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ABSTRACT 

Whether the specific blood transfer conductance for nitric oxide (NO) with hemoglobin (șNO) is 

finite or infinite is controversial but important in the calculation of alveolar capillary membrane 

conductance (DmCO) and pulmonary capillary blood volume (VC) from values of lung diffusing 

capacity for carbon monoxide (DLCO) and nitric oxide (DLNO). In this review, we discuss the 

background associated with șNO, explore the resulting values of DmCO and VC when applying 

either assumption, and investigate the mathematical underpinnings of DmCO and VC calculations. 

In general, both assumptions yield reasonable rest and exercise DmCO and VC values. However, 

the finite șNO assumption demonstrates increasing VC, but not DmCO, with submaximal exercise. 

At relatively high, but physiologic, DLNO/DLCO ratios both assumptions can result in 

asymptotic behavior for VC values, and under the finite șNO assumption, DmCO values. In 

conclusion, we feel that the assumptions associated with a finite șNO require further in vivo 

validation against an established method before widespread research and clinical use. 

 

Keywords 

Lung diffusing capacity, alveolar capillary membrane conductance, pulmonary capillary blood 

volume, exercise, in vivo validation 
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1. INTRODUCTION 

There remains significant uncertainty as to the correct specific blood transfer conductance for 

nitric oxide (NO) with hemoglobin (șNO) when studying lung diffusing capacity even in light of 

the ERS task force findings (Zavorsky et al., 2017). Specifically, there is currently a debate as to 

whether to assume an infinite or finite șNO when calculating alveolar-capillary membrane 

conductance (DmCO) and pulmonary-capillary blood volume (VC) from measures of lung 

diffusing capacity for CO (DLCO) and NO (DLNO). While our laboratory has consistently held 

the original assumption that șNO is effectively infinite, other groups have begun applying a finite 

value for șNO of 4.5 mlCO/min/mmHg/mlblood measured via an in vitro study and supported by 

animal and human studies not designed to calculate an exact șNO value (Borland and Cox, 1991; 

Borland et al., 2010; Guenard et al., 2016; Zavorsky et al., 2014). Based on this limited work, a 

task force has recently recommended the use of a finite șNO; however, we believe these 

recommendations, including those concerning șNO and also the correct DmNO/DmCO ratio, are 

premature (Zavorsky et al., 2017). In this manuscript, we will begin by summarizing the 

evolution of, and the scientific reasoning behind, the original assumption that șNO is effectively 

infinite. Next, using both published and preliminary data from our laboratory, we will show in 

detail the effect of assuming an infinite șNO vs. using a finite value of 4.5 

mlCO/min/mmHg/mlblood on calculation of DmCO and VC values in vivo in humans. We will do 

this for lung diffusing capacity data collected using different techniques (i.e. rebreathe and 

single-breath) and in different populations (i.e. healthy and heart failure, young and old age) at 

rest and during exercise. Furthermore, we will extend these findings to an investigation of the 
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mathematical limits within which each assumption yields reasonable, physiologic values for 

DmCO and VC; i.e., positive values on the same order of magnitude as values previously reported 

in the literature. Finally, we will discuss the implications of our findings and offer insight into 

future research, as well as clinical practice, regarding the use of an infinite versus a finite șNO in 

the calculation of DmCO and Vc in vivo in humans. As we will show, both assumptions yield 

reasonable values for DmCO and VC at rest. However, the assumption that șNO is finite can yield 

values which do not increase with submaximal exercise; this is clearly a concern, as DmCO and 

VC would be anticipated to increase during the exercise levels included in these data. 

Additionally, using a finite șNO requires more assumptions during calculations (Į/Krogh 

coefficient, șCO equation, șNO) than applying an infinite șNO (Į/Krogh coefficient, șCO equation). 

