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Abstract 

The introduction of fluorine has been widely exploited to tune the biological 

functions of small molecules.  Indeed, around 20% of leading drugs contain at least 

one fluorine atom.  Yet, despite profound effects of fluorination on conformation, 

there is only a limited toolkit of reactions that enable stereoselective synthesis of 

fluorinated compounds. Aldolases are useful catalysts for the stereoselective 

synthesis of bioactive small molecules; however, despite fluoropyruvate being a 

viable nucleophile for some aldolases, the potential of aldolases to control the 

formation of fluorine-bearing stereocentres has largely been untapped.  Very 

recently, it has been shown that aldolase-catalysed stereoselective carboncarbon 

bond formation with fluoropyruvate as nucleophile enable the synthesis of many -

fluoro -hydroxy carboxyl derivatives.  Furthermore, an understanding of the 

structural basis for the stereocontrol observed in these reactions is beginning to 

emerge.  Here, we review the application of aldolase catalysis in the 

stereocontrolled synthesis of chiral fluorinated small molecules, and highlight likely 

areas for future developments. 

 

Introduction 

The aldol reaction has facilitated the construction of many complex organic 

molecules (including many polyketide natural products), and is a cornerstone of 

modern synthetic organic chemistry.[1-4]  Up to two new stereogenic centres are 

installed during the formation of the new carboncarbon bond, and, in many 

variants of the aldol reaction, control of stereochemical configuration is possible.  

Aldolases have been shown to be synthetically-valuable catalysts for the conversion 
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of their substrates into aldol products in high yield and with high stereocontrol 

under mild conditions.[5,6]    For example, an efficient and scalable aldolase-

catalysed process has been developed for the enantioselective synthesis of 

precursors of the side chain found in the statin drugs.[7]  Furthermore, protein 

engineering has been shown to be valuable for increasing further the synthetic value 

of aldolase enzymes, for example by broadening the range of substrates accepted or 

by modifying the stereochemistry of carboncarbon bond formation.[8-14]   

 

Recently, aldolases have emerged as a useful class of catalysts for controlling the 

formation of fluorine-bearing stereocentres.[15භ͕16භභ΁  Approaches for the 

synthesis of fluorinated small molecules are important because fluorination can tune 

exquisitely small molecule conformation and biological activity.[17]  Specifically, it 

has been shown that the controlled installation of fluorine-bearing stereocentres is 

possible through stereoselective formation of an adjacent carboncarbon bond.  In 

sharp contrast, reactions between metal enolates of fluoroacetate derivatives 

general exhibit poor stereoselectivity.[18,19]  Although aldolases had previously 

been shown to accept substrates with remote fluorine atoms,[20,21] this review 

focuses on examples in which carboncarbon bond formation leads to a new 

fluorine-bearing stereocentre.  Such biocatalytic syntheses of fluorinated small 

molecules will be contrasted with a recent biomimetic approach that exploits 

organocatalysis.[22භභ΁ Particular emphasis is placed on aldolase-catalysed reactions 

involving fluoropyruvate as nucleophile.   

 

Fluoropyruvate as a nucleophile in aldolase-catalysed reactions 
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The range of nucleophiles accepted by most aldolase enzymes tends to be rather 

limited.[6,21,23]  Although fluoroacetone has been shown to be a competent 

nucleophilic substrate for deoxyribose-5-phosphate aldolase (DERA), carboncarbon 

bond formation does not occur from the fluorine-bearing carbon, and thus a new 

fluorine-bearing stereocentre is not formed.[25]  However, despite some reports to 

the contrary,[20,24] fluoropyruvate has been shown to be a viable substrate for 

several Class I lysine-dependent pyruvate aldolases (Table 1).  In such reactions, 

there are four possible stereoisomeric products, and the stereocontrol exerted by 

the aldolase in each case is indicated in Table 1. 
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Table 1:  Aldolase-catalysed reactions involving fluoropyruvate as nucleophile 

  

Aldolase Substratea Producta (3R:4R) : (3S:4S) : 

(3R:4S) : (3S:4S) 

Ref. 

