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Abstract

A class of constant modulus algorithms (CMAs) subject to a conjugate symmetric con-
straint is proposed for blind beamforming based on the uniform linear array structure. The
constraint is derived from the beamformer with an optimum output signal-to-interference-
plus-noise ratio (SINR). The effect of the additional constraint is equivalent to adding a
second step to the original adaptive algorithms. The proposed approach is general and can
be applied to both the traditional CMA and its all kinds of variants, such as the linearly
constrained CMA (LCCMA) and the least squares CMA (LSCMA) as two examples. With
this constraint, the modified CMAs will always generate a weight vector in the desired form
for each update and the number of adaptive variables is effectively reduced by half, leading
to a much improved overall performance.

Key words: Constant modulus, uniform linear arrays, conjugate symmetric, blind
beamforming

1 Introduction

Constant modulus (CM) based algorithms have been studied extensively in the past
for both blind beamforming and equalization [1–5]. Many of the algorithms are de-
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Fig. 1. A narrowband beamforming structure based on a uniform linear array.

rived using the stochastic gradient (SG) method. However, a drawback for this kind
of CM algorithms is their sensitivity to stepsizes. A large stepsize leads to a fast
convergence speed, but also with a loss of the output signal-to-interference-plus-
noise ratio (SINR) and even causes the algorithm unstable. Many variations have
been proposed to achieve a faster convergence speed, such as the well-known least
squares CMA (LSCMA) [6,7], the one based on recursive least squares (RLS) [8–
10] and those with variable stepsizes [11–13]. Given some additional information
about the signal, such as the direction of arrival (DOA) angle of the desired signal,
linear constraints can be imposed, leading to an improved performance [9,10,12,14].

In general, the more information we add to the algorithm, the less number of snap-
shots are required for it to arrive at the steady state and more robust the algorithm
tends to be. In this paper we will propose a novel approach by incorporating the
geometric information of the array system to the original CM cost function based
on the commonly used uniform linear array (ULA) structure. For a ULA based
CM algorithm to achieve a maximum SINR at its output, we can prove that the
weight vector w should have a conjugate symmetric structure, which is employed
to constrain the original CM cost function. By employing the Lagrange multipliers
method, a novel adaptive CM algorithm is then derived. The idea is general and
can be applied to other CM based algorithms, such as the early mentioned linearly
constrained CMA (LCCMA) and the LSCMA, as two representative examples.

This paper is organized as follows. The signal model is described in Section 2;
the special structure of the optimum weight vector for maximizing its output SINR
is provided and the novel CMA algorithm is derived based on this structure in
Section 3. Two extension examples of the proposed approach is given in Section 4.
Simulation results are presented in Section 5 and conclusions drawn in Section 6.

2 Signal Model

Consider a ULA with M omnidirectional sensors and an adjacent sensor spacing
d ≤ λ0/2, where λ0 is the signal wavelength. Suppose there are L(L ≤ M) nar-
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rowband and uncorrelated CM signals impinging upon the array from the far field
with DOA angles θ0, θ1, ..., θL−1, respectively. Then the nth snapshot x[n] of the
received array signals can be expressed as

x[n] = As[n] + n[n] (1)

where

x[n] = [x0[n], x1[n], · · ·, xM−1[n]]T ∈ CM×1

s[n] = [s0[n], s1[n], · · ·, sL−1[n]]T ∈ CL×1 (2)

are the sensor outputs and the source signals, respectively, and n[n] is the noise
vector. {·}T denotes the transpose operation and A is the mixing matrix given by

A = [a(ψ0), a(ψ1), · · · , a(ψL−1)] ∈ CM×L , (3)

where
a(ψi) = [1, e−jψi , · · · , e−j(M−1)ψi ]T (4)

is the array steering vector with ψi = 2πd sin(θi)/λ0. The DOA angle θi is mea-
sured from the broadside direction as indicated in Fig. 1.

By applying a set of coefficients wi, i = 0, . . . , M − 1 to the received array signals
x[n], we obtain the beamformer output y[n] = wHx[n], where {·}H denotes the
Hermitian transpose operation and w is the weight vector given by

w = [w0, w1, · · ·, wM−1]
T . (5)

3 The Proposed Algorithm

The proposed idea is general and not limited to a specific constant modulus algo-
rithm. As a starting point, we consider the CM algorithm minimizing the following
cost function [1,5]

JCM =
1

4
E{(|y[n]|2 − 1)2} . (6)

where E{·} is the expectation operation. A recursive update equation for w can be
obtained as follows,

w[n + 1] = w[n]− µ(|y[n]|2 − 1)y∗[n]x[n] (7)

where µ is the stepsize. The above algorithm can be applied to any array structure
for blind beamforming and in this paper we only consider the ULA case.
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3.1 The Weight Vector for Optimum SINR

It can be proved that if we constrain the CMA to maximize its output SINR, then
w will have the following general symmetric structure

wopt = Jw∗
opt (8)

where J ∈ CM×M is the exchange matrix defined as

J =




0 . . . 0 1

0 . . . 1 0
... . . . ...

