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The application of membrane proteins in biotechnology requires robust, durable reconsti-
tution systems that enhance their stability and support their functionality in a range of
working environments. Vesicular architectures are highly desirable to provide the com-
partmentalisation to utilise the functional transmembrane transport and signalling proper-
ties of membrane proteins. Proteoliposomes provide a native-like membrane environment
to support membrane protein function, but can lack the required chemical and physical
stability. Amphiphilic block copolymers can also self-assemble into polymersomes: tough
vesicles with improved stability compared with liposomes. This review discusses the
reconstitution of membrane proteins into polymersomes and the more recent develop-
ment of hybrid vesicles, which blend the robust nature of block copolymers with the bio-
functionality of lipids. These novel synthetic vesicles hold great promise for enabling
membrane proteins within biotechnologies by supporting their enhanced in vitro perform-
ance and could also contribute to fundamental biochemical and biophysical research by
improving the stability of membrane proteins that are challenging to work with.

Introduction
The significant challenge of maintaining membrane proteins in their native state, preserving their
structure and function in vitro, calls for experimental tools that facilitate their study and handling,
which are being continually developed [1,2]. These efforts are driven by their abundance, comprising
approximately one-third of the proteome, and their importance in biological function, as pharmaceut-
ical targets [3] and their future potential within emerging nano- and bio-technologies [4,5].
Integral membrane proteins (IMPs) span the lipid bilayers that form functional barriers at the inter-

face of cellular and subcellular compartments. They perform diverse roles such as adhesion, material
transport, signal transduction and catalysis. Besides their well-established importance in drug-
screening programmes, IMPs are of interest as biofunctional components within technologies, includ-
ing sensors, nanoreactors, protocells and nanomedical drug delivery systems [6–8]. The construction
of such novel artificial biological devices comprises the field of Synthetic Biology [9,10], which is a
major growth area in current fundamental and applied research.
The biggest hurdle to overcome for manipulation of IMPs ex vivo is their inherent instability in

water. In their native state, a large proportion of the exterior surface of IMPs is hydrophobic to enable
their stable insertion into a biomembrane. These non-polar surface residues must be shielded from
direct contact with water, as is achieved by the liquid crystalline amphiphilic solvation within a lipid
bilayer. A wide variety of self-assembling and macromolecular materials have been applied to IMP
handling; these soft materials combine both liquid-like and solid-like properties, known as meso-
phases, and can mimic important aspects of their native environment [11]. The most commonly used
IMP-stabilising systems are detergent micelles, but other materials have been developed for enhanced
stability, more native-like environments or practical simplicity: these include amphiphilic polymers
called amphipols [12], and disc-shaped lipid-containing structures such as bicelles [13], lipoprotein-mimetic
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nanodiscs [14], saposin lipoprotein nanoparticles [15] and styrene maleic acid lipid particles (SMALPs) [16].
Structurally complex bicontinuous cubic phases of surfactants are also used in crystallisation studies [17].
These soft, self-organised systems have facilitated important advances in our understanding of the structure
and function of membrane proteins.
Despite the variety and success of the aforementioned materials, an important feature of natural organisation

is lost: compartmentalisation [18,19]. Many IMPs transport ions or molecules from one distinct aqueous com-
partment to another or are driven by the release of energy from transmembrane potential differences.
Moreover, the loss of a ‘closed’ system is problematic for structural studies where the detergent-extracted IMP
may not exist in its native state due to the lack of a membrane potential. Compartments can be achieved by
reconstitution into liposomes with the added benefit of the native-like lipid bilayer structure. More complex
droplet interface bilayer systems can also provide compartmentalised architectures [20,21]. Liposome reconsti-
tution protocols have widely been reported [22], yet novel materials and methods are still continually being
developed [23,24].
While liposomes solve the challenges of compartments and native-like solvation, their major drawback is the

lack of long-term stability of these systems [25,26]. This is particularly problematic for biotechnological applica-
tions, where considerable stability and durability are necessities. Alternative soft matter systems are known to form
tougher vesicles than liposomes and so have become candidate constructs for IMP stabilisation: polymersomes.