NAL 

  

90 : 0 : 0 : 10b [27] 

NAL (E192N) 

  

40 : 0 : 50 : 10 [15භ΁ 

NAL (E192N) 

  

60 : 0 : 40 : 0  

HBPAc 

  

5 : 0 : 95 : 0 [16භභ΁ 

  

0 : 0 : 100 : 0 

  

5 : 0 : 95 : 0 

aDrawn in open chain form. bThe (3R,4R)-configured product predominated initially, 

and equilibrated to a 45:55 mixture of (3R,4R)- and (3S,4R)-configured products.[27]  
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The kinetic ratio stated is taken from reference 15භ͘  cA wide range of other 

heteroaromatic aldehydes was also accepted. 

 

In pioneering work, it was shown that fluoropyruvate was consumed in (wild-type 

and variant) 2-keto-3-deoxy-6-phosphogluconate (KDPG) aldolase-catalysed 

reactions with 2-pyridine carboxaldehyde[26] and D-glyceraldehyde 3-phosphate 

(Causey CP, PhD thesis, Duke University, 2007); however, the outcome of these 

reactions was not reported.   More recently, N-acetyl neuraminic acid lyase (NAL) 

has been exploited in the synthesis of fluorinated mechanistic probes for sialidases 

and sialyltransferases.[27]  Initially, the NAL-catalysed reaction between 

fluoropyruvate and N-acetyl mannosamine (1) yielded (under kinetic control) mainly 

(3R,4R)-2.  However, after extended reaction times, equilibration occurred to give a 

mixture of (3R,4R)- and (3S,4R)-configured products.[15භ͕Ϯ7]   

 

Directed evolution has previously been exploited to modify the substrate specificity 

of NAL towards aldehydes such as 3 and 5.[28]  With fluoropyruvate in place of 

pyruvate, the E192N variant still accepted the aldehydes 3 and 5 as substrates;[15භ΁ 

in each case, approximately equimolar amounts of the (3R,4R)- and (3R,4S)-

configured products (4 and 6) were obtained. 

 

The stereocontrolled synthesis of fluorinated molecules has been shown to be viable 

with the related enzyme trans-o-hydroxybenzylidene pyruvate hydratase aldolase 

(HBPA). HBPA catalyses the reactions between fluoropyruvate and many aromatic 

and heteroaromatic aldehydes (e.g. 7, 9 and 11) to yield the corresponding aldol 
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adducts (e.g. 8, 10 and 12) (see Table 1 for selected examples).[16භභ΁  In each case, 

high diastereoselectivity (83:17 to >98:<2) and excellent enantioselectivity (>98% ee) 

was observed.  In contrast to HBPA-catalysed reactions with pyruvate as nucleophile, 

dehydration of the fluorinated aldol adducts (such as 8, 10 and 12) did not occur.  It 

is possible that the introduced fluorine atom replaces the hydrogen atom that would 

otherwise be removed during the enzyme-catalysed dehydration step.  

 

Origin of stereocontrol in NAL-catalysed reactions involving fluoropyruvate 

Some insights into the structural basis of stereocontrol in NAL-catalysed reactions 

involving fluoropyruvate have been gleaned using protein crystallography (Figure 

1).[15භ΁   Notably, for all combinations of substrate and NAL variant studied, 3R-

configured products were selectively obtained under kinetic control (Table 1).  The 

structure of S. aureus NAL, whose properties have been shown to be extremely 

similar to those of E. coli NAL, has been determined in complex with fluoropyruvate 

(Panel A).  The formation of a Z-configured enamine was observed: reaction of this 

intermediate via the face that is presented to aldehyde substrates would lead to the 

formation of 3R-configured products (Panel C).  In the case of the E192N variant of 

NAL in complex with pyruvate, it is notable that the enamine presents the same face 

to substrates, and that 3R-configured products are also obtained (Panel B).  The 

HBPA-catalysed reactions between fluoropyruvate and many aldehydes also yield 

3R-configured products (Table 1); unfortunately, the structure of HBPA has not yet 

been determined, preventing a more general understanding of the structural basis of 

stereochemistry of aldolase-catalysed reactions involving fluoropyruvate.  
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Figure 1:  Structural basis of stereocontrol in NAL-catalysed reactions involving 

fluoropyruvate.  Panel A: S. aureus NAL in complex with fluoropyruvate (PDB: 5a8g).  