As such, while the use of a finite șNO value may have merit, we urge caution in its application for 

the calculation of DmCO and Vc in humans until the method can be properly validated against the 

multiple O2 tension method. Overall, we feel that it is more important to interpret DmCO and VC 

as physiologic variables rather than anatomical measurements and to interpret changes over time 

or between groups rather than to focus on the specific method used. 

 

1.1 Theory and evidence for an infinite vs. finite șNO 

In our laboratory, we use two methods for the determination of DLCO: 1) a single breath 

technique, and 2) a rebreathe technique. The single breath technique for measuring DLCO was 

first described in 1909 (Krogh and Krogh, 1910; Krogh, 1915), but the methodology currently in 

common use was established in 1954 (Forster et al., 1954). This technique requires the 

participant to take a deep inspiration from residual volume to total lung capacity of a test gas 

containing approximately 10% helium, 0.3% CO, 21% oxygen, and balance nitrogen, followed 
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by a short breath hold (typically 4 to 10 seconds), with a subsequent swift expiration. Simply put, 

the ratio of inspired to expired CO concentrations, after taking into account dead space and 

alveolar mixing, yields the diffusing capacity of the lungs for CO (DLCO). The rebreathe 

technique used in our laboratory to measure DLCO requires participants to rebreathe from a bag 

containing 9% Helium, 0.3% C18O, 35% O2, and balance nitrogen for 8 to 10 tidal breaths 

(Ceridon et al., 2010; Meyer et al., 1990; Sackner et al., 1975). The assumptions of the rebreathe 

technique are identical to that of the single breath method. However, the rebreathe technique 

often yields lower values for DmCO and VC; while this inconsistency is not completely 

understood, it is not the focus of the manuscript and hence, we will separate results for both 

techniques for clarity. 

 

In 1957, Roughton and Forster extended this technique and established a method for determining 

DmCO and VC by measuring DLCO at multiple O2 concentrations (Roughton and Forster, 1957). 

In short, because CO and hemoglobin competitively bind hemoglobin, a higher partial pressure 

of oxygen (PO2) in the pulmonary capillaries yields a lower DLCO. Taking advantage of this, it 

is then possible to separate the contribution of resistances to gas transfer due to both the alveolar 

capillary membrane (Dm) and the pulmonary capillary blood volume (Vc) by graphing 1/DLCO 

against 1/șCO and fitting the resulting points. Specifically, DmCO will be equal to the inverse of 

the y-intercept and VC will be equal to the inverse of the slope of the regression line, according 

to the following equation developed by Roughton and Forster (Roughton and Forster, 1957): 

 ͳܱܥܮܦ ൌ ͳ݉ܦை  ͳߠை כ ܸ 
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However, this method is less than ideal, as it is not only time-consuming, but also requires the 

assumption that measurements of DLCO separated by multiple minutes represent an identical 

physiologic state unaffected by varying oxygen tensions, i.e. the same CO distribution 

throughout the lung during breath hold and the same cardiac output during the maneuver. 

Despite these shortcomings, this multiple-O2 tension method is considered the ‘gold standard’ 

for the calculation of DmCO and VC. 

 

In the late 1980’s, a method was developed in which DLNO is measured simultaneously with 

DLCO by the addition of 40 ppm NO to the gas mixture and has quickly become the technique 

of choice as it removes the issues described above associated with the multiple O2 tension 

method (Borland and Higenbottam, 1989; Guenard et al., 1987). The theory behind this method is 

that the rate of reaction of NO with hemoglobin in vitro is extremely rapid, approximately two orders of 

magnitude greater than șCO  (Borland and Higenbottam, 1989; Hakim et al., 1996).. Furthermore it is 

assumed that the extremely rapid reaction of NO with hemoglobin extends to the intact red cell in vivo. In 

this way, the resistance to NO transfer from the alveoli onto hemoglobin can be assumed to be 

only dependent on alveolar capillary membrane resistance and independent of the volume of 

pulmonary capillary blood present. This technique simplifies calculation of DmCO and VC, as it 

does not require tests to be performed at several oxygen tensions, therefore removing the 

necessity of assuming that the physiologic state is the same across multiple trials and also 

shortening the time required to obtain data (detailed calculations are described in sections 2.1-2 

“Assumptions and Calculations”). 

