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To the Editor,

Chromosome deletions at 7g21.11 are rare, with few patients reported in the
literature [Vergult et al 2015; Mazzaschi et al, 2013; Mefford et al, 2011]. Vergult et al
[2015] reported three children with heterogenous 7921 deletions who presented with
epilepsy and apparent intellectual disability. One of these patients had a translocation,
the break points of which were said to disrupt the CACNA2D1 gene. This suggested
that CACNAZ2D1 is the likely candidate gene for the observed clinical features.
Mazzaschi et al [2013] described a boy with apparent intellectual disability without
epilepsy with a 7921.11 deletion. Mefford et al [2011] reported a 3.9 Mb and 8.2 Mb
deletion associated with epilepsy and intellectual disability. Here we report a further
patient with the 7921.11 deletion. We also examined exome sequencing data from the
Deciphering Developmental Disorders (DDD) project [Wight et al, 2015] in an attempt to
identify pathogenic single nucleotide variants (SNVs) in genes from the 7g21.11
deletion region in 4,293 children with developmental disorders. This is based on the
hypothesis that deletion regions can be used to identify candidate genes for
developmental disorders [Hempel et al, 2016].

The proband was a six year old male who presented with autistic behavior and
learning difficulties. He was the second child of healthy, non-consanguineous parents.
He was born at 37 weeks of gestation after an uncomplicated pregnancy. There were
no neonatal complications. He had a history of global developmental delay. He first
walked at 24 months of age. At the age of six years he could run but not use a tricycle.
He first started to scribble at five years of age and could only use a spoon with difficulty

by the age of six years. At the age of six years he did not have recognizable words. He
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attended a special educational needs school. He had no neurological symptoms of note
and there was no history of seizures. On examination his OFC was 52 cm (60™ centile),
height 107.5 cm (9" centile), and weight 16.35 kg (2" centile). He was non-
dysmorphic. His hands and feet were normal. Cardiovascular, respiratory and
neurological examination were normal. Magnetic resonance imaging of the brain was
normal. The following tests were normal or negative: Fragile X, full blood count, liver
function test, and urine and blood metabolic screens (glycosaminoglycans and organic
and amino acids). Written consent was obtained from the parents to give permission for
publication of this report. This data in this report were considered to be part of routine
clinical care and research approval was not required.

Comparative genomic hybridization (OGT 60K v2.0 ISCA oligo array)
demonstrated a 3.3 Mb deletion at 7g21.11 which included seven protein-coding genes.
The breakpoints were reported as 7g21.1(79,622,282-82,919,619). Figure 1 illustrates
the deletion in comparison to the previously reported patients. Neither parent had the
deletion. No similar deletions were found in the recently published copy number variant
(CNV) map of the human genome [Zarrei et al, 2015], which integrates CNV data from
healthy individuals from multiple data sets such as the database of genomic variants.

Trio exome sequencing data from 4,293 children in the DDD study was examined
for plausible pathogenic SNVs in the seven protein coding genes found within the
7921.11 deletion region. The methods of the DDD study have been described [Wight et
al, 2015]. We could not identify any plausible pathogenic SNVs in any of these seven
protein coding genes in children without a genomic diagnosis. We defined plausible

pathogenic SNVs as being de novo, having a minor allele frequency of <0.5% in the
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Exome Aggregation Consortium database, and being predicted to be damaging by
Polyphen or SIFT for missense variants or being predicted to be truncating (frameshift,
nonsense).

Here we report a further patient with a 7g21.11 deletion, demonstrating that this
deletion can present with apparent intellectual disability without epilepsy. We cannot
exclude that the individual described here will develop epilepsy in the future, but the
previously reported patients presented with epilepsy before the age of five years. The
individual we describe was non-dysmorphic. However, two of the patients described by
Vergult et al [2015] had facial dysmorphism, thus there may not be a consistent facial
phenotype. Given the limited number of patients it is not possible to provide a definitive
phenotypic description of the spectrum of clinical features associated with 7g21.11
deletion. However, apparent intellectual disability was consistent across all reported
patients. This deletion should be considered in the differential diagnosis of individuals
presenting with both syndromic and non-syndromic intellectual disability.

The mechanism by which 7g21.11 deletions cause epilepsy and apparent
intellectual disability is unclear. The smallest region of overlap between the published
cases and the case described here contains three genes (HGF, CACNA2D1 and
PCLO), implicating them in the pathogenesis. Haploinsufficiency for one of these genes
could underlie the patients’ phenotype. In an attempt to identify a single candidate gene
for the 7921.11 deletion syndrome we examined trio exome sequencing data from 4,293
children with undiagnosed developmental disorders in the DDD study. We could not
identify any plausible pathogenic SNVs in the seven protein coding genes contained

within the 7g21.11 deletion region in our case. This is consistent with Mefford et al
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[2011] who did not identify any CACNA2D1 pathogenic SNVs in a series of 94 patients
with epilepsy. This suggests that haploinsufficiency for a single protein coding gene
from the 7g21.11 region may not be responsible for the phenotype.

As an alternative, it is possible that haploinsufficiency for a combination of protein
coding genes results in the 7921.11 deletion phenotype and it may be a true contiguous
gene syndrome. From the genes found within the smallest region of overlap, only
CACNA2D1 and PCLO are expressed within the brain (data from gtex). The PCLO
gene encodes a pre-synaptic protein which plays a role in regulating neurotransmitter
release. Homozygous mutations in PCLO are associated with pontocerebellar
hypoplasia type three [Maas et al, 2012]. Evidence from animal models suggests that
PCLO plays a role in the formation and transport of pre-synaptic vesicles to the pre-
synaptic membrane [Geisler et al, 2015]. The CACNA2D1 gene encodes the
alpha2deltal subunit of the neuronal voltage gated calcium channel [Geisler et al,
2015]. Neuronal calcium channels are found in both pre- and post-synaptic neuronal
membranes and play a key role in synaptic signaling [Geisler et al, 2015]. It is possible
that haploinsufficiency for both PCLO and CACNA2D1 might disrupt synaptic signaling
and thus result in intellectual disability with or without epilepsy.

In conclusion, we report an additional patient with the 7g21.11 deletion syndrome
and provide evidence that haploinsufficiency for a single gene may not be the disease
mechanism. In vitro studies of the interaction between PCLO and CACNAZ2D1 will be
required to examine the hypothesis that combined haploinsufficiency for these two
synaptic proteins results in neuronal dysfunction.
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FIGURE LEGENDS

Figure 1. Reported deletions at 7g21.11. Black horizontal bars represent deletions at
7921.11. The vertical dashed lines indicate the smallest region of overlap. This contains
the HGF, CACNA2D1, and PCLO genes. Only CACNA2D1 and PCLO are expressed
in the brain. The deletion labelled Vergult P2 extends into 7921.12 to include the GRM3
gene. The deletion labeled Mefford P2 extends to 7q11.23 to include the TRIM74 and

MAGIZ2 genes.