Panel B: E192N variant of E. coli NAL in complex with pyruvate (PDB: 2WKJ).  Panel C: 

Reaction of the top face (as drawn in all Panels) of a Z-configured enamine 

intermediate would yield (3R)-configured aldol products. 

A       

 

B       
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C 

 

 

Applications of biocatalysis and biomimetic chemistry in the stereocontrolled 

synthesis of fluorinated molecules 

The broad substrate specificity of HPBA has been exploited in the enantioselective 

synthesis of fluorinated building blocks (Figure 2, Panel A).[16භභ΁    Thus, reaction 

between an aldehyde (27.5 mM) and fluoropyruvate (25 mM), catalysed by 0.02 

mol% HPBA was followed by oxidative decarboxylation and esterification.  For a 

broad range of aromatic and heteroaromatic aldehyde substrates, the corresponding 

-fluoro -hydroxy carboxylic esters 13 were obtained in >98% ee and good 

diastereoselectivity (syn:anti 83:17 to >98:<2).  Because HPBA accepts simple 

(het)aromatic aldehydes as substrates, the reaction products may be easily 
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converted into building blocks with molecular properties and features suitable for 

drug discovery applications. [16භභ΁   

 

Figure 2:  Enantioselective aldol reactions with masked fluoroacetate derivatives.  

Panel A: HPBA-catalysed reaction between aldehydes and fluoropyruvate, followed 

by oxidative decarboxylation and esterification, yields syn-configured -fluoro -

hydroxy carboxylic esters 13.  An exemplar reaction (Panel A1) and selected other 

examples (Panel A2) are shown.  Panel B: Organocatalysed reaction between 

aldehydes and fluoromalonic acid halfthioesters yields anti-configured -fluoro -

hydroxy carboxylic thioesters 14.  An exemplar reaction (Panel B1) and selected 

other examples (Panel B2) are shown.  Ar1, p-methoxyphenyl; Ar2, o-fluorophenyl. 

 

 

This aldolase-catalysed synthetic approach is complemented by a recent 

organocatalytic approach that yields related anti-configured products.[22භභ΁  
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Reaction between an aldehyde and a fluoromalonic acid halfthioesters (2-3 eq.), 

catalyzed by 20 mol% 15, yielded -fluoro -hydroxy carboxylic thioesters 14 in 62-

99% ee and good diastereoselectivity (anti:syn 75:25 to 95:5).  Remarkably, the 

approach was successful with aliphatic aldehydes as well as aromatic and 

heteroaromatic aldehydes; however, the enantioselectivities are generally lower, 

and the catalytic loadings higher, than the HPBA-catalysed approach.   Nonetheless, 

the two approaches yield different diastereomeric series of products, highlighting 

the potential for complementarity between biocatalysis and organocatalysis. 

 

Conclusions and future perspectives 

Fluoropyruvate is a viable nucleophilic substrate for several Class I pyruvate 

aldolases, offering the potential to control the formation of fluorine-bearing 

stereocentres by carboncarbon bond formation.  Until recently, however, 

demonstrated synthetic utility has been limited to NAL-catalysed reactions between 

fluoropyruvate and sugars.  Yet, there are glimpses that aldolases may have much 

greater value in the stereoselective synthesis of fluorinated molecules.  First, some 

wild-type aldolases in addition to HBPA may accept a very broad range of aldehydes 

as electrophiles, which might be further broadened by directed evolution.  Second, 

aldolase-catalysed reaction involving fluoropyruvate are generally stereoselective, 

and the structural basis for this stereoselectivity is beginning to emerge.  The broad 

substrate specificity and excellent stereoselectivity of HBPA is particularly exciting 

since it enables the synthesis of many fluorinated building blocks with exquisite 

stereocontrol.   
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