass (elevation angle) dependent than clearness index,444

some dependence remains. Future work could investigate correcting for the effect of solar445

elevation angle in cloudy skies, so that the clear-sky index distribution is a function only of446

cloud cover and cloud optical thickness.447

Notes448

The distribution parameters used for the plots in fig. 7 are available as an electronic ap-449

pendix.450
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