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Neutron and X-ray reflectivity of model membranes is increasingly used as a

tool for the study of membrane structures and dynamics. As the systems under

study become more complex, and as long, all-atom molecular-dynamics (MD)

simulations of membranes become more available, there is increasing interest

in the use of MD simulations in the analysis of reflectometry data from

membranes. In order to perform this, it is necessary to produce a model of the

complete interface, including not only the MD-derived structure of the

membrane, but also the supporting substrate and any other interfacial layers

that may be present. Here, it is shown that this is best performed by first

producing a model of the occupied volume across the entire interface, and then

converting this into a scattering length density (SLD) profile, rather than by

splicing together the separate SLD profiles from the substrate layers and the

membrane, since the latter approach can lead to discontinuities in the SLD

profile and subsequent artefacts in the reflectivity calculation. It is also shown

how the MD-derived membrane structure should be corrected to account for

lower than optimal coverage and out-of-plane membrane fluctuations. Finally,

the method of including the entire membrane structure in the reflectivity

calculation is compared with an alternative approach in which the membrane

components are approximated by functional forms, with only the component

volumes being extracted from the simulation. It is shown that using only the

fragment volumes is insufficient for a typical neutron data set of a single

deuteration measured at several water contrasts, and that either weighting the

model by including more structural information from the fit, or a larger data

set involving a range of deuterations, are required to satisfactorily define the

problem.

1. Introduction

The phospholipid bilayer is the basic structural unit of bio-

logical membranes. Most cellular activities involve membrane

interactions at some point, be it in the simplest case transport

of agents across the membrane into the cells, or processes that

occur in the membrane region itself, either internally within

the cell or externally in its interaction with the wider envir-

onment (Sachs & Engelman, 2006). There is therefore great

interest in studying membrane processes to better understand

the role of this region in cell behaviour. In recent years, there

has been extensive use of both X-ray and neutron reflectivity

to probe the structures, dynamics and interactions of cell

membranes (Wacklin, 2010). Reflectivity offers ångstrom-

resolution structural characterization of bilayer systems, and

in the case of neutrons allows selective deuteration to probe

specific regions or components of the membrane (Penfold,

2002).

Since reflection is by definition a surface-sensitive tech-

nique, such studies necessarily involve the study of model

membrane mimics deposited on surfaces. A variety of
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approaches have been employed to fabricate model

membranes on surfaces, the simplest of which involves simply

depositing bilayers directly onto substrates, usually silicon

or mica, by either direct fusion of vesicles or by Langmuir–

Blodgett (LB) or Langmuir–Schaeffer (LS) methods (Richter

et al., 2006). These directly supported membranes are struc-

turally phospholipid bilayers, but their behaviour is impacted

by the proximity of the substrate, which has a constraining

effect on the mobility of the membrane components (Xing &

Faller, 2008). Various approaches have been proposed to

reduce this substrate influence, including pre-coating the

substrates with polymer cushions (Majewski et al., 1998),

fabricating multiple layers (Katsaras & Gutberlet, 2001) or

mimicking the balance of forces observed in multilammellar

vesicles by depositing bilayers onto existing phospholipid

coatings (Hughes et al., 2008, 2014). The latter approach leads

to membranes which remain associated with the substrate but

separated from it by substantial cushions of water owing to

entropic effects (Hughes et al., 2008, 2014; Helfrich, 1973;

Daillant et al., 2005; Fragneto et al., 2012; Clifton et al., 2015;

Daulton, 2015). These floating supported bilayers (FSBs) have

the advantage of a high degree of structural control afforded

by the Langmuir–Blodgett methodology used in their

construction, but the separation from the substrate greatly

reduces its constraining effect. Supported bilayers have been

used to probe a number of phenomena from nucleotide–

membrane interactions to the behaviour of novel anti-

microbials to fundamental membrane biophysics (Dabkowska

et al., 2015; Daillant et al., 2005; Fragneto et al., 2012; Clifton et

al., 2015; Daulton, 2015).

Traditionally, model membranes for reflectivity studies have

been simple one-component or two-component phospholipid

bilayers, with the compositions varying slightly in terms of

lipid charge or chain unsaturation to probe specific electro-

static interactions or the effects of changes in fluidity. More

recently, advances in the fabrication methodologies of floating

membranes have allowed more complex membranes to be

probed. Therefore, rather than simply using a simple phos-

pholipid bilayer, mimics of specific membrane types such as

the Gram-negative bacterial outer membrane (Clifton et al.,

2015) or raft-forming membranes (Daulton, 2015) are being

developed. As the complexity of the samples increases, so too

does the demand on the data-analysis methodologies used to

extract structural information from the resulting reflection

data.

A reflectivity profile is a probe of the entire interfacial

region, and except under very specific conditions, the sample

of interest (i.e. in this case the bilayer) and any other surface

layers or coatings must be accounted for in the interpretation

of the data. Usually, the interfacial region is modelled by

‘resampling’ the density profile across the interface into a

number of distinct layers (Abeles, 1950). Thus, a simple

phospholipid bilayer could be represented by a series of layers,

each of which is identified with the head groups or

the hydrophilic tails, and also layers would be included to

represent any other surface coatings such as polymers,

self-assembled monolayers, metal coatings and so on. The

reflectivity is then calculated from these models by transfer-

matrix approaches (Abeles, 1950).

This layers approach works well for simple systems. In these

cases, layers can be clearly identified as corresponding to

specific regions of the interface (i.e. such as the head group),

and any changes or behaviours seen can then be interpreted

in this context. However, as the complexity of the samples

increases, then so does the strain put on the approximations

made in the modelling. Specifically, for more complex systems,

it becomes increasingly ambiguous as to how many layers

should be appropriately included in the models to describe the

systems under study. Thus, for lipopolysaccharides, or large

membrane proteins, for example, the specification of a layer

model and the definition of its limits increasingly become an

influence on the results, introducing concerns of bias in the

analysis.

For these reasons, there has long been interest in using more

rigorous modelling strategies in the interpretation of reflection

data, in particular from molecular-dynamics (MD) simulations

of membranes (Heinrich & Lösche, 2014; Koldsø et al., 2014).