Polymersomes
Polymersomes are composed of amphiphilic polymers that spontaneously self-assemble in water to form vesi-
cles, analogous to the formation of liposomes from their constituent lipids [27]. While there are many com-
monalities between liposomes and polymersomes, there are also many important fundamental differences. The
advantages of polymer membranes over their lipid counterparts are their broader parameter space of physical
and chemical properties due to the variety of polymer chemistries that can be applied and their broad range of
possible molecular masses. Amphiphilic block copolymers that are known to self-assemble into vesicles can
have several architectures, the most common being diblock AB copolymers (A = hydrophophilic polymer, B =
hydrophobic polymer), or triblock ABA or ABC copolymers, where A and C are chemically distinct hydro-
philic blocks (Figure 1). The relative block lengths required for vesicle assembly can be correlated with packing
parameter models for amphiphile self-assembly [28], for example worm-like micelles commonly assemble if the
hydrophilic to hydrophobic block volume ratios are slightly too large for vesicles to be preferred [29].
Unlike lipid membranes, block copolymer membranes do not form a distinct bilayer structure, i.e. two

molecular monolayers aligned in apposition to one another. Instead the hydrophobic polymer blocks interdigi-
tate and penetrate at random within the hydrophobic core of the membrane in an entangled polymer melt
[32]. Polymersome membranes have been reported ranging in thickness from that of a lipid membrane (3–
5 nm) up to 40 nm [33]. Polymersomes generally have a membrane permeability that is lower than those of
lipid membranes due to the inverse dependence of permeability on membrane thickness [34]. The membrane
fluidity of viscous polymer membranes is also typically at least an order of magnitude less than for lipid
bilayers, and the mechanical properties of tough, robust polymer membranes can range over at least three
orders of magnitude [35].
Common hydrophobic blocks include polybutadiene (PBd), polystyrene (PS) and polydimethylsiloxane

(PDMS), while common hydrophilic blocks are poly(ethylene oxide) (PEO), poly(acrylic acid) (PAA) and poly
(2-methyl oxazoline) (PMOXA). Despite their vastly different chemistry, structure, mechanics and dynamics,
polymersomes have proved successful reconstitution systems for some IMPs. Key to this success are the flexibil-
ity of the polymer chains and the hydrophobic thickness of the membrane: flexible, linear hydrophobic poly-
mers allow conformational adaption to the preferred hydrophobic thickness of the protein (Figure 1) and,
while membrane thickness may in some cases be less critical, membranes closer to the natural hydrophobic
thickness of a biomembrane can be preferable. While not IMPs per se, gramicidin and ionomycin have been
shown to be able to create ion selective pores in polymersome membranes with thicknesses up to approxi-
mately 12 nm, but no greater [36,37]. Successful reconstitution of IMPs into polymer membranes >10 nm in
thickness, resulting in a large hydrophobic mismatch with the protein, has also been readily achieved [30].
Several highly stable membrane proteins have been successfully reconstituted into polymer vesicles, with

outer membrane protein F (OmpF), bacteriorhodopsin (BR) and AquaporinZ (AqpZ) being common examples.
OmpF, for example, is known to be able to withstand harsh conditions, such as high temperatures, proteases
and denaturing detergents [38,39]. A broader range of examples of membrane proteins reconstituted into
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polymersomes is given in Table 1. This list is not intended to be exhaustive; a more comprehensive record can
be found in Table 1 of reference [40].
Reconstitution methods into polymersomes bear similarities to those used for proteoliposomes. For example,