 

More recently, however, it has been argued that the assumption that șNO is infinite is not valid. 

Indeed, it has been demonstrated by multiple groups that the specific blood transfer conductance 
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for NO with free hemoglobin is anywhere from 100 to over 1000 times faster than that with red 

blood cells, suggesting that the red blood cell does in fact have a meaningful resistance to the 

diffusion of NO. These studies have been completed in several animal species and using various 

methods (Azarov et al., 2011; Borland et al., 2006; Borland et al., 2010; Carlsen and Comroe, 

1958; Deonikar and Kavdia, 2010; Liu et al., 1998; Vaughn et al., 2000). Accordingly, it has 

been argued by some researchers that șNO cannot, by definition, be infinite as a red cell resistance 

does in fact exist. Indeed, several in vitro studies find evidence for a finite specific blood transfer 

conductance for NO (Azarov et al., 2011; Sakai et al., 2008); however, these studies do not 

provide evidence as to the appropriate value for in vivo experiments. Furthermore, the in vivo 

value recently recommended for șNO by the ERS task force  is based on only three papers. Each 

of these papers has limitations; either the studies were performed in vitro or in animals, or the 

study has a large degree of variability in the value obtained (for further discussion, see section 

3.3 “Required assumptions/problems of each method”) (Borland et al., 2010; Carlsen and 

Comroe, 1958; Guenard et al., 2016). Importantly, we recognize that it is likely impossible to 

directly measure șNO in vivo in humans, and as such these studies are meaningful first steps in 

determining the value of șNO (currently suggested to be 4.5 mlCO/min/mmHg/mlblood). However, 

we feel that this șNO value needs to be validated and/or optimized with respect to a method that 

does not utilize NO as a means to gain confidence in its application\. 

 

So, the question becomes: should șNO be considered infinite or finite in the calculation of DmCO 

and VC? In order to investigate the outcomes of both methods, we have calculated DmCO and VC 

while applying both a finite and infinite șNO for over 750 DLCO and DLNO measurements from 
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our laboratory. What follows includes an overview of these calculations, details on the dataset 

used, and the outcomes of this analysis. 

 

2. METHODS 

2.1 Assumptions and Calculations - Infinite șNO 

As we and others have demonstrated previously, the calculation of DmCO and VC when assuming 

that șNO is infinite is critically dependent on two key considerations.  First, it is essential that the 

correct equation for calculating șCO is chosen. Second, the ratio of DmNO to DmCO (termed Į) 

must be established. While there exists a theoretical value for Į that is based on the molecular 

weights and solubilities in water of both NO and CO (termed the Krogh coefficient), numerous 

studies utilizing an infinite șNO have experimentally determined that Į is actually greater than 

1.97 (Magini et al., 2013; Tamhane et al., 2001). Accordingly, we have previously 

experimentally determined the best șCO equation and Į value to be used, for both the rebreathe 

and single breath techniques (Ceridon et al., 2010; Coffman et al., 2016), by systematically 

comparing the resulting DmCO and VC values against those obtained via the original multiple O2 

tension method. From both of these studies, our laboratory has concluded that the șCO equation 

described by Reeves and Park is ideal, while the optimal Į value is dependent on the technique 

used; ~2.26 for rebreathe and ~4.40 for single breath. This difference can be understood by 

recognizing that the single breath method, in our laboratory and others, often yields DLNO 

values somewhat higher than the rebreathe method (Ceridon et al., 2010; Ceridon et al., 2011; 

Coffman et al., 2016; Snyder et al., 2007; Zavorsky et al., 2014; Zavorsky and Murias, 2006; 

