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ABSTRACT

Radiation therapy is a common component of curative cancer treatment. However, there is a significant incidence of

treatment failure. In these cases, salvage surgical options are sometimes appropriate. Accurate assessment of response

and early recognition of treatment success or failure is therefore critical to guide treatment decisions and impacts on

survival and the morbidity of treatment. Traditionally, treatment response has depended upon the anatomical

measurement of disease. However, this may not correlate well with the presence of disease, especially after radiotherapy.

Combined positron emission tomography (PET) and CT imaging employs radioactive tracers to identify molecular

characteristics of tissues. PET imaging exploits the fact that malignancies have characteristic molecular profiles which

differ compared with surrounding tissues. The complementary anatomical and functional information facilitates accurate

non-invasive assessment of surrogate biomarkers of disease activity.

This article reviews the rationale for positron emission
tomography (PET)-CT response assessment in radiation
oncology, describing current uses of 2-[18F]-fluoro-2-
deoxy-D-glucose (FDG) PET-CT in treatment response
following radiotherapy in head and neck, oesophageal,
rectal and brain tumours. Emerging applications of
FDG PET-CT in cervical and lung carcinomas and
hepato-pancreatico-biliary tumours, particularly pancreatic
carcinoma and liver metastases (post-selective internal
radiotherapy treatment), are reviewed. Finally, the limi-
tations of FDG PET-CT are considered, highlighting areas
for future development.

THE RATIONALE FOR POSITRON EMISSION
TOMOGRAPHY-CT RESPONSE ASSESSMENT
IN RADIATION ONCOLOGY
In the UK, radiotherapy forms part of 40% of oncology
treatment pathways and is the mainstay of 19% of curative
treatment.1 Intensity-modulated radiotherapy has become
the standard of care for multiple malignancies by virtue of
the ability to deliver highly conformal doses whilst mini-
mizing damage to adjacent tissues.2 Despite this, curative-
intent radiotherapy has a significant risk of locoregional
treatment failure.3

Accurate response assessment informs future treatment
decisions and in some situations guides the need for po-
tentially curative surgical salvage. Early recognition of
treatment success or failure can therefore impact on patient
survival. Traditionally, this assessment relied upon ana-
tomical measurement of disease, such as CT evaluation
using Response Evaluation Criteria in Solid Tumours
(RECIST). However, such measurements are of inherently
limited value following radiotherapy, as residual masses/
tissue abnormalities are common post-treatment and do
not necessarily infer the presence of viable clonogenic tu-
mour cells.4 For example, in head and neck cancer, residual
lymph node masses are well recognized following radio-
therapy and, particularly with human papilloma virus-
related disease, can continue to regress many months
following completion of treatment.5 The challenge of de-
termining the presence or absence of viable tumour within
residual masses following radiotherapy provides a powerful
rationale for the incorporation of functional imaging into
response assessment protocols.

PET-CT employs radioactive tracers to assess molecular
characteristics of tissues. Malignancies have distinctive
molecular profiles, which differ compared with
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surrounding normal tissue, and may therefore be exploited by
PET-CT imaging with appropriate tracers. The use of FDG PET-
CT to demonstrate altered cellular glucose metabolism is the
most widely used application of molecular imaging. Comple-
mentary anatomical and functional information facilitates an
accurate non-invasive assessment of surrogate biomarkers of
disease activity.

PET-CT in radiotherapy response assessment is useful for several
reasons. Firstly, molecular response to radiotherapy may precede
anatomical response and PET-CT may allow a more accurate as-
sessment at an earlier stage than standard cross-sectional imaging.
Secondly, use of specific tracers, allows a more reliable discrimi-
nation of tumour from treatment-related inflammation or fibrosis.
Thirdly, tumours respond heterogeneously during radiotherapy.6

Although this may not be apparent on anatomical imaging, by
using an appropriate molecular biomarker which changes at an
early stage and correlates with response, this variability may be
demonstrated with PET-CT and the treatment adapted accord-
ingly. Finally, tumour cells may develop resistance to radiotherapy
during treatment. This development of resistance may be pre-
dicted using PET tracers which demonstrate hypoxia7 or assess cell
proliferation, e.g. fluorothymidine.8 The optimal clinical utilization
of these tracers remains a focus of ongoing research and a detailed
assessment is beyond the scope of this article.