...

1 . . . 0 0




. (9)

Proof:

Without loss of generality, assume the first signal s0 is the desired one. Then the
optimum w for maximizing the output SINR can be expressed as [3]

w = µ0R
−1
xxa(ψ0) (10)

where µ0 is an arbitrary nonzero complex-valued constant and Rxx = E{x[n]xH [n]}
is the correlation matrix of x[n].

Since Rxx is a Hermitian Toeplitz matrix, we have Rxx = JR∗
xxJ. Note that J =

J−1, then we have
R−1

xx = (JR∗
xxJ)−1 = J(R−1

xx )∗J. (11)
Moreover, for a ULA, its steering vector has the following property:

a(ψ0) = e−j(M−1)ψ0Ja∗(ψ0). (12)

Substituting (11) and (12) into (10), and noticing that JJ = I, we have

w = µ0R
−1
xx a(ψ0)

= µ0J(R−1
xx )∗Je−j(M−1)ψ0Ja∗(ψ0)

=
µ0

µ∗0
e−j(M−1)ψ0Jµ∗0(R

−1
xx )∗JJa∗(ψ0)

=
µ0

µ∗0
e−j(M−1)ψ0Jw∗. (13)

By defining
ejφ =

µ0

µ∗0
e−j(M−1)ψ0 . (14)
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we can draw a conclusion that wopt has a general conjugate symmetric property
given by

w = ejφJw∗ . (15)

Since the optimum SINR solution is ambiguous to the phase response, we can com-
bine e−jφ/2 with the original w to form a new w, which will not change the output
SINR.

Defining
wopt = (e−jφ/2w) (16)

and substituting it into the general form (15) leads to the result of (8). This com-
pletes the proof.

One note is that as long as the linear array is center symmetric, the steering vector
a(ψ0) will have the property described by (12) and as a result the optimum w
will have the conjugate symmetric structure. However, in a multipath environment,
the combined steering vector for each of the original source signals will lose the
structure given in Equations (4) and (12) and the conjugate symmetric property
will be invalid, which presents an important limitation to its effective application.

It is noticed that [15] has given the same conclusion of (8) by assuming that the
phase origin of the steering vector is at the geometric center of the array and µ0 is
a real constant. We can see from the proof that the conclusion is actually valid even
without these assumptions. Furthermore, we have also provided a more general
result in Equation (15), which will be used in the constrained LCCMA example
studied in Section 4.1.

3.2 The Algorithm

The aim of a CM algorithm is to extract the desired signal with a constant modulus.
In a noise-free environment and under the condition of M ≥ L, the CMA will be
able to extract the desired signal completely without any interfering signals left at
its output, which will give a maximum output SINR of infinity. In this case, the op-
timum solution of the CMA coincides with that of the maximum SINR beamformer
[16]. In the presence of noise, although the optimum solution of a CM algorithm
will not necessarily give the maximum output SINR, it has been shown that at least
the optimum CMA solution is very close to the one giving the maximum SINR
[17].

Based on this, we can regulate the CM algorithms in the direction of maximizing
its output SINR by constraining them to the derived conjugate symmetric structure
in (8). Taking the CM cost function JCM in (6) as an example, we can combine it
with the structure of (8) in the following way
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min
w

JCM =
1

4
E{(|y[n]|2 − 1)2}

subject to w[n]− Jw∗[n] = 0 (17)

or equivalently

min
w

JCM =
1

4
E{(|y[n]|2 − 1)2}

subject to (w[n]− Jw∗[n])H(w[n]− Jw∗[n]) = 0. (18)

Notice that (w[n]−Jw∗[n])H(w[n]−Jw∗[n]) is real-valued. We can form the fol-
lowing Lagrangian cost function with a real-valued undetermined Lagrange multi-
plier λ

QCM =
1

4
(|y[n]|2 − 1)2 + λ(w[n]− Jw∗[n])H(w[n]− Jw∗[n]). (19)

Taking the gradient of (19) with respect to w∗, we have

∇w∗QCM = (|y[n]|2 − 1)y∗[n]x[n] + 2λ(w[n]− Jw∗[n]) . (20)