MD simulations of membranes have become increasingly

sophisticated in recent years, involving large-scale, long-

duration simulations of complicated multicomponent protein-

containing membranes (Kaszuba et al., 2015). As such, the

resulting structures can offer significant insights into the

structures of complex biological systems, and including this

information in the analysis of reflection data could greatly

enhance the interpretation of reflection experiments. Thus, for

example, if a simulation suggested more than one possible

orientation for an integral or peripheral protein domain, then

reflectivity data could be used as an independent screen of

these candidate structures to determine which of the plausible

set in fact exists, but with reduced selection bias compared

with layer resampling.

The ‘refractive index’ in a scattering experiment, known as

the scattering length density (SLD), is a function of the atomic

composition per unit volume. Methods for converting all-atom

simulations or membranes into SLD profiles are well known,

and have been extensively employed in the interpretation of

diffraction (Wiener &White, 1992; Tristram-Nagle et al., 1998)

or small-angle scattering measurements (Kučerka et al., 2008,

2012), either with neutrons or X-rays. Some examples are also

known for reflectivity, mainly for monolayers (Schalke &

Lösche, 2000; Schalke et al., 2000), but also with some reported

for bilayers (Hughes et al., 2002).

The most common approach to including information from

MD simulations into the analysis of scattering data does not in

fact usually rely on converting the results of the simulation

into an SLD profile directly, but instead extracts certain

information from the simulations, usually component volumes;

these are then used as inputs into structural models which

build the SLD profile in functional form (Wiener & White,

1992; Tristram-Nagle et al., 1998; Kučerka et al., 2008, 2012;

Schalke & Lösche, 2000; Schalke et al., 2000; Hughes et al.,

2002).

Thus, for example, positional distributions of membrane

components might be approximated as Gaussians or
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combinations of error functions, and the component volumes

are then used to convert these into SLD profiles. The advan-

tage of this approach, known as ‘compositional space refine-

ment’ (CSR), is that the volumes may be used in other systems

where the same fragments are present without needing to

carry out new simulations for each case. Thus, for example,

volumes extracted for the fragments of DPPC from a pure

DPPC bilayer simulation may be used for any mixed system

where DPPC is present. Similarly, if a membrane structure

changes

in response to an external stimulus (such as pressure or

temperature, for example), then using movable distributions

can allow these changes to be followed without the need to

produce a new simulation for each set of conditions. The

disadvantage is that whilst the approximation of using Gaus-

sians or similar is very good for the head-group components of

simpler lipids, the appropriate functional forms from more

complicated inclusions such as proteins and so on are not

always clear.

An alternative to the functional approach is to take the

entire simulation (converted into an SLD) as a unit, and then

use this as part of a larger model to build up the full SLD

profile required for the particular geometry of the experiment

in question (Darré et al., 2015). This approach has the

advantage that there are then no operator decisions to be

made in terms of the shapes of particular fragment distribu-

tions, as these are extracted from the simulations directly. It

has the disadvantage, however, of requiring a new simulation

for each data set analysed, but this is becoming less of an issue

as the ready availability of computing power makes this a

feasible option in many cases. However, in order to use this

approach for reflectivity, there are also difficulties in terms of

how to include the simulated structure into the larger model of

the entire interface without introducing artefacts into the final

calculation.

The main purpose of this paper is firstly to make explicit

how whole MD membrane structures should be included into

a reflectivity model without introducing artefacts caused by

incorrect splicing between the modelled membrane SLD and

the SLD profile of the rest of the interface. We show that this

should be performed by first producing a model of the occu-

pied volume across the entire interface, and subsequently

‘space-filling’ the model with water to give a smooth profile,

rather than by splicing together the individual SLDs of the

membrane and supporting layers, since the latter can intro-

duce artefacts into the structural calculation. Secondly, we also

show how the calculated membrane SLD should be corrected

to account for incomplete coverage and out-of-plane

membrane fluctuations. We show that this method gives

excellent agreement with a simple test model of a fluid-phase

DPPC floating bilayer. Finally, we then compare the perfor-

mance of the this ‘whole-simulation’ approach with the more

common CSR model, where the membrane submolecular

fragments are modelled as Gaussians, with their positions and

widths as fitting parameters and with the only information

taken from the MD simulations being the volumes of the

individual fragments. We show that in the reflectivity case,

whilst CSR can indeed model the membrane structure accu-

rately, using only the fragment volumes is insufficient for the

data set used here (a typical result from a reflectivity experi-

ment), and that it is necessary to either include additional

information on fragment positions, or alternatively a larger

data set including extensive selective deuteration to reliably

model the membrane. The extension of this approach to more

complex mixed-membrane systems is also discussed.

2. Experimental

2.1. MD simulations of DPPC

The bilayer was constructed using a self-assembly coarse-

grained molecular dynamics (SA-CG-MD) simulation

protocol. For the CG-MD simulation the Martini forcefield

(v.2.1) was used (Marrink et al., 2007). For this simulation 115

coarse-grained DPPC molecules were randomly added in a

simulation box along with CG water particles and counter-

ions. The simulation was run for 100 ns after an initial 150

steps of energy minimization. At the end of the SA-CG-MD

simulation a bilayer was formed in the xy plane of the box.

Subsequently, the simulation box was replicated (3 � 3) in

the x and y dimensions using the genconf command in

GROMACS, thus creating a bilayer with 1035 coarse-grained

DPPC molecules. The system, which also contained coarse-

grained water molecules and counter-ions, was energy-

minimized for 150 steps followed by 100 ns of production

simulation. This coarse-grained protocol resulted in an

equilibrated DPPC bilayer with 1035 DPPC molecules.

Coarse-grained (CG) to atomistic (AT) conversion was

performed using the CG2AT protocol as described previously

by Stansfeld and coworkers (Tristram-Nagle et al., 1998).

Atomistic molecular-dynamics simulations were performed

using the GROMOS96 53a6 force field. The DPPC lipid

parameters were taken from Kukol (2009). These parameters

were shown to reproduce experimental measurements for a

DPPC bilayer, for example the area per lipid and deuterium

order parameter of the acyl chains. The SPC water model was

used and counter-ions were added to neutralize the system.

The Parrinello–Rahman barostat (Parrinello & Rahman,

1981) and the V-rescale thermostat (Bussi et al., 2007) were

used for pressure and temperature coupling, respectively. The

LINCS algorithm (Hess et al., 1997) was used to constrain

bond lengths, and the particle mesh Ewald (PME) algorithm

(Darden et al., 1993) was used to model long-range electro-

static interactions. The temperature was set to 323 K. After

the conversion to an atomistic representation, the system was

energy-minimized and a short equilibration simulation of 1 ns

with the phosphate atoms of the lipids restrained was

performed. A production atomistic simulation was run for

500 ns with a time step of 2 fs.