PET-CT has potential utility at different stages of radiotherapy
response. Firstly, a growing area of research focuses on
employing PET-CT during radiotherapy; this can facilitate an
adaptive individualized approach to treatment with potential for
escalation or de-escalation strategies depending on the quality/
speed of on-treatment response or switching of treatment ap-
proach, for example to surgery in the event of an absent early
response to radiotherapy. This emerging aspect has been covered
elsewhere in detail and will only be briefly mentioned in this
article.9 Secondly, imaging can be used after radiotherapy to
stratify patients who are responding and conversely identify
non-responders and discriminate this from treatment effects,
allowing for early aggressive treatment of persistent or pro-
gressive disease.

In the era of precision medicine, PET-CT may become more
routinely used to identify persistent tumour and for biological
characterization of disease response facilitating adaptive radio-
therapy10 maximizing survival and minimizing morbidity.

Key issues for the use of PET-CT for response
assessment
There are several themes for each tumour site which need to be
considered in determining the optimal use of PET-CT for re-
sponse assessment following completion of (chemo)radiotherapy.
Many of these issues remain unresolved in some tumour sites for
which there are only limited data available regarding the use
of PET-CT.

Timing
The timing of post-treatment response assessment represents
a balance between allowing time for completion of tumour re-
sponse and resolution of radiotherapy-related inflammation vs

the need to assess response early enough post-treatment to allow
potential surgical intervention in the event of an incomplete
response.

Negative-predictive value
A high negative-predictive value (NPV) of functional imaging is
required to determine whether residual anatomical abnormalities
can be safely monitored. Also, it is essential that a high NPV is
demonstrated if response assessment PET-CT is used to guide
a strategy of clinical follow-up over further investigation/treatment.

Positive-predictive value
(FDG) PET-CT can have a limited positive-predictive value
(PPV) following radiotherapy owing to non-specific inflammatory
changes showing FDG uptake. This does not preclude the use of
(FDG) PET-CT, as a high NPV can still be valuable in guiding
decision-making. However, it is essential that knowledge of the
limited PPV is used to interpret imaging. For example, following
(chemo)radiotherapy for head and neck squamous cell carci-
noma (HNSCC), the PPV is reported in the order of 50%;11 this
is too low to embark upon surgical salvage, but may be used to
guide the need for biopsy confirmation.

Method of response assessment reporting
There are different methods of reporting post-treatment PET-CT.
These include qualitative methods which may incorporate the
combined metabolic and anatomical response12 or only metabolic
response.13 Qualitative interpretation raises the question of the
optimal clinical interpretation of “equivocal”metabolic responses,
i.e. low-grade residual uptake.14 To the best of our knowledge,
there are no established quantitative criteria in routine clinical
practice for response assessment following radiotherapy.

CURRENT USES OF FDG POSITRON EMISSION
TOMOGRAPHY-CT IN TREATMENT RESPONSE
FOLLOWING RADIATION THERAPY
Head and neck cancer
Head and neck cancer has an annual incidence of 550,000
worldwide.15 Chemoradiotherapy (CRT) is the standard of care for
locally advanced HNSCC for both unresectable disease16 and to
achieve organ preservation. The avoidance of unnecessary post-
CRT neck dissection in complete responders depends on accurate
post-treatment response assessment (Figure 1). Conventional im-
aging is hampered by treatment-related anatomical distortion and
residual masses as well as the possibility of small occult deposits.

FDG PET-CT has an established role in post-CRT assessment in
locally advanced HNSCC. Post-treatment FDG PET-CT has an
NPV up to 99% for nodal disease (when performed at
4 months),17 benefit over conventional assessment (anatomical
imaging and clinical examination)18 and a high probability of
long-term regional control (2.3% regional failure rate at
36 months).19 A recent randomized controlled trial, the UK
PET-NECK study, demonstrated that PET-CT surveillance had
equivalent survival outcome at lower overall cost, when com-
pared with routine neck dissection for N2/3 nodal disease post-
CRT for advanced nodal disease.12 In this study, PET-CT took
place 12 weeks following CRT. In line with this, a prior meta-
analysis had shown that diagnostic accuracy was improved when
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response assessment was performed more than 12 weeks post-
treatment.20 Some groups have adopted a policy of response as-
sessment at least 4 months post-treatment.17,21 The clinical man-
agement of equivocal results remains problematic.12,14,17 The
majority of published data relate to the use of response assessment
PET-CT following CRT for oropharyngeal carcinoma; the test
characteristics of PET-CT for other head and neck tumour sites
and following the use of radiotherapy alone remain less clear. Fu-
ture work includes the incorporation of standardized qualitative
interpretative response assessment criteria, e.g. Hopkins Criteria,13

which may help stratify management and the use of FDG PET-CT
during radiotherapy to optimize the therapeutic ratio.22