Zavorsky et al., 2004). Of note, while this inconsistency in DLNO values between the two 

methods in not completely understood, it is not the focus of this manuscript. Importantly, the 
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chosen Į value for each method ensures that calculated DmCO values are in agreement with those 

obtained via the original multiple O2 tension method, which does NOT rely on measures of 

DLNO. Details of the calculation of DmCO and VC, under the assumption that șNO is effectively 

infinite, are as follows: 

 ͳܱܰܮܦ ൌ ͳ݉ܦேை  ͳߠேை כ ܸ 

ேைߠ ൎ  λ ͳܱܰܮܦ ൌ ͳ݉ܦேை  ͳλ 

ܱܰܮܦ ൌ  ேை݉ܦ 

ை݉ܦ ൌ ߙேை݉ܦ  ൌ ߙܱܰܮܦ  

ߙ ݁ݎ݄݁ݓ ൌ ʹǤʹ ሺ݄݁ݐܽ݁ݎܾ݁ݎሻ ߙ ݎ ൌ ͶǤͶͲ ሺ݄ݐܽ݁ݎܾ ݈݁݃݊݅ݏሻ ͳܱܥܮܦ ൌ ͳ݉ܦை  ͳߠை כ ܸ ܸ ݐ݄ܽݐ ݏ  ൌ ͳߠை כ ൬ ͳܱܥܮܦ െ ͳ݉ܦை൰ିଵ
 

ଵఏೀ ݁ݎ݄݁ݓ ൌ ͲǤͲͲͺ כ ܱܲଶ  ͲǤͲͳͷ (Reeves and Park, 1992) 

 

2.2 Assumptions and Calculations - Finite șNO 

When calculating DmCO and VC using a finite șNO, three assumptions must be established. First, 

the correct șCO equation must be determined; Zavorksy et al. have chosen to use the equation 

reported by Guenard in 2016 (Forster, 1987; Guenard et al., 2016). Second, the Į ratio must be 

determined; most groups that assume a finite șNO have chosen to use an approximation of the 

Krogh coefficient, equal to 2. This Krogh coefficient, and the Į ratio used under the infinite șNO 

assumption, are similar, as they both convert DmNO to DmCO. The relationship of Į and the 
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Krogh coefficient and why Į differs between the methods is discussed later (see Fig. 4, as well as 

section 3.3 “Required assumptions/problems of each method”). Third, the value for șNO must be 

chosen; șNO is currently set to a value of 4.5 mlCO/min/mmHg/mlblood (see section 3.3 “Required 

assumptions/problems of each method” for more details) (Carlsen and Comroe 1958). Details of 

the calculation of DmCO and VC, under the assumption that șNO is finite, are as follows: 

 ͳܱܥܮܦ ൌ ͳ݉ܦை  ͳߠை כ ܸ 

ͳܱܰܮܦ ൌ ͳ݉ܦேை  ͳߠேை כ ܸ 

ݐ݂݂݊݁݅ܿ݅݁ܿ ݄݃ݎܭ ൌ ை݉ܦ ݐ݄ܽݐ ݄ܿݑݏ ʹ ൌ ʹேை݉ܦ   

Ǣ݃݊݅݃݊ܽݎݎܽ݁ݎ ேை݉ܦ  ൌ ேைߠ െ ʹ כ ܱܰܮܦேைߠைߠ െ ܱܥܮܦைߠ ேைߠ ݁ݎ݄݁ݓ  ൌ ͶǤͷ 

ை݉ܦ ൌ ʹேை݉ܦ   

ܸ ൌ ͳߠை כ ൬ ͳܱܥܮܦ െ ͳ݉ܦை൰ିଵ
 

ଵఏೀ ݁ݎ݄݁ݓ ൌ ͲǤͲͲʹ כ ܱܲଶ  ͳǤͳ (Guenard et al., 2016) 

 