2.2. Fabrication and characterization of DPPC floating

bilayers

!-Thiolipid [1-oleoyl-2-(16-thiopalmitoyl)-sn-glycero-3-

phosphocholine; Avanti Polar Lipids] was dissolved at
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1 mg ml�1 in chloroform/methanol (4:1), dried as a film in a

glass tube and resuspended in 1% octylglucopyranoside (OG;

Sigma), 50 mM Tris pH 8.0 (OG buffer). Immediately prior to

use, tris(2-carboxyethyl)phosphine–HCl (TCEP) was added to

a final concentration of 1 mM. The gold surfaces were cleaned

by sonication in 2% Hellmanex solution (Hellma GmbH),

rinsed and then sonicated in 1% sodium dodecyl sulfate (SDS)

solution. The cleaned surfaces were immersed in the !-thio-

lipid/OG solution for 2 h at 50�C. The surfaces were removed

from the lipid solution, cleaned again in SDS and re-immersed

in the lipid solution for a further 2 h. Finally, the surfaces were

removed from the coating solution, washed with SDS, rinsed

with ultrapure water (UPW; Millipore; 18.2 m� cm�1) and

dried under nitrogen.

The LB/LS depositions were carried out using a purpose-

built LB trough (Nima Technology, Coventry, England). The

trough has a large, deep dipping well to accommodate the

horizontally oriented silicon crystals during the Schaeffer

transfer. The trough was cleaned and filled with UPW. DPPC

(Avanti Polar Lipids) was dissolved in chloroform at

approximately 1 mg ml�1, and 300 ml was spread onto the

cleaned water surface. After waiting for 15 min to allow the

monolayer to equilibrate, the monolayer was compressed at

50 cm2 min�1 to 30 mN m�1. For the first LB transfer, the

compression was carried out with the substrate already

immersed in the trough. After reaching the target pressure,

the substrate was withdrawn upwards through the monolayer

at 5 mm min�1, with the trough running in constant-pressure

mode.

For LS transfers, a clean neutron reflection cell was placed

in the trough before it was filled. After filling the trough, the

monolayer was spread and compressed to the required pres-

sure, and the substrate was mounted horizontally on the

dipper such that its gold face was parallel to the water surface.

The tilt of the substrate was adjusted using a motor-controlled

levelling stage, such that the substrate and the water were

exactly parallel. The substrate was then pushed through the

interface at a speed of 5 mm min�1 and then sealed in the

neutron cell while still underwater, as described previously

(Daillant et al., 2005; Fragneto et al., 2012; Clifton et al., 2015;

Daulton, 2015).

2.3. Polarized neutron reflectivity

NR measurements were carried out on the POLREF white-

beam reflectometer at the Rutherford Appleton Laboratory,

Oxfordshire, England. NR measures the neutron reflection as

a function of the angle and/or wavelength (�) of the beam

relative to the sample. The reflected intensity was measured as

a function of the momentum transfer qz [qz = (4�sin�)/�,

where � is the wavelength and � is the incident angle]. White-

beam instruments probe a wide area of qz space at a single

angle of reflection owing to the use of a broad neutron

spectrum. To obtain reflectivity data across a qz range of

�0.01–0.3, glancing angles of 0.5, 1.0 and 2.3� were used

(� = 2–12 Å).

Sample cells were sealed, removed from the LB trough and

mounted on a variable-angle sample stage in the reflecto-

meter. The samples are placed in a magnetic field. The two

spin orientations result in two distinct nSLDs for the

permalloy layer but an unchanged nSLD for the rest of the

sample. The inlet to the liquid cell was connected to a liquid-

chromatography pump (L7100 HPLC pump, Merck, Hitachi)

which was programmed to remotely change the solution H/D

mix in the sample cells. In this work, the bilayer structure was

analysed in two solution isotopic contrasts, either 100% D2O

or 100% H2O, and measured at 50�C.

2.4. Data fitting

An average structure was constructed by summation of the

individual time slices of the production MD run. Each slice

was centred on the terminal methyl groups of the bilayer

before averaging. The resulting MD simulations box, which

was 175.85 � 175.85 � 108.263 Å (in x, y and z, respectively,

with the membrane lying in the xy plane), was divided into

0.12 Å slices along z, leading to 917 slices in total in the

simulation box. The atoms of each lipid head group were

grouped into choline (C6H13N), phospho (PO4), glycero

(C2H5) or carbonyl (C2O2) ‘quasimolecular’ fragments

(Wiener & White, 1992; Tristram-Nagle et al., 1998; Kučerka et

al., 2008, 2012; Schalke & Lösche, 2000; Schalke et al., 2000;

Hughes et al., 2002; Petrache et al., 1997), and the alkyl chains

(CH2) and terminal methyls (CH3–) were also grouped to give

six distributions in total for each lipid. The number of occur-

rences of each group within each slice were counted and

histogrammed to yield number density distributions, from

which SLD and volume profiles were obtained as described

previously (Petrache et al., 1997). These were then combined

with profiles from the remainder of the interface to build the

full SLD profiles as described in the next section. The SLD

and volume profiles were then used as part of a ‘custom xy

profile’ in the RasCAL fitting environment (https://

sourceforge.net/projects/rscl/). The model was fitted to the

experimental data using a Bayesian Markov chain Monte

Carlo algorithm (Haario et al., 2006).

3. Results

3.1. Direct use of a complete MD structure in producing an

SLD profile

The approach that we consider is to take a molecular-

dynamics structure of a membrane, extract average positional

distributions of the membrane components from the simula-

tions and then combine these with a model of the supporting

layers to build a continuous scattering length density (SLD)

profile that we then compare with the measured data. It

should be emphasized that in building the SLD profile we take

the complete simulated membrane structure as a unit, and that

this is distinct to the usual approach of reconstituting the

membrane structure from functional forms (usually Gaus-

sians), which we consider in x4.
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A typical MD structure for fluid-phase DPPC obtained as

described in x2 is shown in Fig. 1(a). Following Petrache et al.

(1997), the structure is divided into a series of quasimolecular

fragments representing groups of atoms, in an analogous way

to how a coarse-grained model might be developed. In this

case, the head groups are divided into four regions repre-

senting carbonyl, glycerol, phospho and choline regions. The

overlapping terminal methyl regions of each lipid are grouped

together into a single distribution, and the ‘alkyl’ regions

(representing the methylene groups of the chains) are treated

as a single unit. Additionally, the bulk waters on each side of

the membrane are also included, and all the distributions are

summed together to give the overall ‘total’ structure, as shown

in Fig. 1(b).