Oesophageal carcinoma
Oesophageal carcinoma has poor survival rates. Neoadjuvant
CRT is a standard of care for locally advanced disease, but res-
ponders and non-responders have a significantly differing
prognosis.23 Use of interim post-CRT FDG PET-CT prior to
surgery can help guide appropriate further management

(Figure 2), specifically by identifying interim metastatic disease
(which may occur in up to 17%) preventing futile surgery.24,25

The added benefit of surgery for those with complete metabolic
response (CMR) is less well defined. A substantial minority
(20–30%) of patients with resectable disease have a complete
pathologic response (CPR) to CRT.26 Multiple groups have de-
scribed the correlation between CMR on post-CRT FDG PET-
CT, CPR and survival benefit.27 Monjazeb et al28 suggested
patients with CMR may be spared surgery. Cervino et al29 de-
scribed a 91% 18-month disease-free survival for patients with
a negative FDG PET-CT, who did not undergo surgery post-
neoadjuvant treatment. However, the reported data are hetero-
geneous; for example, Elliot et al30 found that CMR on post-
CRT FDG PET-CT and CPR did not correlate. This may partly
relate to study timing, as radiation-induced oesophagitis can
mimic residual active disease and limit the utility of interim
and post-treatment PET-CT. Many advocate surgery for even
complete responders post-CRT and consider the role of FDG

Figure 1. Use of fluorodeoxyglucose (FDG) positron emission tomography (PET)-CT for response assessment following chemo-

radiotherapy (CRT) for head and neck cancer: (a) axial panel of CT and fused PET-CT images in a patient with a left paranasal sinus

squamous cell carcinoma pre-treatment. (b) Axial panel of CT and fused PET-CT images in the same patient 14 weeks following CRT is

showing a residual FDG-negative mass (arrows). The patient has remained disease free for 3 years following treatment. See online

version with colour rendering available.
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PET-CT to be guiding biopsy and highlighting patients requiring
escalation of treatment.31

Rectal carcinoma
Neoadjuvant CRT prior to resection is the standard of care for
locally advanced rectal cancer (LARC). Early evidence of treat-
ment response can alter surgical management, and accurate
restaging is critical (Figure 3).

MRI is the mainstay of radiological staging of rectal cancer, but
has limited value in response assessment following CRT.32 In-
ternational guidelines do not yet reflect a role for FDG PET-CT
in the post-CRT restaging of LARC. However, several small
studies have indicated a correlation between metabolic and
pathologic response and demonstrated a superior NPV (up to
95.5%) of FDG PET-CT for CPR compared with MRI in LARC
restaging.33–35 Furthermore, a recent systematic review com-
bining results of over 1500 patients found a high pooled accu-
racy for early PET restaging post-CRT for LARC.36

The role of PET-CT should not be overstated. Two systematic
reviews of post-CRT FDG PET-CT suggest the main role for
functional imaging was in identification of non-responders
rather than selection for organ-sparing strategies.37,38 However,
post-CRT FDG PET-CT has a role in early outcome prediction
with markers for metabolic response correlating with overall
survival and disease-free survival.39

Brain tumours
Following radiotherapy for brain tumours, radiation necrosis
can occur and mimic tumour progression or recurrence on
conventional imaging.

FDG PET-CT has an established role in differentiating radiation
necrosis from tumour progression. Stereotactic radiotherapy can
result in apparent expansion and increased enhancement of

treated lesions. FDG PET has a reported sensitivity of 75% and
specificity of 81% for distinguishing radiation necrosis from
recurrent tumour at sites of radiosurgery.40

Distinction of radiation necrosis from residual tumour after
fractionated radiotherapy can be problematic (Figure 4). The two
often coexist, radiation necrosis may be hypermetabolic and local
seizure activity may falsely increase uptake.41 Increased uptake
relative to contralateral grey matter has been demonstrated to
have 68% accuracy in the diagnosis of recurrent tumour.42

The role of FDG PET-CT post-radiotherapy is largely problem-
solving and biopsy guidance in combination with MRI and other
advanced imaging techniques. However, owing to the sub-
optimal sensitivity and specificity of FDG-PET, other PET
tracers may have superior accuracy.43 Fluorine-18 fluoro-ethyl
tyrosine is an amino acid analogue with improved tumour-to-
background contrast compared with FDG and higher sensitivity
for detection of recurrent glioma.44 Fluoro-ethyl tyrosine does
not require an onsite cyclotron and cost-effectiveness has been
reported in diagnostic and recurrent indications,45 although not
yet specifically for post-radiosurgery indications.