3. RESULTS 

3.1 Effect of infinite vs. finite șNO assumption on actual data 

In order to determine the effect of a finite vs. infinite șNO on calculated values of DmCO and VC, 

the data discussed next includes over 750 observations (an observation is a single, simultaneous 

measurement of DLCO and DLNO on a study participant) from our laboratory using both the 
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rebreathe and single breath methods, from which we have calculated DmCO and VC using both 

the infinite and finite șNO assumptions described above (see sections 2.1-2 “Assumptions and 

Calculations”). Table 1 details the source of these data points; this includes data from healthy 

and heart failure participants, younger and older individuals, and rest as well as submaximal or 

incremental exercise trials. Therefore, these data span multiple variations in potential values of 

DLCO and DLNO, as well as DmCO and VC (Table 2). 

 

Figure 1 and Figure 2, as well as Table 2, show the median and distribution for DmCO and VC 

values calculated assuming an infinite șNO and a finite șNO using a rebreathe (Table 2, Figure 1) 

or single breath (Table 2, Figure 2) technique. Using the rebreathe method (Figure 1), both the 

infinite and finite șNO assumptions yield DmCO and VC values that qualitatively appear to be 

grouped in a physiological range and incorporate very few outliers. However, the DmCO values 

are statistically higher using the finite vs. infinite assumption. Quantitatively, the means, 

standard deviations, and number of outliers (defined as ± 2.7 standard deviations from the mean), 

are as follows: for DmCO: Infinite DmCO, 41.2 ± 17.7 ml/min/mmHg, 4 outliers; Finite DmCO, 

63.8 ± 31.1 ml/min/mmHg, 12 outliers (Infinite vs. Finite, p < 0.001); for VC: Infinite VC, 85.8 ± 

46.3 ml, 14 outliers; Finite VC, 89.8 ± 43.3 ml, 6 outliers (Infinite vs. Finite, p = 0.111). Using 

the single breath method (Figure 2), the findings are similar; DmCO and VC under both an infinite 

and finite șNO assumption are grouped in a physiologic range with few outliers. However, the 

mean DmCO values are statistically higher, and the VC values are statistically lower, using the 

finite vs. infinite assumption. The means, standard deviations, and number of outliers for the 

single breath method are as follows: for DmCO: Infinite DmCO, 49.5 ± 8.4 ml/min/mmHg, 3 
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outliers; Finite DmCO, 281.7 ± 81.5 ml/min/mmHg, 3 outliers (p < 0.001); for VC: Infinite VC, 

223.2 ± 141.2 ml, 5 outliers; Finite VC, 82.5 ± 18.7 ml, 2 outliers (p < 0.001). 

 

Such a difference in results between the finite and infinite assumption may complicate the ability 

to implement measures of DmCO and VC clinically. This is in contrast to the research 

environment, where we feel that the absolute values are of less importance, whereas the ability to 

observe changes between research groups or after an intervention is of the utmost importance. 

However, in order to implement DmCO and VC clinically, a single method to be implemented 

across the entire practice would simply need to be chosen. We discuss this idea further later (see 

section 4.3 “Conclusions”). 

 

3.2 Exercise responses 

In healthy humans, exercise is associated with an increase in cardiac output and pulmonary 

perfusion pressure that causes both recruitment of under-perfused pulmonary capillaries and 

distension of already perfused pulmonary blood vessels, as evidenced by an increase in DLCO, 

DmCO, and VC (La Gerche et al., 2010; Tamhane et al., 2001; Taylor et al., 2014).  Therefore, it is 

crucial that measures of DmCO and Vc increase accordingly in response to exercise, regardless of 

whether șNO is assumed to be infinite or finite. 

  

We have simultaneously assessed DLCO and DLNO using the single-breath technique at rest 

and during submaximal exercise in two separate studies in our laboratory (Coffman et al., 2016). 