Fig. 1(c) shows each distribution as probability distributions

of the fragment positions. To obtain these, the simulation box

research papers
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of the membrane is divided into slices of thickness �z (where

the z axis is defined as normal to the bilayer plane), and the

number of occurrences of each particular group within each

slice, N(z), is counted and histogrammed. The number density

is then

nðzÞ ¼
NðzÞ

Vs

¼
NðzÞ

Ac ��z
; ð1Þ

where Vs is the volume of the slice, which is given by the slice

thickness times the projected area of the unit cell into the

bilayer plane (Ac). The volume of each component can be

calculated as shown previously by Petrache et al. (1997) by

imposing a condition of space-filling (i.e. void volumes are

neglected) such that

V1n1ðzÞ þ V2n2ðzÞ þ . . .VnnnðzÞ ¼ 1 ð2Þ

over all z, where V� are the component volumes and

V�n�(z) � p�(z) are the probability distributions shown in Fig.

1(a). In practice, the component volumes are obtained by

iteratively minimizing
P

z½
P

� p�ðzÞ � 1	2 with V� as the fitting

parameters (Darré et al., 2015).

The reflectivity is eventually calculated from the scattering

length density (SLD), which is obtained from the distributions

Figure 1
(a) MD simulation of a fluid-phase DPPC bilayer. (b) Specification of the ‘quasimolecular fragments’ used in parsing DPPC. Each molecule is divided
into six fragments: ‘CH3’ (C2H6), ‘Alk [(CH2)n], ‘Carb’ (C2O4), ‘PO4’ (PO4), ‘Gly’ (C3H5) and ‘Chol’ (C5H12N). (c) Probability distributions of the
fragments from fluid-phase DPPC obtained from the MD simulation described in x2, calculated according to (1), (2) and (3). (d) shows an X-ray SLD
profile obtained from the distributions in (c), and (e) shows the neutron case against D2O.

electronic reprint



shown in Fig. 1(a) by multiplying by the relevant scattering

length of each group, s, so that

s� ¼

P

i

nibi for neutrons

nero for X-rays

(

; ð3Þ

where bi is the bound coherent scattering length for the ith

type of atom for the neutron case, and ne is the number of

electrons and ro is the classical Compton wavelength for

X-rays. For each distribution, the scattering length density

(SLD) is then given by

�ðzÞ ¼
p�ðzÞ � s�

V�

: ð4Þ

An X-ray SLD profile calculated from Fig. 1(c) is shown in

Fig. 1(d), and the neutron case (against D2O) is shown in

Fig. 1(e).

In a reflectivity measurement, the bilayer does not scatter in

isolation and is by the nature of the technique supported on a

substrate, and the contribution of the substrate to the SLD

profile must also be included. In the case of the supported

bilayer considered in this example, this requires contributions

from the silicon substrate, the oxide layer and the supporting

self-assembled monolayer (SAM), as can be seen from the

cartoon structure of the system shown in Fig. 2(a). The

simplest way of building up an SLD profile whilst including the

MD SLD is to then model the SLDs of the supporting layers

and then simply splice these to the calculated bilayer SLD

profile. This is shown in Fig. 2(b), and a problem becomes

immediately apparent. If the values of the SLDs at the edges

of the two contributions do not match (as is easily and often

the case when the effects of roughness are considered) then a

discontinuity is introduced at the splicing point, as highlighted

by the arrow in Fig. 2(a). Although this appears as a small

feature in the profile, the significance of the problem becomes

more apparent when we remember that reflectivity is a func-

tion not of the SLD profile itself, but of the Fourier transform

of the square of its gradient (Penfold, 2002) and, as can be

seen in the plot of |d�(z)/dz|2 shown in Fig. 2(c), the discon-

tinuity in this case becomes the dominant feature. In other

words, any reflectivity calculated from Fig. 2(b) is substantially

caused by an artefact rather than the sample structure.

If the volume of each fragment is known, this problem can

be overcome by building the SLD profile in terms of the

occupied volume rather than by splicing the individual SLDs.

The probabilities can be equivalently viewed as volume frac-

tions, since the slice volumes appear in the denominator of (1)

and the component volumes in (2), with
P

� p�ðzÞ ¼ 1 then

indicating full occupancy of a given slice, and a number less

than unity indicating that unfilled volume exists at that point

in z. In the case of Fig. 1, the volume occupied includes the

water molecules from the simulations, but in constructing the

whole profile we omit these distributions and consider the

volume occupied by the bilayer except for the water, and

similarly for the SAM layers. To splice in terms of volume, the

procedure is first to calculate the total occupied volume across

the whole of the interface (i.e. including the SAM and the

substrate) neglecting water.

In this example, the SAM model is constructed using the

compositional space refinement approach by using Gaussian

distributions to represent p�(z), as described previously

(Schalke & Lösche, 2000; Schalke et al., 2000; Hughes et al.,

2002). Essentially, rather than using distributions obtained

frommodelling to describe the positions of the quasimolecular

fragments of the head group, the probability distributions are

assumed to be Gaussians, and their positions relative to the

SAM tails and their widths (represented by an overall SAM

roughness) become fitting parameters (Schalke & Lösche,

2000; Schalke et al., 2000; Hughes et al., 2002). The SAM tail

region, and any lower layers of the substrates, are modelled

by simple step functions. These distributions are treated as

probability distributions in the same way as those derived

from the simulations in Fig. 1, and the SLD is calculated by

the application of (3) and (4). To perform this, component

volumes are clearly required, and in the case of the SAM,

literature volumes for DPPC are taken (Armen et al., 1998).
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Figure 2
(a) Cartoon structure of the floating bilayer example considered in this
work. The membrane is supported by a grafted phospholipid coating and
is separated from the substrate by a water cushion. (b) Direct splicing of
MD profiles calculated separately for the lower layers and the bilayer can
introduce discontinuities at the splicing point, as indicated by the arrow.
(c) Squared gradient of the SLD profile shown in (b), which illustrates
that under these conditions the discontinuity becomes a dominant feature
introducing artefacts into any subsequent reflectivity calculation.
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Once the probability distributions for all components of the

interface are known, the total sum over all of the distributions

may be easily obtained. If we assume that any remaining

volume must be occupied by water in the submerged system

(i.e. the space-filling criterion), then the quantity 1�
P

� p�ðzÞ

will give the remaining water distribution across the interface.