EMERGING APPLICATIONS OF FDG POSITRON
EMISSION TOMOGRAPHY-CT
Cervical carcinoma
Cervical cancer is the third most common malignancy world-
wide.46 Locally advanced disease is treated with CRT (typically
external beam radiotherapy plus cisplatin with subsequent in-
trauterine brachytherapy), but 20–40% of patients suffer disease
persistence or recurrence.47 Pre-existing methods of assessment
such as International Federation of Gynaecology and Obstetrics
stage do not reliably predict early treatment response or out-
come.48 Hence, the development of non-invasive surrogate
biomarkers to predict poor treatment response and facilitate
treatment escalation is of clinical pertinence. Opportunities to

Figure 2. Use of FDG positron emission tomography (PET)-CT to assess treatment response to radiotherapy in oesophageal cancer:

(a) sagittal fused PET-CT image pre-treatment in a patient with a locally advanced oesophageal tumour. (b) Sagittal fused PET-CT

image in the same patient performed after completion of treatment showing partial metabolic response within the primary tumour.

See online version with colour rendering available.
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use PET-CT for this purpose may exist both during and after
completion of treatment.

Evidence suggests that early treatment (pre-brachytherapy) FDG
PET-CT may be used to delineate metabolically active disease,
allowing treatment field adaptation.49 Furthermore, CMR predicts
end of treatment response; Kidd et al50 found that maximum
standardized uptake values (SUVmax) and FDG heterogeneity at
4 weeks during treatment correlated with 3-month post-treatment
PET response. Yoon et al51 reported that, in patients with FDG-avid
pelvic nodal disease, failure to achieve nodal CMR correlated with
a markedly reduced disease-free survival (71% with CMR vs 18%;
p, 0.001). Whilst such use remains experimental, this may rep-
resent a method to flag those in need of treatment escalation.

A number of trials have demonstrated that FDG PET-CT at
3 months post-CRT predicts prognosis. Persistent abnormal or
new FDG activity post-CRT (Figure 5) represented the most im-
portant predictor of disease-related death by 5 years in one study.52

However, post-therapy PET biomarkers remain of uncertain value
in assessing long-term treatment success; one study suggested that
delta SUVmax . 60% predicted disease-free survival and49 another
study reported a limited NPV with 21% of patients with CMR on

post-treatment FDG PET-CT developing disease recurrence during
the median 28-month follow-up,53 with tumour size and stage
acting as predictors for recurrent disease. Furthermore, a system-
atic review suggests that although more accurate than MRI, PET-
CT is less cost-effective in post-treatment surveillance54 than
standard follow-up. Therefore, whilst PET-CT offers promise in
post-treatment assessment of cervical cancer, its potential to add
value to the treatment pathway remains to be fully realized.

Lung carcinoma
Non-small-cell lung cancer (NSCLC) is the leading cause of
cancer-related mortality.55 FDG PET-CT is well established as
a cost-effective staging tool prior to radical treatment. CRT is the
standard treatment in locally advanced disease, but locoregional
treatment failure rates are 15–40% and treatment escalation can
cause morbidity.56 Anatomical imaging response assessment post-
CRT does not correlate well with histopathological response and
distinction of post-treatment fibrosis from residual tumour is
problematic. Therefore, the use of non-invasive surrogate bio-
markers to flag non-responders early in treatment is crucial.

Studies suggest that surrogate PET biomarkers such as total
lesion glycolysis57 and SUVmax

58 may predict treatment response

Figure 3. Use of FDG positron emission tomography (PET)-CT to assess treatment response to radiotherapy in rectal cancer: (a)

sagittal panel of CT and fused PET-CT images pre-treatment in a patient with a locally advanced upper rectal carcinoma. (b) Sagittal

panel of CT and fused PET-CT images in the same patient performed after completion of chemoradiotherapy showing a good partial

metabolic response within the primary tumour (arrow). See online version with colour rendering available.
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during CRT. However, the applicability of metabolic markers in
predicting long-term outcomes post-CRT in NSCLC remains
unclear. One study suggested that FDG PET post-stereotactic
radiotherapy did not reliably predict long-term outcome.59

More recently, Ding et al60 found that metabolic tumour volume
(MTV) at FDG PET-CT post-CRT was predictive of recurrence-
free survival post-CRT at 2 years.