polymersomes can be formed from lipid-detergent micelles [41], temporary destabilisation of preformed poly-
mersomes detergents [42] and spontaneous insertion of the protein into the membrane [43]. Detergent
removal can be achieved by the use of BioBeads or dialysis. Removing detergent by diluting them to below the
critical micelle concentration (CMC) and harvesting the polymersomes by centrifugation may not be possible
as, unlike liposomes, many polymersomes are less dense than water and so cannot be spun down into a pellet.
Direct incorporation of membrane proteins into polymersomes from cell-free synthesis has also been reported
[44]. However, differences in properties between lipid and polymer systems mean that, for a given IMP, suc-
cessful proteoliposome reconstitution protocols are not necessarily directly transferable to polymersome
systems. Unlike lipid–detergent interactions [11,45], detergent–copolymer interactions are currently not as well
understood, making rational modification of IMP–polymersome reconstitution protocols a major challenge.
Several studies show the potential of polymersomes as platforms for a wider range of advanced IMP systems.

Different IMPs have been functionally reconstituted into the same polymersome, most elegantly demonstrated
by the coupling of BR and F0−F1 ATP synthase (F-ATPase) for light-generated ATP synthesis [46,47].
Reconstitution of more challenging IMPs into polymersomes may also be possible through careful optimisation
of polymer structure, chemistry and reconstitution protocols. For example, complex I of the electron transport
chain has been functionally reconstituted into PMOXA–PDMS–PMOXA triblock copolymer vesicles [42].
Polymer membranes might also offer some functional advantages over traditional proteoliposomes. Oriented

reconstitution of an Aquaporin0 (Aqp0) channel has been achieved using asymmetric ABC PEO–PDMS–
PMOXA triblock membranes (Figure 1), opening the possibility, for example, of directional substrate transport
into/out of vesicles containing multiple reconstituted IMPs [31]. While natural biomembranes have an

Figure 1. Polymersomes.

Polymer membranes are formed from amphiphilic block copolymers that often have AB, ABA or ABC polymer architectures.

These membranes are interdigitated with a viscous polymer melt at its core and a hydrophilic corona of polymers in an

extended brush-like conformation. Triblock copolymers may be a mixture of transmembrane and hairpins, which have both

their hydrophilic blocks displayed at the same membrane surface. AB and ABA architectures and resulting polymerosome

structures are shown on the left-hand side. Asymmetric ABC polymers (right-hand side) can give rise to asymmetric membrane

chemistries if the hydrophilic block lengths are different: longer polymers prefer the positive curvature at the exterior of the

vesicle and vice versa. Membrane proteins can be inserted into these polymer membranes even if the polymer membrane is

much thicker than the hydrophobic thickness of the IMP, suggesting conformational adaption of the polymers to the protein,

shown for OmpF (PDB ID: 2OMF) on the left-hand side [30]. Asymmetric ABC membranes may also help drive preferential

orientation of the IMPs within the membrane, shown for Aqp0 (PDB ID: 2B6P) on the right-hand side [31].

© 2017 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY). 17

Biochemical Society Transactions (2017) 45 15–26
DOI: 10.1042/BST20160019

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0


Table 1 Examples of IMPs reconstituted into polymersomes Part 1 of 2

Protein Polymer(s) Notes Ref.

OmpF PBd12-PEO8 • Magnetic fields can be used to drive OmpF
crystallisation.

[58]

PMOXA6-PDMS44-PMOXA6 • OmpF gated with a pH-responsive cap. [59]

BR/
F-ATPase

PEtOz11-PDMS76-PEtOz11 • Co-reconstitution of BR and F-ATPase allows coupling
of membrane protein function: light-driven ATP
synthesis.

• Polymer membranes support pH gradients sufficient to
create a proton-motive force to drive secondary IMP
functions.

• Choice of reconstitution method flipped the preferred
orientation of BR in vesicles allowing selection of
vectorial proton transport into or out of the vesicle.

[46,47]

PR P4MVPx-PSy-P4MVPx

(x,y) = (21.26), (21.38), or
(29.42)

• Reconstitution into highly stable glassy membranes.

• Electrostatically driven protein reconstitution.

• Membrane acts as an allosteric regulator of PR
function.

[43]

AqpZ PMOXA15-PDMS110-PMOXA15 • Polymer membranes alone are impermeable to water.