The salient point is that the water distribution is calculated

with reference to all of the volumes across the entire interface,

and by doing so any splicing at the edges of individual SLD

profiles is avoided, thus eliminating discontinuities.

The procedure is illustrated in Fig. 3, which shows the

construction of the complete SLD profile for the DPPC

floating bilayer. Fig. 3(a) shows the p(z) for the DPPC bilayer

from the MD data in Fig. 1 on the right, whilst the CSR SAM

structure calculated from the Gaussian distributions and the

substrate step functions are on the left. The thick blue line in

Fig. 3(a) is then the volume unfilled by the model, which is the

overall distribution for the water, and as long as there is no

‘overfilling’ of the model (i.e. an unphysical model in which the

sum of the required volumes within a slice exceeds Vs, leading

to a negative available volume for water) then the water

distribution is always continuous. To obtain the complete

scattering length density profile, the number densities are

multiplied by the relevant scattering lengths, and the water

distribution by (2nD + nO)/Vw, where nD and nO are the

neutron scattering lengths of deuterium and oxygen, respec-

tively, and Vw is the volume of a water molecule, which is taken

as 30.2 Å3 (Armen et al., 1998). The substrate distributions are

simply multiplied by their expected SLDs to give the complete

profile shown in Fig. 3(b). The profile is continuous and there

are no artefacts in the gradient, as shown in Fig. 3(c).

In addition to determining the volume occupancy of the

individual components across the interface, there is still some

work to do in order to complete the SLD profile. Floating

bilayers do so because they display out-of-plane fluctuations,

leading to an entropically driven repulsion between the

membrane and the lower layers (Helfrich, 1973). The effect of

this is to ‘smear’ out the SLD profile of the membrane, and in

order to account for these displacements we convolute the

profile obtained from the MD calculations with a Gaussian,

the width of which represents the level of displacement. This is

illustrated in Fig. 4(a), which shows the DPPC SLD profile

as the solid line, with the dashed and dotted–dashed lines

showing the effect of a Fourier convolution of the distributions

with Gaussians of width 3 and 7 Å, respectively.

An additional complication is that the coverage of the

membrane may not be complete, with defects in the form of

holes present. The overall SLD profile from the bilayer region

will then be a scaled sum of the SLD profile of a full bilayer

and that of the solvent. We introduce a fractional bilayer

coverage parameter, CB, where a value of zero means that

the membrane is absent, whereas a value of unity reflects a

complete, defect-free bilayer. To correct for lower than

optimal coverage, the procedure is then to simply scale the
P

� p�ðzÞ for the membrane. This is shown in Fig. 4(b), where

the solid lines are total probabilities and the dotted lines show

the free ‘volume’ [i.e. 1�
P

� p�ðzÞ]. The pair of curves

labelled ‘I’ are for full occupancy, and those marked as ‘II’ are

for the case of CB = 0.6. In the latter case of incomplete

coverage, it should be noted that the water distribution no

longer decreases to zero in the centre of the membrane, and so

this automatically results in water-filled defects, as would be

expected. In addition, it is necessary to scale the SLD profile

[as well as N(z)], and the effect of this is shown in Fig. 4(c).

The overall result is shown in Fig. 4(d), which shows the

complete SLD profile for the DPPC membrane, produced

with the ‘as simulated’ MD distribution (solid line); the dotted

line shows the same profile, but with a convolution of 5 Å and
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Figure 3
(a) The dotted lines show the volume fraction across the entire interface,
including contributions from the bilayer components, but also those of
the substrate layers and the SAM. The solid black lines show the summed
total occupied volume across the interface. The blue line shows the
remaining unoccupied volume, which is filled with water. (b) shows a
complete SLD profile constructed using volumetric constraints, which
results in a continuous profile with no discontinuities, as seen from the
squared gradient shown in (c).
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CB = 1, and the dashed–dotted line again shows the original

profile, but with a roughness of 2 Å and CB = 0.75.

3.2. An example: fluid DPPC

As an example, we apply both the ‘full simulation’ method

described in the previous section and also the CSR method to

a typical neutron reflection data set from a DPPC floating

bilayer. The membrane is as described previously, supported

on a thiolipid SAM on a gold substrate (Hughes et al., 2014),

with a magnetic permalloy underlayer. Measuring the system

using polarized neutrons and a magnetizable underlayer then

results in a different value for the alloy SLD depending on

whether the interface is measured with neutron spins parallel

or antiparallel to the direction of magnetization of the alloy,

giving two separate ‘magnetic contrasts’ (Hughes et al., 2014).

The membrane was measured at 50�C, and thus in the ‘fluid

phase’ of the bilayer. Additionally, the system was measured

against D2O and H2O, giving four simultaneous contrasts in

total, and the resulting data are shown in Fig. 5(a).

3.2.1. ‘Full simulation’ model. The model described in the

previous section, using a DPPC bilayer simulation obtained as

described in x2, was fitted to the data using a Bayesian

approach, with the fitted membrane parameters being the

bilayer centre position, DB, the bilayer fluctuation roughness,

RB, and the bilayer fractional coverage, CB. In addition, the

thickness of the metal layer, SLDs and roughness, and the

SAM parameters (area per molecule, roughness and centre

positions of the SAM Gaussians) are also fitting parameters,

resulting in 17 parameters in total. The best fitting SLD

profiles are shown in Fig. 5(b), with the solid lines in Fig. 5(a)

being the reflectivities calculated from the values given in

Table 1. In both Figs. 5(a) and 5(b) the shading around each

set of curves shows the 95% Bayesian prediction intervals

calculated from the ‘minimum’ and ‘maximum’ ranges of the

parameter values. The posterior distributions and cross-

correlations for the bilayer parameters are also shown in

Fig. 5.