Surgical resection post-CRT is a potential curative treatment
option for selected patients with Stage IIIA NSCLC and the high
NPVof FDG PET-CTmay aid interim treatment decisions post-
CRT. Kim et al61 demonstrated improved disease-free survival
and overall survival in patients who demonstrated CMR.

FDG PET-CT may also have a role in adaptive radiotherapy
planning in NSCLC, with changes in MTV62 and gross tumour

volume60 being used to adapt treatment. The use of FDG PET-
CT to distinguish tumour recurrence from fibrosis has been
reported to guide post-treatment problem-solving,63 but can be
challenging (Figure 6).

Hepato-pancreatico-biliary tumours, particularly
pancreatic carcinoma and liver metastases (post-
selective internal radiotherapy treatment)
CRT is a standard of care for locally advanced pancreatic cancer.
However, local relapse rates are high (42–68%) and distant re-
currence is common.64

FDG PET-CT performed 12 weeks post-CRT demonstrated that
increased delta SUVmax predicts overall survival and
progression-free survival.57 The use of FDG PET-CT during
CRT is limited by the inflammation caused by bile duct

Figure 5. Use of FDG positron emission tomography (PET)-CT for assessment of treatment response following chemoradiation

therapy in locally advanced cervical carcinoma: (a) axial fused PET-CT image pre-treatment in a patient with Stage 2b cervical

carcinoma showing a bulky FDG-avid primary tumour. (b) Axial fused PET-CT image in the same patient obtained 3 months

following completion of chemoradiotherapy showing a partial metabolic response to treatment with a residual FDG-positive

tumour. The patient underwent salvage surgery. See online version with colour rendering available.

Figure 4. Limited utility of FDG positron emission tomography (PET)-CT for assessment of treatment response following

radiotherapy for brain malignancy: (a) an axial T2 weighted MR image in a young female patient with previous right frontal

glioblastoma treated with surgery and adjuvant chemoradiotherapy showing a residual focal nodule and surrounding oedema. (b)

Axial T1 weighted MR image following i.v. contrast (gadolinium) showing nodular enhancement. (c) Axial fused FDG PET-CT image

showing photopenia at the site of the residual nodule—the patient underwent further surgical resection, which confirmed necrotic

high-grade glioma. See online version with colour rendering available.
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occlusion. Allowing for this, in the future, integration of PET-
CT as a response assessment tool may help define futility owing
to interim distant metastatic disease and allow adaptation of the
therapy field and selection for aggressive treatment.65

Selective internal radiotherapy treatment is an important palli-
ative treatment for unresectable metastatic liver disease. Early
assessment of treatment response can help guide further treat-
ment.66 FDG PET-CT can provide an earlier and more accurate
assessment of response to 90-Yttrium microsphere therapy than
CT imaging alone (Figure 7).67 MTV and total lesion glycolysis
are reported to be the best predictors of survival in colorectal
metastatic disease.68 However, recent evidence suggests that
diffusion-weighted MRI may be the superior modality with an
NPV of 92% vs 56% for FDG PET-CT69 and further in-
vestigation is required for clarification.

Limitations of FDG positron emission tomography-CT
and the emergence of alternative tracers
FDG PET-CT has many potential benefits in assessing radiation
response and shaping the treatment pathway; however, there are
important limitations to be aware of to help limit misuse and
misinterpretation.

Although molecular imaging may detect anatomically occult
disease, sensitivity for detection decreases when the lesion size is
,1 cm and superficial tumours and perineural spread are often
FDG-negative.

Certain tumour types including mucoepidermoid, adenoid
cystic and mucinous primaries have a low metabolic activity,
which limits the utility of FDG PET-CT. There has been ex-
tensive interest in development of non-FDG tracers, and some

Figure 6. Use of FDG positron emission tomography (PET)-CT for monitoring treatment response following radiotherapy in non-

small-cell lung cancer: (a) axial fused FDG PET-CT image showing a T1a N0 M0 right apical lung tumour prior to treatment with

stereotactic radiotherapy. (b) Axial fused FDG PET-CT image in the same patient 4 months after completion of radiotherapy

showing diffuse low-grade FDG uptake at the site of treatment, which is non-specific. Subsequent follow-up confirmed no evidence

of disease relapse. See online version with colour rendering available.