• AqpZ allows water to cross the membrane but not
larger solutes.

[60]

Aqp0 PMOXA20-PDMS75-PMOXA20

PEO25-PDMS40-PMOXA110

PEO67-PDMS40-PMOXA45

• Investigates oriented insertion into symmetric ABA and
asymmetric ABC membranes.

• Relative sizes of PEO and PMOXA hydrophilic blocks
determine polymer orientation in the vesicle membrane:
the larger block generates positive curvature and forms
the outer membrane surface.

• Preferential protein orientation only observed for ABC
polymer vesicles.

[31]

PBd10-PEO12

PBd22-PEO14

PMOXA20-PDMS42-PMOXA20

PMOXA12-PDMS55-PMOXA12

• High densities of Aqp0 can be functionally
reconstituted into polymersomes.

• Effects on vesicle morphology observed for high
protein concentrations.

[61]

FhuA PIB18-PEO136-PIB18 • The protein is re-engineered to increase the
hydrophobic β-barrel length by 1 nm to allow for more
favourable solvation interactions with the membrane.

[51]

KcsA PMOXAx-PDMSy-PMOXAx

(x,y) = (6.34), (7.49), or (12.63)
• Flexibility of PDMS block allows insertion into

membranes with large hydrophobic mismatch.

• Even with a large hydrophobic mismatch, the fluidity of
the PDMS chains means that the protein diffusion
constant is only one order of magnitude slower than in
a lipid bilayer.

• No evidence for functional incorporation of KcsA in
these membranes.

[30]

Integrin
αvβ3

PBdx-PEOy

(x,y) = (22.14), (17.6), or (12.9)
• In vitro (cell free) membrane-assisted protein synthesis.

• Integrin incorporation efficiency is not found to be
dependent on the polymer block length.

[44]

Complex I PMOXAx-PDMSy-PMOXAx

8 polymers
• Transmembrane electron transfer from NADH to an

encapsulated quinone.
[42]

Continued
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asymmetric lipid distribution, asymmetric lipid bilayer vesicles are much more challenging to fabricate for
oriented membrane protein reconstitution [48,49]. Furthermore, while conventional thinking says that block
copolymers for IMP reconstitution should be in a fluid state, above their glass transition temperature, proteor-
hodopsin (PR) has been functionally reconstituted into highly stable glassy block copolymer membranes with
PS hydrophobic blocks [43]. Proteopolymersomes have also shown stability under lyophilisation: following
rehydration, PBd–PEO vesicles are restored without a significant loss of IMP function, in this case a
G-protein-coupled receptor [50].
Polymersomes are not always favourable environments for IMP reconstitution and modifications to the

protein or membrane environment may be required to achieve the desired function. Evolution has optimised
membrane proteins for function within lipid membrane matrices; however, protein engineering might be used
to adapt a membrane protein for more favourable insertion into synthetic polymer membranes. The ferric
hydroxamate protein uptake component A (FhuA) has been engineered to increase its hydrophobic surface by
1 nm, reducing hydrophobic mismatch and lowering the insertion penalty into thicker polymer membranes
[51]. However, hydrophobic mismatch is not the only challenge; many membrane proteins require specific
interactions with lipids for native function [52,53]: for example, recent reports of specific lipid regulation of the
TrpV1 ion channel [54]. Even if specific lipid interactions are not required, the delicate balance of forces
experienced by an IMP in a biomembrane may be important for maintaining its native structure and/or func-
tion, i.e. establishing a lateral pressure profile in the membrane that mimics the natural biomembrane [55–57].
These issues motivate the modification of polymersome properties to enhance their biofunctionality. This has
been approached by blending block copolymers and phospholipids to create hybrid vesicles with the goal of
combining the best features of these two materials: the chemical versatility and robustness of polymersomes
with the biocompatibility and biofunctionality of liposomes.

Table 1 Examples of IMPs reconstituted into polymersomes Part 2 of 2

Protein Polymer(s) Notes Ref.