As can be seen, the correspondence between model and

experiment is excellent, with the best fit going through each
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Figure 4
(a) Effect of a Fourier convolution of an SLD profile with a Gaussian to simulate out-of-plane membrane displacements. The ‘as-calculated’ profile is
shown convoluted with Gaussians of 2 Å (dashed–dotted line) and 7 Å (dashed line). (b) Correction of the occupied volume to account for reduced
coverage of the membrane. The solid lines show the total volume fraction of the membranes, and the dotted lines show the resulting water distributions.
The pair labelled ‘I’ show full occupancy and that labelled ‘II’ show the effect of CB = 0.6. (c) Effect of scaling the calculated SLD profile with CB = 0.7
(dashed line) and CB = 0.3 (dashed–dotted line). (d) Full profile obtained using the model with CB = 1 and RB = 1 Å (continuous line), CB = 0.9 and
RB = 8 Å (dashed–dotted line) and CB = 0.7 and RB = 3 Å (dashed line).
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error bar simultaneously across all four curves over the entire

qz range of the measurement. The posterior distributions of

the three membrane parameters along with their cross-

correlations are also shown in Fig. 5. In this sample, the best

agreement between theory and experiment requires a

membrane coverage of around 90%, with a fluctuation

roughness of 2 Å. The thickness of the central water cushion is

28 Å.

3.2.2. CSR model. In the method discussed in the previous

sections, we incorporate the results of the whole MD simula-

tion directly into the construction of the SLD profile, but an

alternative approach that has been often used is to build the

model from functional forms (usually Gaussians); in other

words, extending the approach used to model the SAM in the

previous sections to the whole membrane.

The main difference between the models is that rather than

being extracted directly from the simulations according to (1),

the head-group probability distributions are instead modelled

as Gaussians, with the submolecular grouping as those in Fig. 1

(i.e. four Gaussians per head group). The central methyl

region is also represented by a Gaussian, as described

previously. The alkyl region is represented by a ‘step’ function
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Figure 5
(a) Polarized neutron reflection data from a DPPC floating bilayer. Magnetic contrasts are used, and the sample is measured against both D2O and H2O,
leading to four contrasts in total. Contrasts (i) and (ii) are D2O at the two spin states, whilst (iii) and (iv) are those against H2O. The solid lines are the
simultaneous best fit of the model to the four contrasts, and the shading shows the 95% prediction intervals for the parameter values given in Table 1. (b)
SLD profiles corresponding to the fits in (a). (c) Posterior distributions and (d) correlation plots for the three bilayer parameters, RB (the bilayer
roughness), CB (the bilayer coverage) and DB, which is defined as the distance from the centre of the SAM head group to the centre of the bilayer.
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(really two error functions separated by a distance corre-

sponding to the layer thickness), and this is then taken as the

volume fraction of the chains. To prevent ‘overfilling’ in the

head-group region, we penalize the fit �2 as shown previously

(Schalke & Lösche, 2000; Schalke et al., 2000), so that the

overall fitting �2 is given by

�2 ¼ �2 þ expðDXÞ; ð5Þ

where D is a scaling parameter (D = 100 in this work), and

X ¼
1

N

P

N

i¼1

P

�

p�ðzÞ � 1

" #2

: ð6Þ

Fig. 6(a) shows the bilayer SLD profiles obtained from each

model against H2O, with the MD results shown in blue and the

CSR structure in green. The accompanying probability

distributions are shown in Fig. 6(b), with the dotted lines from

the MD simulation and the solid lines the result of the CSR fit.

The shaded 95% prediction interval shown around the MD

structure is the result of applying the coverage and roughness

corrections to the simulated structure, whilst that of the CSR

fit is the result of fitting Gaussian positions and widths, in

addition to roughness and coverage. Clearly, the CSR model

as fitted here does not retrieve the true membrane structure,

with the best-fit structure shown by the solid green line

differing significantly from the structure obtained from

modelling (blue line). There is also very considerable uncer-

tainty around the result, with the 95% prediction envelope

showing a broad variability around the fit. The probability

distributions of the fragment positions from CSR were

obtained from the best-fit values (from the second column of

Table 2).

The reason for its poor performance becomes apparent if

the posterior distributions of the individual structural para-

meters are examined. These are shown by the red distributions

in Fig. 6(e), and all of the posteriors for the head-group

Gaussians (A� and Z�) are exceedingly broad, so much so that

the individual parameters are effectively undefined. Similarly,

the posterior distribution of the lipid area per molecule

(APM) is also very broad. In practice, therefore, no real

conclusions can be drawn regarding the submolecular orga-

nization of the membrane from CSR as run here on this data

set.

The analysis in Figs. 6(a) and 6(b) was run using the

conventional information input into the CSR model of just the

fragment volumes. If we also include information regarding
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Table 2
Best-fit parameter values from applying the CSR model to the same data as in Fig. 5.

Only bilayer parameters are shown, with the results for the SAM and lower layers being very similar to those in Table 1. The second column shows the values and
95% prediction intervals with no priors, whilst the final column shows the same values obtained with the priors from column 3.

Parameter
Values (min, max)
without priors Priors Values with priors

Bilayer roughness (Å) 0.28 (0.0182, 0.779) Uniform (min = 0.1, max = 12) 4.9 (0.25, 9.76)
Bilayer APM (Å2) 68.71 (51.44, 87.54) Uniform (min = 48, max = 90) 69.2 (57.4, 79.3)
ZGly (Å) 5.52 (0.42, 9.79) Gaussian (� = 4.2, 	 = 0.4) 4.17 (3.32, 5.30)
ZPO4 (Å) 6.04 (0.41, 9.79) Gaussian (� = 4.86, 	 = 0.6) 4.96 (3.86, 5.83)
ZChol (Å) 6.63 (2.51, 9.63) Gaussian (� = 5.33, 	 = 0.6) 5.6 (4.67, 6.50)
ACH3 (Å) 5.21 (1.22, 9.75) Gaussian (� = 5.3, 	 = 0.6) 5.2 (4.44, 6.29)
ACarb (Å) 3.08 (1.09, 5.73) Gaussian (� = 4.1, 	 = 0.6) 3.99 (3.17, 4.97)
AGly (Å) 5.55 (1.22, 9.74) Gaussian (� = 4.3, 	 = 0.6) 3.85 (2.86, 4.75)
APO4 (Å) 5.73 (1.26, 9.77) Gaussian (� = 4.1, 	 = 0.6) 4.01 (3.04, 5.01)
AChol (Å) 7.02 (1.67, 9.89) Gaussian (� = 4.2, 	 = 0.6) 4.4 (3.49, 5.35)

Table 1
Best-fit parameter values for the fit shown in Fig. 5.