Changing the weight vector in the negative direction of the gradient in (20), scaled
by a constant stepsize µ, we have the following update equation for the weight
vector w

w[n + 1] = w[n]− µr[n]− 2µλ(w[n]− Jw∗[n]) (21)

where
r[n] = (|y[n]|2 − 1)y∗[n]x[n]. (22)

Note w[n + 1] should satisfy the constraint equation (8), i.e.

w[n + 1] = Jw∗[n + 1] . (23)

Substituting (21) into (23) and after simplification, we have

2µλ(w[n]− Jw∗[n]) =
(w[n]− Jw∗[n])− µ(r[n]− Jr∗[n])

2
. (24)

Substitute (24) into (21) to eliminate λ, leading to the following solution

w[n + 1] =
w[n] + Jw∗[n]

2
− µ(r[n] + Jr∗[n])

2
. (25)

We can re-arrange (25) to the following form

w[n + 1] =
w[n]− µr[n]

2
+

Jw∗[n]− µJr∗[n]

2
. (26)
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It is obvious that the numerator of the first part of (26) corresponds to the original
CMA described in (7); while for the numerator of the second part, we have

Jw∗[n]− µJr∗[n] = J(w[n]− µr[n])∗ = Jŵ∗[n + 1] (27)

where ŵ[n+1] = w[n]−µr[n] is the original CMA. Therefore the update equation
can be separated into two steps as follows:





ŵ[n + 1] = w[n]− µr[n] ;

w[n + 1] = 1
2
(ŵ[n + 1] + J(ŵ[n + 1])∗) .

(28)

As the solution to the constrained minimization problem in (17), it subjects a nor-
mal CMA to a w with a conjugate symmetric property. For even M , If we know
w1, w2 · · ·wM/2, another half of the coefficients would have been decided according
to the constraint equation (8). For an odd M , the coefficient w(M+1)/2 at the mid-
dle must be real to meet the constraint equation, so we have the same conclusion
as in the even M case. As a result, the number of variables in the adaptation has
effectively been reduced by half by the proposed constraint and therefore we can
expect an increased convergence speed and the output SINR will be better than the
original CMA since the constraint guarantees a w in the structure corresponding to
a maximum output SINR.

3.3 Analysis of the Proposed Algorithm

We first define the weight error vector ew[n + 1] = w[n + 1]−wopt. Using (8) and
(28), we arrive at

ew[n + 1] =
1

2
[ŵ[n + 1] + J(ŵ[n + 1])∗]−wopt

=
1

2
[ŵ[n + 1]−wopt + J(ŵ[n + 1]−wopt)

∗] . (29)

Defining the matrix Rcx = I− µ(|y[n]|2 − 1)x[n]xH [n] and using (28), we have

ŵ[n + 1]−wopt = Rcxw[n]−wopt

= Rcx(ew[n] + wopt)−wopt

= Rcxew[n]− µ(|y[n]|2 − 1)x[n]xH [n]wopt. (30)

Note that for the optimum w, ∇w∗QCM in Equation (20) will be zero. Then we
have µ(|y[n]|2 − 1)x[n]xH [n]wopt = 0. Substituting (30) into (29) and then taking
the expectation operation, we have
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E{ew[n + 1]} =
1

2
[E{Rcxew[n]}+ E{JR∗

cxJJe∗w[n]}]

=
1

2
E{Rcx}E{ew[n] + Je∗w[n]} = E{Rcx}E{ew[n]} (31)

where we have used the fact E{Rcx} = E{JR∗
cxJ} and ew[n] = Je∗w[n]. The

stable condition of limn→∞ E{w[n + 1]} = wopt or limn→∞ E{ew[n + 1]} = 0 is
equivalent to E{Π∞

n=1Rcx} = 0 [18]. A sufficient condition for stability is that the
stepsize is limited to the following range [18]

0 ≤ µ ≤ min
k

2

λRvx
k

(32)

where λRvx
k is the k−th eigenvalue of Rvx and

Rvx = E{(|y[n]|2 − 1)x[n]xH [n]} . (33)

The steady-state excess MSE (EMSE) analysis is an effective method to evaluate
the performance of an adaptive algorithm [19]. One can follow the general steps
presented in [20] and a recent paper with a more complete analysis to the CM
based algorithms [13], and it is omitted here.

4 Extensions of the Proposed Approach

The proposed constrained approach is general and can be applied to other types of
CMAs directly. In the following we will consider two representative examples.

4.1 Constrained LCCMA

The performance of a CMA can be improved significantly with additional signal
information in the form of linear constraints [11,14], such as the DOA angle of
the desired signal [12]. For this class of linearly constrained CMAs, we can also
add the conjugate symmetric constraint and derive the corresponding constrained
LCCMAs.