9≤ x≤ 65
23≤ y≤ 165

• Increasing membrane thickness increases the activity
of complex I.

• Increasing hydrophilic polymer length at fixed
hydrophobic thickness decreases complex I activity.

• Specific inhibition by 10 μM piericidin A reduces activity
by >90%.

LamB PMOXA11-PDMS73-PMOXA11 • LamB acts as a specific receptor for λ phage to trigger
DNA loading into the polymersome lumen.

[62]

TsX PMOXA20-PDMS54-PMOXA20 • 200 nm polymersomes with the nucleoside-specific
porin TsX.

• Encapsulation of thymidine phosphorylase for
enzyme-replacement therapy for mitochondrial
neurogastrointestinal encephalomyopathy.

• Nanoreactors are functional in serum at 37°C, show
low cytotoxicity and do not stimulate a significant
inflammatory response.

[63]

Claudin-2 PBd21-PEO12 • Cell-free protein expression and directed insertion into
polymersomes.

• Protein in polymersomes confirmed by specific
antibody binding (SPR).

[64]

GPCR
(5-HT1AR)

PBd12-PEO9 • Functional reconstitution into giant polymer vesicles.
• Oriented protein insertion with ∼90% of GPCR in its

native orientation.

• GPCR activity retained after lyophilisation and
rehydration of vesicles.

[50]
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Hybrid vesicles
Given the disparity in properties between lipid and block copolymer membranes, in particular differences in
membrane thickness and structure, it may seem surprising that blends of lipids and block copolymers can form
mixed, hybrid vesicles (Figure 2). Therefore, the study of the mixing behaviour between lipids and polymers in
hybrid vesicles has been at the fore of their material characterisation.
Several block copolymer classes have been investigated in vesicle blends with phospholipids; examples

include PBd-PEO [65–67], PDMS-PMOXA [68], PIB-PEO [69], PChA-PNIPAAm [70] and PDMS-PEO
[71,72]. These mixtures can form homogeneous, well-mixed membranes or phase separate into lipid-rich and
polymer-rich domains dependent on several factors, including lipid polymorphism and phase transitions, hydro-
phobic mismatch, cross-linking between lipids or polymers and specific mixing interactions between the individual
components. While well-mixed vesicles [65] may give optimal, modified local membrane environments for protein
reconstitution, lipid-rich domains within a bulk polymer matrix may also be desirable for tuning optimal activity
and durability. In particular, nanodomains of lipids have been reported in PDMS-PEO/POPC hybrid vesicles [73],
where the PDMS hydrophobic block is less compatible with the lipid tail groups than a PBd polymer block based
upon their respective solubility parameters [74]. Stable, nanoscale lipid-rich islands within a sea of mechanically
robust polymer-rich membrane might be particularly attractive IMP-functionalised constructs for combining
native-like lipid solvation with the enhanced structural stability of polymersomes.

Figure 2. Hybrid vesicles.

Hybrid vesicles combine lipids and block copolymers into blended membranes. These hybrid membranes can either be well

mixed, giving homogeneous properties across the surface of the vesicle (left-hand side), or phase separated into lipid-rich and

polymer-rich domains, which give rise to textured vesicle morphologies with coexisting domains of different structures and

properties (right-hand side). Membrane proteins can be inserted into these hybrid membranes, either into homogeneous

membranes (left-hand side, showing cyt bo3; PDB ID: 1FFT) or phase-separated membranes, where the preferred location of

the IMP in the membrane is dependent on the relative properties of these two coexisting phases (right-hand side, showing

MloK1; PDB ID: 4CHW).

20 © 2017 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).