Parameter Value (min, max) Priors

Substrate roughness (Å) 8.76 (8.045, 9.490) Uniform (min = 3, max = 12)
Alloy thickness (Å) 136.45 (135.93, 137.01) Uniform (min = 100, max = 200)
Alloy SLD spin up (Å�2) 9.98 � 10�6 (9.92 � 10�6, 1.0 � 10�5) Uniform (min = 9 � 10�6, max = 1.2 � 10�5)
Alloy SLD spin down (Å�2) 7.19 � 10�6 (7.13 � 10�6, 7.25 � 10�6) Uniform (min = 5 � 10�6, max = 9 � 10�6)
Alloy roughness (Å) 4.08 (3.12, 5.34) Uniform (min = 3, max = 8)
Gold thickness (Å) 154.16 (153.58, 154.77) Uniform (min = 100, max = 200)
Gold roughness (Å) 2.81 (1.15, 4.55) Uniform (min = 1, max = 7)
Gold SLD (Å�2) 4.53 � 10�6 (4.47 � 10�6, 4.58 � 10�6) Uniform (min = 4 � 10�6, max = 5 � 10�6)
SAM coverage 0.99 (0.97, 1.0) Uniform (min = 0, max = 1)
SAM APM (Å2) 45.66 (43.59, 47.79) Uniform (min = 40, max = 90)
ZSAM

Carb–Gly (Å) 0.66 (0.11, 2.10) Uniform (min = 0.1, max = 5)
ZSAM

Gly–PO4 (Å) 0.92 (0.12, 2.75) Uniform (min = 0.1, max = 5)
ZSAM

PO4–Chol (Å) 1.17 (0.14, 3.10) Uniform (min = 0.1, max = 5)
SAM roughness (Å) 3.56 (2.71, 4.39) Gaussian (� = 4, 	 = 0.5)
Bilayer coverage 0.92 (0.90, 0.93) Uniform (min = 0, max = 1)
Bilayer position (DB) 43.64 (42.04, 45.01) Uniform (min = 20, max = 140)
Bilayer roughness (RB) 2.06 (0.20, 4.58) Uniform (min = 0.1, max = 12)
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fragment distributions by setting Gaussian priors on fragment

positions and widths (solid lines in Fig. 6e), then CSR is seen to

perform far more robustly. The resulting posterior histograms,

which were obtained using the priors in the third column of

Table 2, are shown in blue in Fig. 6(e). The priors were chosen

by inspection so that the distributions closely match those

obtained from the simulation (i.e. to reproduce Fig. 1c).

Fig. 6(c) shows the same comparison as Fig. 6(a) for the

weighted fit, and there is clearly far better agreement between

CSR and simulation for this more constrained structure, and

the prediction interval surrounding the best-fit line is also

substantially reduced. There also is far better agreement with

the simulated structure, as can be seen from Fig. 6(d).

4. Discussion

We have applied two methods for introducing information

from molecular modelling into reflectivity analysis to a

neutron reflection data set from a DPPC bilayer. In the first

method we take the entire simulation, convert this into an

SLD, and then use this to fit the measured data. In the second

approach, we (initially) take only the component volumes

from the simulation as the input to the modelling, and

construct the SLD profile in a structural form. The former is

often referred to as a ‘static’ approach, since the result of the

simulation is unmodified by the data analysis, and therefore it

is a comparison between the simulation result and measured

data only. The latter approach of using functional forms is an

example of a ‘dynamic’ approach, in which the aim is to use

free-fitting of functional representations of the membrane to

recover a membrane structure, which can then subsequently

be compared with the simulation. Thus, in principle the

dynamic approach can be used to analyse analogous samples

(such as lipids with the same head group but different chain

lengths, for example) without the need for another simulation.

For the static approach a fresh simulation is required for each

sample.

The two key points from our implementation of the static

approach are firstly that constructing the whole interfacial
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Figure 6
(a) Comparison between the SLD profiles from unconstrained CSR (green) and the whole-simulation MD (blue). Shaded regions are the 95% prediction
intervals from the Bayesian analysis. CSR does not accurately reproduce the membrane structure in this case, as is clear from the comparison of
probability distributions shown in (b). Solid lines are CSR distributions, dotted lines are from CSR and the parameter posterior distributions are shown
as red histograms in (e). Also shown in (e) are the parameter distributions obtained with Gaussian priors on parameters, shown as black lines (where
used); the resulting posterior histograms are shown in blue. This improves the correlation between the CSR and MD structures, as shown in (c) and (d).
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profile (i.e. the bilayer plus supporting layers) in terms of

number densities and occupied volumes, rather than by joining

together individual SLD curves, removes any discontinuities

caused by splicing errors, and hence prevents artefacts

encroaching into the calculation of the resulting reflectivities.

Secondly, the approach accounts for the fact that an MD

simulation of a membrane is not itself sufficient to describe

the structure that will actually be measured in a real-world

measurement, since out-of-plane displacements over and

above those seen in an finite, small-scale simulation will most

likely be present, and also defects will usually exist (leading to

reduced coverage), and corrections must be applied to the

MD-derived structures to account for these effects.

For the case of the DPPC example shown here, there is a

very good correspondence between model and experiment

with the static model, with the fit going through every point

simultaneously across four contrasts. A Bayesian analysis

shows that the bilayer parameters are orthogonal except for

between the membrane roughness and coverage, where some

correlation exists. This is not surprising given the similar effect

both can have on the SLD profile, as is illustrated in Fig. 4(d),

where a membrane of full coverage but large roughness results

in a similar overall profile to a lower coverage membrane of

lower roughness. The extracted roughness value of about 2 Å

suggests that only a small correction is required for fluctua-

tions in this example, and the displacement is largely

accounted for by the existing displacements arising from the

simulation itself. However, this is not always the case, and

under some conditions membrane fluctuations can increase

dramatically when interactions lead to large changes in the

membrane bending modulus. These correlations should

therefore be kept in mind and examined, and if required the

fluctuation amplitude can be measured independently (Dail-

lant et al., 2005). However, the dynamic CSR approach, when

applied as is conventionally performed using only component

volumes as an input, performs very poorly and fails to recover

the simulated membrane structure. It is only when additional

information is provided in the form of priors on head-group

component positions and widths that the membrane structure

is convincingly obtained.