Suppose the response of the beamformer to the desired signal is constrained to 1,
i.e., aH(ψ0)w = 1. With (10), we have aH(ψ0)(µ0R

−1
xx a(ψ0)) = 1. Then µ0 has

to be real-valued and µ0/µ
∗
0 = 1, since aH(ψ0)R

−1a(ψ0) ∈ R. From (14) we then
have φ = −(M − 1)ψ0.

Now we can formulate the constrained LCCM problem as
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min
w

JCM =
1

4
E{(|y[n]|2 − 1)2}

subject to aH(ψ0)w = 1 and w − ejφJw∗ = 0 . (34)

A two-step constrained LCCMA can be derived using the Lagrange multipliers
method in a similar way as in Section 3.2, given by





ŵ[n + 1] = w[n]− µ[I− 1
M

a(ψ0)a
H(ψ0)]r[n] ;

w[n + 1] = 1
2
[ŵ[n + 1] + ejφJ(ŵ[n + 1])∗] .

(35)

The first step in (35) is exactly the same as the original LCCMA derived without the
proposed conjugate symmetric constraint [20]. Therefore the effect of the weight
constraint is again equivalent to adding a second step to the original algorithm.
Notice that the general conjugate symmetric property in Equation (15) is used here
instead of the phase-shifted version in (8).

4.2 Constrained LSCMA

In the second example, we consider the LSCMA case with the proposed conjugate
symmetric constraint. The coefficients vector of an LSCMA can be updated block
by block or sample by sample and here we only consider the sample by sample
case, i.e. the update occurs every time a new signal sample is received.

The proposed constrained adaptive LSCMA algorithm is based on the following
formulation

min
w

JLS =
K∑

i=1

||wH [n]x[nK + i]| − 1|2

subject to w − Jw∗ = 0 (36)

where K is the number of samples considered. A new cost function with an unde-
termined Lagrange multipliers λ can be formed as

QLS =
K∑

i=1

||wH [n]x[nK + i]| − 1|2 + λ(w[n]− Jw∗[n])H(w[n]− Jw∗[n])

= ‖q(w)‖2
2 + λ(w[n]−Jw∗[n])H(w[n]−Jw∗[n]) (37)

where q(w) = [q1(w), q2(w), · · ·, qK(w)]T and qi(w) = |wH [n]x[nK + i]| − 1.
QLS has a Taylor-series expansion with the following form
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QLS(w + δ) = ‖q(w) + D(w)Hδ‖2
2 + λ(w[n]− Jw∗[n])Hδ

+λ(w[n]− Jw∗[n])H(w[n]− Jw∗[n]) (38)

where D(w) is the partial derivative of q(w) and δ the offset vector. Taking the
gradient with respect to δ and setting it to zero, we obtain

δ =−[D(w)DH(w)]−1[D(w)q(w) + λ(w[n]− Jw∗[n])]

=−(R̃[n])−1[x̃[n]ye[n] + λ(w[n]− Jw∗[n])] (39)

with x̃[n] = [x[nK + 1], · · · ,x[nK + K]], ye[n] = y[n]− ỹe[n] and

y[n] = [y[nK + 1], · · · , y[nK + K]]H

ỹe[n] = [
y[nK + 1]

|y[nK + 1]| , · · · ,
y[nK + K]

|y[nK + K]| ]
H , (40)

where we have used the fact [6]:

D(w)DH(w) = R̃[n] =
K∑

i=1

x[nK + i]xH [nK + i] (41)

and
D(w)q(w) = x̃[n]ye[n]. (42)

Noting that w[n] = (R̃)−1[n]x̃[n]y[n], we then arrive at the following update equa-
tion for the constrained LSCMA

w[n + 1] =w[n] + δ[n]

=w[n]− R̃−1[x̃[n]ye[n] + λ(w[n]− Jw∗[n])]

= R̃−1[n][x̃[n]ỹe[n] + λ(w[n]− Jw∗[n])]

= ŵ[n + 1] + R̃−1[n]λ(w[n]− Jw∗[n]) (43)

where ŵ[n + 1] = (R̃[n])−1x̃[n]ỹe[n] is the original LSCMA update equation.
Substituting (43) into the constraint equation to eliminate λ leads to the following
constrained LSCMA

w[n + 1] = ŵ[n + 1]− R̃−1[n][R̃−1[n] + J(R̃∗[n])−1J]−1

·(ŵ[n + 1]− Jŵ∗[n + 1]) . (44)

When K →∞, we have R̃−1[n] = J(R̃∗[n])−1J. Then for a large K, we can have
the approximation R̃−1[n] ≈ J(R̃∗[n])−1J, which gives

R̃−1[n][R̃−1[n] + J(R̃∗[n])−1J]−1 ≈ 1

2
. (45)
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Then (44) can be further simplified as

w[n + 1] ≈ 1

2
(ŵ[n + 1] + Jŵ∗[n + 1]) . (46)

So the derived constrained LSCMA is still following the same general solution
form as described in (28).