Biochemical Society Transactions (2017) 45 15–26
DOI: 10.1042/BST20160019

https://creativecommons.org/licenses/by/4.0


Hybrid vesicles tune the dynamical and mechanical properties of vesicle membranes between those of pure
lipids and pure polymers [66,72,75]. Lipid-specific stimuli can also be used to address the hybrid membranes,
particularly when phase-separated into lipid-rich domains, modifying structure and permeability [67]. We
point the reader to more comprehensive reviews of the physicochemical properties of hybrid vesicles for
further details on this topic [74,76].
The study of membrane proteins in hybrid lipid–polymer systems is still in its infancy with only one report

currently studying vesicle architectures. A summary of current reports is presented in Table 2. Phase separation
and mixing phenomena are important properties in hybrid materials, as we discuss above. This begs the ques-
tion as to where a membrane protein would prefer to reside in textured, phase-separated hybrid membranes.
The partitioning of OmpF in lipid–polymer Langmuir monolayers at the air–water interface have shown that
the protein can prefer to reside in polymer-rich domains [77]. At first sight this is a surprising result as the
motivation for using hybrid membranes is the preference of membrane proteins for native lipid environments.
However, the lipid-rich domains (DPPC) in the present study are in a non-native gel phase: the ordering and
tight packing of the lipids in this phase exclude impurities, e.g. OmpF, causing them to instead reside in the
more flexible and fluid polymer-rich regions of the membrane.
Similarly, the observation that membrane proteins (MloK1) prefer polymer-rich membrane over solid-like

gel phase lipid (DPPC, DPPE) was further demonstrated in planar, solid-supported membranes (Figure 2) [78].
Importantly, in separated PDMS-PMOXA/DOPC membranes, where DOPC-rich domains were observed,
MloK1 preferentially partitions into the fluid lipid-rich phase. Furthermore, PDMS-PMOXA/POPE membranes
form well-mixed membranes with uniform protein distribution. This reveals an important control parameter:
the location of protein within a membrane can be manipulated between polymer-rich or lipid-rich domains or
a uniform membrane distribution by judicious choice of the lipid.
Crucially, these two aforementioned studies do not investigate native structure or function of the membrane

protein reconstituted within hybrid membranes. This shortfall has been addressed for OmpF in PI-PEO mem-
branes (90:10 polymer:protein) [79]. Electrochemical analysis of the protein conductivity shows comparable
values between lipid (DPhPC) and polymer-rich (PI-PEO/DPhPC) membranes. This result was independent of
the length of polymer used. OmpF also exhibited native-like voltage-dependent channel closing. However,
protein insertion into polymer-rich membranes was suppressed in hybrid membranes compared with pure
lipids. The authors suggest that this may be due to excess residual chloroform in hybrid films that denature the
protein. Notably, there is no comparison of protein properties within 100% polymer membranes that convin-
cingly justifies the requirement of a more complex hybrid membrane; OmpF has been functionally reconsti-
tuted into polymersomes as earlier discussed.
The advantage of the hybrid system became evident for cytochrome bo3 (cyt bo3) reconstituted into

PBd-PEO/POPC vesicles [80]. Here, the protein is not functional in the pure polymersome system. However,
there is only minimal loss in protein activity for vesicles with up to 50% polymer content. Impressively,
increased polymer content enhances the functional lifetime of the protein, with 50% polymer hybrids providing
the best combination of high initial activity and durability of function. Intriguingly, purification of these 50%
polymer proteo-hybrid vesicles by size exclusion chromatography to remove coexisting micelles suggests a
further improvement in cyt bo3 durability with a ∼20% drop in activity after one week followed by a very slow
decline in function up to week 6 where >70% of its initial activity still remains. As a comparison, control pro-
teoliposomes rapidly lost function and were inactive within four weeks. In future it will be of interest to
conduct a more long-term study of the activity of these hybrid vesicles, beyond 6 weeks, to understand the full
extent of their extraordinary stability.