The dynamic CSR approach is the method that has most

often been applied to the analysis of SANS and diffraction

data, and in both those cases a significantly larger data set was

required for a full structural determination. Thus, for example,

Kučerka and coworkers considered small-angle scattering data

from both DOPC and DPPC, and in both cases multiple

samples measured (by neutrons) at multiple solvent deutera-

tions, but also at several partial sample deuterations, and also
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Figure 6 (continued)
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including an X-ray contrast, were fitted simultaneously

(Kučerka et al., 2008, 2012). For diffraction, Wiener and White

employed a similar simultaneous analysis of a broad range of

deuterations along with an X-ray contrast (Wiener & White,

1992). It is therefore perhaps not surprising that reflectivity

performs so poorly when applied to this data set of a single

deuteration only, since there is insufficient inherent informa-

tion content in this small data set and the model is too over-

determined to recover fragment positions and widths

accurately. It is likely that if a simultaneous analysis of

multiple samples each at different specific deuterations and

water contrasts (and perhaps also including an X-ray contrast)

were included in the reflectivity analysis then the posteriors

would become far better defined and the membrane structure

better determined. However, access to neutron and X-ray

scattering is usually limited, and detailed data sets with

systematic variation in specific deuteration are the exception

rather than the norm. In most experiments the limited data set

used here is far more usual, and indeed, for most lipids outside

the ‘usual suspects’ (such as DPPC or POPC), selectively

deuterated lipids are difficult to obtain commercially. In such

cases, the more limited data sets of the type shown here are the

only available option.

In the absence of additional data, more information can be

supplied to the CSR fit from modelling by specifying both

positions and widths more closely, in addition to supplying

component volumes, which we preform here by setting

Bayesian priors on the relevant parameters. CSR then

performs far more robustly, recovering the modelled structure

reasonably well, but even then still struggles to recover other

unknown membrane properties of interest. Thus, for example,

a key parameter of interest in biophysical studies is the

projected area per lipid molecule (APM). Kučerka and

coworkers report a value of 63.1 Å2 for DPPC, which is in

good agreement with simulation. As can be seen from Fig.

6(e), even with constrained fragment positions the 95%

confidence interval on the fitted value of the APM is between

57.2 and 71.1 Å2, so although the published values of the area

lie within this range, it is clearly not well determined by CSR

on this limited data set. [It should be noted that the slight

differences between the fragment distributions which remain

in Fig. 6(d) are substantially owing to the still poor definition

of APM, and the correspondence between the CSR and

simulated distributions would improve further if an additional

prior were set for the lipid area.]

In the case of the static approach, the APM is of course

completely defined by the simulation, and this highlights the

key difference between the two approaches. All decisions

regarding the membrane structure are passed to the simula-

tion side rather that the data-fitting side, and the data analysis

itself is then just a comparison of the simulation with the

measured data. This method is therefore of main use for

‘screening’ potential models for corroboration by experiment,

where more than one structural possibility exists. Thus, for

example, if more than one orientation of a membrane protein

might be in principle be possible based on simulations, then in

that case comparison between theory and experiment using

this method would allow possible simulation results to be

examined in order to determine which are the most appro-

priate structures.

The stated advantage of CSR is so that information

obtained from MD simulations can be used interchangeably

for systems other than those simulated, thus removing the

need to carry out new simulations for each system studied.

Therefore, from a simulation of DPPC, for example, one can

extract the component volumes, and if the assumption is made

that these change little in different environments (and as we

have shown, if a sufficiently detailed data set is available), then

these could then be used to analyse data from more compli-

cated mixed films where DPPC is a component. This is of

course still the case, and when no simulation of the system

under study exists it is indeed the only feasible approach.

However, these results show that great care must be taken not

to overdetermine the problem, and that in some cases that

extracting only volumetric information from the simulations is

insufficient for an accurate analysis.

For more complicated systems, particularly those containing

proteins, an additional problem of CSR is that the a priori

selection of a functional form to represent each of the frag-

ments may also become more challenging. For the case of

DPPC, the fragment distributions from the simulation are

almost perfect Gaussians, and thus this is not such a difficulty.

For more complicated components, such a proteins or lipo-

polysaccharides for example, this is unlikely to be the case.

In the case of proteins, methods have been proposed where

the protein is simulated in isolation, an SLD ‘envelope’ is

extracted and this then superimposed on a membrane signal,

usually constructed from a standard layer model (Heinrich &

Lösche, 2014). As the original authors point out, there are

several potential issues with this approach. Simulating the

protein outside the membrane environment may lead to a

different structure for the peptide than when embedded;

operator choices must be made about likely orientations in the

membrane, again leading to modelling bias (although in some

cases orientation parameters can be defined), and also the

effect of the protein on the immediate membrane environ-

ment is not simulated.

The static method, however, also offers a way to resolve

these problems. In practical terms, simulating proteins and the

associated membrane patch is now very feasible, although an

extra correction is required in order to use these simulations in

this approach, in that the simulations will not always be of the

correct protein:lipid ratio for the data. In such cases, the SLD

envelope used will simply be a scaled average of protein-

containing membrane and a ‘pure’ bilayer simulation to reflect

the appropriate protein loading of the sample in the beam

area if it is lower than the simulation, or a simple truncation of

the simulation box if the loading of the simulation is too low.

However, the central point of this article is that although

both static and dynamic methods are capable of describing

reflectivity data, and each approach has caveats and advan-

tages, the range of applicability depends on the quality of the

data available. For sparse data sets consisting perhaps of a

single sample measured at a series of solvent deuterations,
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then this is insufficient to merit the full dynamic approach. In

such cases then it is more appropriate to transfer the burden of

the structural determination to the simulation side, and to then

use data analysis as a validation of the simulated structure.

Where more detailed data are available, then dynamic

approaches become progressively more applicable. In either

case, it is always necessary to examine the uncertainties in

model fits in some detail to avoid overdetermining analyses,

whichever approach is used.

5. Conclusions

A method for producing continuous SLD profiles from

molecular-dynamics simulations has been presented for

interpreting reflectivity data from lipid bilayers. The method

avoids introducing artefacts caused by poor splicing between

the MD SLD and the model representing the rest of the

interface by splicing in terms of occupied volume, rather than

in terms of SLD. In the simple example of DPPC, the

experimental data can be replicated simultaneously across

multiple neutron contrasts once corrections have been made

for coverage and out-of-plane membrane deformations. The

method has the advantage of removing operator bias from

the modelling of complex membrane environments, therefore

aiding the screening of MD structures by comparison to

experimental data.
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Koldsø, H., Shorthouse, D., Hélie, J. & Sansom, M. S. P. (2014). PLoS
Comput. Biol. 10, e1003911.
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