In the first study, DLCO and DLNO were measured in duplicate at rest and during cycle exercise 

at 80W in 11 healthy subjects (Table 1, #5). In the second study, DLCO and DLNO were again 
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measured in duplicate at rest and during cycle exercise at an intensity designed to elicit a 

doubling of resting cardiac output and at least ~70% of age predicted heart-rate maximum. This 

study was performed in 8 healthy subjects (Table 1, #6).  For the present analyses, the data from 

both studies were pooled, yielding a mean submaximal workload of 80 W, range 40 – 130 W. 

 

In order to determine if DmCO and VC significantly increased with submaximal exercise, we 

performed a student's paired t-test on the data calculated under both infinite and finite șNO 

assumptions. Table 3 shows that, when assuming an infinite șNO, DmCO and VC increased 

significantly with submaximal exercise, as would be expected (DmCO at rest 45.6 ± 6.5 vs. 

exercise 53.7 ± 8.2 ml/min/mmHg, P < 0.001; VC at rest 162.6 ± 68.6 vs. exercise 288.9 ± 168.9 

ml, P < 0.001). On the other hand, only VC significantly increased under the finite șNO 

assumption, whereas DmCO was statistically unchanged (DmCO at rest 279.1 ± 95.4 vs. exercise 

284.5 ± 64.2 ml/min/mmHg, P = 0.498; VC at rest 72.7 ± 12.9 vs exercise 93.1 ± 18.3 ml, P < 

0.001). This is clearly concerning, as DmCO is expected to rise in concert with Vc with increasing 

exercise intensity. Thus, the lack of response suggests a likely flaw with the determination of 

these values when assuming a finite șNO (Lewis et al., 1958; Tamhane et al., 2001). 

 

We have also simultaneously assessed DLCO and DLNO using the rebreathe technique at rest 

and during incremental exercise in two separate studies in our laboratory. In the first study, 

DLCO and DLNO were measured at rest and during cycle exercise at 0, 10, 15, 30, 50, and 70% 

of Wpeak (determined during a maximal exercise test at a prior study visit). This study was 

performed in 7 healthy subjects (Table 1, #3). In the second study, DLCO and DLNO were 

measured in duplicate at rest and during cycle exercise at 25, 50, 75, and 90% of Wpeak 
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(determined during a maximal exercise test at a prior study visit). This study was performed in 

31 healthy subjects (Table 1, #4). For the present analysis, the data from both studies were 

pooled, and DmCO or VC was then plotted as a function of workload. Because these data 

incorporate repeat measures, a linear mixed effects model was used to separate the individual 

and group effects on either DmCO or VC with exercise. The group effect was then plotted for both 

variables under the infinite and finite assumptions (Figure 3). Whether an infinite or a finite șNO 

is assumed, DmCO and VC significantly increased with increasing workload (all P < 0.001). All in 

all, this suggests that assuming both an infinite or finite șNO yields statistically significant 

increases in DmCO and VC with incremental exercise when using the rebreathe method, as would 

be anticipated. 

 

3.3 Required assumptions/problems of each method 

Both the finite and infinite methods for calculating VC and DmCO from DLCO and DLNO rely 

on several values that likely impossible to measure directly in vivo in humans. The infinite 

method has two assumptions that must be optimized, the șCO coefficients and Į, while the finite 

method has the additional term, șNO. Because these values cannot be directly measured, our 

laboratory has taken the approach of systematically verifying these terms using the gold-standard 

multiple O2 tension method, which does not rely on measures of DLNO. By contrast, this 

rigorous optimization does not appear to have been done for the finite method.  

 

Both methods are very sensitive to the values chosen for the Į ratio/Krogh coefficient, șNO, and 

șCO coefficients. While the determination of the optimal șCO coefficients is essential to the use of 

either method, the following section will focus on the Į ratio/Krogh coefficient. When șNO and 
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șCO are required in the theoretical discussion going forward, we will use the values that have 

either been determined as optimal by our group for the infinite assumption, or the values 

currently used in the literature for the finite assumption. 