5 Simulations

Simulations have been performed based on a ULA with M = 8 sensors and a
spacing of d = λ0/2. We assume that all of the CM signals have the same power
with a signal-to-noise ratio (SNR) of 20dB unless otherwise specified and all are
generated by the QPSK modulation scheme.

Simulation 1: There are one desired signal and three interfering signals, arriving
from the DOA angles 10◦, −30◦, 50◦ and −70◦, respectively. Fig. 2 shows the
learning curves of the traditional CMA (T-CMA) (µ = 0.0003), the constrained
CMA (C-CMA) (µ = 0.001), the traditional LSCMA (T-LSCMA) (K = 30), the
constrained LSCMA (C-LSCMA) (K = 30), the traditional LCCMA (T-LCCMA)
(µ = 0.0003) and the constrained LCCMA (C-LCCMA) (µ = 0.0005). The step-
sizes are chosen empirically for each pair of algorithms to reach approximately the
same steady state output SINR. We can see that due to the additional DOA informa-
tion of the desired signal, the T-LCCMA and the C-LCCMA have achieved a much
better performance than the basic T-CMA and C-CMA, respectively. However, the
proposed algorithms (C-CMA and C-LCCMA) have a much faster convergence
rate than the corresponding traditional ones. For the LSCMA pair (T-LSCMA and
C-LSCMA), their convergence speed is not controlled by any stepsize and it seems
that they have a similar convergence speed. However, the proposed C-LSCMA has
achieved a higher output SINR given the same block size.

Simulation 2: The tracking ability of the proposed algorithms is studied in Fig. 3.
There are two stages in the simulations: at the first stage (snapshot number n from 1
to 2000), the settings are the same as in simulation 1; at the second stage (snapshot
number n from 2001 onwards), an additional CM interfering signal arrives at the
array from the direction −20◦. From the figure we can see that the proposed CM
algorithms have adapted to the new environment very quickly and even achieved a
better output SINR compared to the traditional ones with the given stepsizes.

Simulation 3: In the third set of simulations, we study the BER (bit error rate) per-
formance of the proposed algorithms, with the result shown in Fig. 4. The settings
are the same as in Simulation 1. However, the input SNR varied and we have cho-
sen the same stepsize (or block size) for the corresponding pairs of algorithms. For
the CMA pair, the stepsize is µ = 0.002 and for the LCCMA pair, it is µ = 0.005.
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The weight vector we used for calculating the BER was obtained after 2000 iter-
ations and averaged over 100 rounds of simulations. For both the CMA and the
LSCMA cases, the BER result is improved significantly; while for the LCCMA
case, the original algorithm has already achieved an extremely low BER result due
to the effective incorporation of the DOA information of the desired signal and the
improvement by the proposed algorithm is relatively small.

Simulation 4: We shall now examine the sensitivity of the proposed algorithm (C-
CMA) to its stepsize. Consider a simplified scenario with 20dB input SNR, based
on a 3−element ULA, with only one desired CM signal and one interfering CM
signal, arriving from θ0 = 10◦ and θ1 = −30◦, respectively. We change the stepsize
of both the proposed and the traditional CMA from 0.002, 0.005, 0.01 to 0.02.
The results are shown in Fig. 5, where the convergence speed increases for both
algorithms when the stepsize becomes larger and larger. However, the output SINR
of the T-CMA drops significantly for the case of µ = 0.02, while the C-CMA
almost keeps the same steady state error and reaches almost the same output SINR.
For the LCCMA pair, both of them converge very quickly due to the imposed linear
constraint and the sensitivity study is therefore omitted here.

6 Conclusions

A new class of constrained CMAs has been proposed based on the ULA structure. It
is derived by constraining the weight vector to a conjugate symmetric form, which
corresponds to a beamforming solution with the maximum output SINR. There are
essentially two steps in the update equation, with the first one being the traditional
update equation and the second one imposing the desired structure. With this con-
straint, the number of variables in the update equation has effectively been reduced
by half. As a result, a higher convergence rate has been achieved. Moreover, since
the imposed structure is derived from a maximum SINR beamformer, the proposed
algorithm also leads to a higher output SINR given the same stepsize or block size.
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