Figure 7. Use of FDG positron emission tomography (PET)-CT in response assessment following selective internal radiotherapy

(SIRT) treatment for liver metastases: (a) axial panel of CT and fused PET-CT images in a patient with FDG-avid colorectal liver

metastases pre-treatment. (b) Axial panel of CT and fused PET-CT images in the same patient 3 months following SIRT showing

a partial response. In particular, a left lobe liver metastasis (arrows) has not changed in size but has shown a significant metabolic

response to treatment. See online version with colour rendering available.
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have already translated into routine clinical practice. For ex-
ample, choline PET-CT has high specificity and sensitivity70

and is recommended71 in the reassessment of biochemically
relapsed prostate cancer after local curative treatment (in-
cluding radiotherapy). Gallium-68-labelled somatostatin re-
ceptor PET-CT has emerged as the new gold standard for
imaging of neuroendocrine tumours72 and may provide a poten-
tial non-invasive molecular biomarker for assessment of early
response to peptide receptor-targeted radiotherapy73 in gastroin-
testinal neuroendocrine malignancy. There is a significant false-
positive rate in post-radiotherapy assessment owing to treatment-
related inflammation. This is particularly pertinent in cervical and
oesophageal malignancy. Radiation complications such as
osteoradionecrosis may mimic disease (Figure 8) and PET im-
aging should always be interpreted in the context of anatomical
imaging findings and clinical examination.74

The imperfect specificity of FDG PET-CT in the post-treatment
setting has stimulated interest in the use of alternative tracers,
which correlate more closely with mechanisms involved in
tumour treatment response or radiotherapy resistance.
Tumour hypoxia is known to promote radiotherapy re-
sistance.75 Fluorine-18 fluoromisonidazole has been widely
researched and demonstrated to accumulate in hypoxic cells in
head and neck,76 brain77 and lung78 tumours, but its clinical
application is limited by a high signal-to-noise ratio. Alterna-
tive tracers which act as surrogates for hypoxia include
fluorine-18 fluoroazomycin-arabinofuranoside and copper-64
diacetyl-bis(N4-methylthiosemicarbazone). Both tracers have
more favourable pharmacokinetics than fluoromisonidazole and
hold promise for further research (an overview can be seen in
the study of Feling et al 201579). Cellular mechanisms involved in
tumour response to treatment include a reduction in cell pro-
liferation, which can be assessed using fluorothymidine PET-CT
and an increase in apoptosis, which could be evaluated

using a specialized tracer such as fluorine-18 2-(5-fluoro-pentyl)-
2-methyl-malonic acid, as a surrogate biomarker. At the present
time, use of these tracers for response evaluation after radiation
treatment remains in the research domain.80

In many tumour types, standardized metabolic parameters
and appropriate timing of imaging are yet to be agreed in
consensus and currently act as a barrier to more widespread
clinical adoption of FDG PET-CT for radiotherapy response
assessment. Progress in implementation of PET-CT-guided
response evaluation post-radiotherapy requires both pro-
gression in the evidence basis, particularly around standardi-
zation and validation of the technique in various tumour
types, and assessment of cost-effectiveness. These aspects
warrant consideration when designing future clinical trials in
radiotherapy.

CONCLUSION
Radiation therapy is an increasingly common component of
curative cancer treatment pathways, but is associated with a
significant risk of heterogeneous and/or incomplete response
or disease recurrence. PET-CT provides accurate non-invasive
assessment surrogate biomarkers of tumour response to therapy,
facilitating early adaptation, switching or termination of treat-
ment in order to maximize cure rates and minimize morbidity.
Currently, FDG PET-CT has a role in treatment response
assessment following radiotherapy in a variety of tumour types
and can help guide patient management. Whilst there are lim-
itations of FDG PET-CT, ongoing research suggests that a range
of non-FDG tracers show promise in a range of applications.
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Figure 8. Limitations of the use of FDG positron emission tomography (PET)-CT in response assessment: (a) axial CT in a patient with

oropharyngeal head and neck squamous cell carcinoma treated with chemoradiation showing a lytic soft-tissue deposit in the left maxilla

(arrow) distant from the treated primary tumour. (b) Axial fused FDG PET-CT showing corresponding avid tracer uptake suspicious of

tumour—this area was biopsied, no malignancy was demonstrated—the appearances were due to radiation-induced osteonecrosis. See

online version with colour rendering available.
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