 

The Krogh coefficient used with the finite assumption and the Į ratio used with the infinite 

assumption are very similar, as they both convert in DmNO to DmCO. Here, we compare the 

values used by each assumption and explore their relationship. The Krogh diffusion constant for 

CO versus NO is 1.97 in water. However, studies in our laboratory and others have suggested 

that a value greater than 1.97 should be used when converting DmNO to DmCO (Magini et al., 

2013; Tamhane et al., 2001). For this reason, we are wary of the conclusion by the recent task 

force that a value of 1.97 should be utilized (Zavorsky et al., 2017). Below, we have calculated 

an ‘effective Į’ for the finite method (see below) which can be used to directly convert DLNO to 

DmCO as the Į ratio does for the infinite method. The value of this ‘effective Į’ is shown in 

Figure 4 over a range DLNO/DLCO ratios. 

 

ߙ ൌ ʹ כ ൬ ܮܦேைߠேை െ ைߠʹ כ ൬ ேைܮܦேைߠ െ  ை൰ ൰ܮܦைߠ

 

This effective Į is less than 1.97 for most DLNO/DLCO ratios using the finite method. The 

lower ‘effective Į’ of the finite method represents the resistance to the transfer of NO through 

the red blood cell that is not taken into account by the infinite method. Some have argued that it 

is inappropriate to vary Į as it is a chemical property based on the solubility of NO and CO. 

However, others have shown that Į should be greater than 1.97 and have suggested that 

confounders such as uptake by the airway epithelium, conversion of NO to N2O, or differences 
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in solubility of NO and CO in biological tissues may have a larger effect on DLNO than red 

blood cell resistance (Tamhane et al., 2001).  Thus, we feel that it is appropriate for the Į ratio to 

vary away from the Krogh coefficient when performing a systematic optimization.   

 

4. DISCUSSION 

The determination of șNO has been chosen based on three studies. First was an in vitro study 

from 1958 determining the second order rate constant of NO with red blood cells(Carlsen and 

Comroe, 1958). Later, the value of 4.5 mlCO/min/mmHg/mlblood was determined from this earlier 

study (Borland and Cox, 1991). A major methodological concern with this method is that the 

concentration of NO used was very high relative to that used for DLNO measurements, possibly 

altering the reaction kinetics and underestimating the rate constant observed in vivo (see CD 

Borland, this issue, Hypothesis: Why șNO could be finite in vitro but infinite in vivo). Second, a 

2010 study in dogs where oxyglobin was exchanged with red blood cells found an increase in 

DLNO with progressively greater exchange (Borland et al., 2010). These results suggest that șNO 

is finite, but the study was not designed to calculate the actual value. Finally, a 2016 study in 

humans measured DLCO and DLNO while participants breathed 15% and 21% oxygen and 

attempted to estimate șNO; however, this study was not designed to precisely calculate șNO and 

therefore only suggests the continued use of the 4.5 mlCO/min/mmHg/mlblood value (Guenard et 

al., 2016). Based on only these three studies, a recent task force has recommended use of a finite 

șNO for calculation of DmCO and VC (Zavorsky et al., 2017). Furthermore, to the best of our 

knowledge, there have been no studies optimizing șNO to the multiple O2 tension method, a 

method which does not utilize NO, or any other method. Therefore, we suggest that further 
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validation is necessary to determine the correct values for șNO, as well as șCO coefficients, before 

the finite method enters standard practice. 

 

4.1 Theoretical breaking points for each assumption 

In our analysis, both the infinite and finite șNO assumptions yielded extreme outliers in a total of 

four instances (approximately 0.5% of all observations). Though we removed these outliers from 

further analysis, this finding led us to ask under which circumstances each assumption would fail 

to yield reasonable physiologic values for DmCO and VC. Figures 5-6 demonstrates the values 

that would be obtained for DmCO (Figure 5) and VC (Figure 6) over a range of DLNO/DLCO 

values for both methods assuming PO2 of 80 mmHg, 100 mmHg, and 120 mmHg, DLCO of 20 

ml*min-1*mmHg-1 and a DLCO/DLNO ratio of up to 10. 