Outlook
Stability and durability are important characteristics for membrane proteins to make a successful impact in bio-
technologies. Where compartmentalisation via vesicular architectures is required, proteoliposomes are unlikely
to meet these obligations. More robust block copolymer membrane systems will be important in this provision
but, beyond the most stable and robust membrane proteins, the non-native polymersome environment will
limit the inventory of viable protein components. Protein engineering to optimise the protein’s structure for
incorporation within the polymer membrane may yield some success, e.g. by matching their hydrophobic
thickness, but optimisation of the membrane matrix for biofunctionality is likely to be a more straightforward
and fruitful approach with broad applicability to a wide range of membrane proteins. Blending lipids and poly-
mers within a membrane environment will allow native-like lipid solvation of the protein and facilitate specific
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lipid–protein interactions that may be important for function and to tune the local fluidity and mechanics of
the membrane environment that the protein experiences.
Investigation of hybrid vesicles for membrane protein reconstitution is still at an immature stage of develop-

ment. Much work needs to be done to further optimise the hybrid membrane environment, which will be best
achieved through a more detailed fundamental understanding of the coupling between the membrane compos-
ition and its bulk physicochemical properties. Furthermore, a much wider range of membrane proteins needs

Table 2 Overview of membrane protein reconstitution into hybrid lipid–polymer systems

Protein Polymer(s) Lipid(s)
Membrane
architecture Notes Ref.

OmpF PMOXA15-PDMS110-PMOXA15 DPPC Langmuir
monolayers

• Phase separation between lipid and
polymer components creates textured
films.

• Protein preferentially partitions with fluid
polymer domains, excluded from the
non-native lipid gel phase domains.

• Native structure or function of the
reconstituted protein is not studied.

[77]

PIx-PEOy

(x,y) = (9.6), (16.10) or (30.26)
DPhPC Planar membranes • Three different polymer lengths studied

at a 90:10 ratio with lipid.

• Channel conductance comparable with
that in pure lipid for hybrid membranes
of all polymer lengths.

• Native-like voltage-dependent channel
closing is observed.

• Hybrid membranes inhibit protein
insertion compared with pure lipid.

• Comparison of hybrids with the pure
polymer system is not made.

[79]

MloK1 PDMSx-PMOXAy

(x,y) = (65.12), (37.9) or (16.9)
DPPC,
DOPC,
DPPE or
POPE

Solid-supported
planar membranes

• Three different length polymers are
studied in conjunction with one of four
different lipids.

• Protein insertion into phase-separated
lipid–polymer membranes shows that
the protein partitions based on the
fluidity of coexisting domains,
disfavouring lipid gel phases and
favouring fluid lipid domains.

• Native structure or function of the
reconstituted protein is not studied.

[78]

Cyt bo3 PBd22-PEO14 POPC Vesicles • Compositions from 0 to 100% polymer
content in 25% increments.

• Only a small drop in protein activity is
observed for up to 50% polymer; activity
drops significantly above 50% polymer
content.

• The functional lifetime of the protein is
significantly extended with increasing
polymer content.

• Evidence that purification of vesicles
from coexisting micelles could further
enhance the durability of function.

[80]
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to be investigated when reconstituted into hybrid vesicles to test the generality of this approach. This selection
of proteins must extend beyond the most stable model IMPs into important IMPs that are more difficult to
handle in order to fully challenge the abstraction of this principle. However, there is nothing unique about cyt
bo3 that would suggest that its enhanced durability in hybrid vesicles is a special case [80]. This enhanced sta-
bility may not only be critical to synthetic biology but could also become an important tool in handling mem-
brane proteins in fundamental biochemical studies where protein stability has proved to be a major
impediment. A more long-term appeal for these systems is not just to create a stable, functional environment,
but to use techniques such as lipidomics to accurately reflect the lipids found within the native environment, as
has been done with the SMALP platform [81]. Rapid recent advances in vesicle engineering are beginning to
overcome the practical challenges in realising robust biotechnologies based on these hollow capsules. This
augurs a bright future for emerging applications, encompassing nanoreactor, drug delivery and biosensor tech-
nologies, among others.
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(N-isopropylacrylamide); POPC, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine; POPE,
1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine; PR, Proteorhodopsin; PS, Polystyrene; SPR, Surface
Plasmon Resonance; TsX, Nucleoside-specific channel forming protein TsX
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