 

For DmCO, assuming an infinite șNO yields stable DmCO values for any DLNO/DLCO ratio. 

However, assuming a finite șNO causes an asymptote to occur, in this example around 

DLNO/DLCO equals 7, upon which DmCO values increase rapidly to a non-physiologic range.  

This asymptote occurs when DLNO/DLCO is equal to șNO/șCO (note that șCO is dependent on 

PO2). The asymptote location is very sensitive to the choice of șCO equation in the finite method 

and care must be taken to ensure that the asymptote does not occur in the physiological range of 

DLNO/DLCO ratio. For VC, both the infinite and finite șNO assumptions are stable unless 

DLNO/DLCO approaches Į, where an asymptote occurs yielding rapidly increasing VC values 

which climb to a non-physiologic range. It is important to note that these asymptotes will shift 

depending on the specific values entered into the calculations. 
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All in all, Figures 5-6 demonstrates the mathematical constraints that are incorporated into the 

determination of DmCO and VC from values of DLCO and DLNO, regardless of the assumptions 

made as to the correct value of șNO. While DmCO and VC are themselves physiologic variables, 

the calculations that have been established to determine these variables incorporate an 

unavoidable complication. The DLNO/DLCO values at which each assumption yields an 

asymptote is potentially concerning in two cases. First, DmCO values calculated using a finite șNO 

under normal conditions are unlikely to encroach upon the asymptote, as a physiologic 

DLNO/DLCO value is generally around 4-5 (Hughes and van der Lee, 2013). However, in 

instances such as altitude, where PO2 is lower and the asymptote is therefore shifted to lower 

DLNO/DLCO ratios, the DLNO/DLCO ratio may fall within the range where DmCO rapidly 

increases to large, non-physiologic values. Second, VC values calculated using the infinite șNO 

assumption and the single breath method, where the optimal Į value has been optimized at ~ 4.4, 

also causes the asymptote to occur at a physiologic range for DLNO/DLCO. However, as can be 

seen in Table 2, the single breath method tends to yield higher DLNO/DLCO ratios than that of 

the rebreathe method (presently, mean 5.39 ± 0.43 for single breath vs. 3.58 ± 0.59 for 

rebreathe), such that approaching the asymptote is not usually an issue. The observation that 

DLNO/DLCO is slightly higher using the single breath method is found in our laboratory and 

others (Ceridon et al., 2010; Ceridon et al., 2011; Coffman et al., 2016; Zavorsky and Lands, 

2005; Zavorsky and Murias, 2006). 

 

4.2 Key Points 

To be clear, we agree that șNO is, in a strict biochemical sense, not infinite, as no biological 

process can occur instantaneously. Indeed, as we have highlighted above, there is experimental 
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data which demonstrates a resistance to combination of NO with hemoglobin that resides in the 

red cell (Azarov et al., 2011; Sakai et al., 2008). In this sense, we concede that a finite șNO may 

be a more accurate representation of gas transfer from the environment to hemoglobin in blood. 

However, in the case of calculating DmCO and VC, the value of șNO has not been optimized 

relative to the gold standard multiple O2 method or in any other way. Therefore, the assumption 

of an infinite șNO relative to șCO is still appropriate. While our laboratory recognizes that 

considering șNO infinite may not be ideal, we argue two main points that cause our group to be 

wary of the use of a finite șNO, in its current form, at this point. 

 

First, when we have applied the finite șNO value to our calculations of DmCO and VC using the 

single breath technique, we obtain values which do not increase as expected during exercise. 

This is concerning, as much of the research performed in our laboratory relies on accurate 

measures of the change in DmCO and VC during submaximal and maximal exercise bouts. 

Second, as is the case in any scientific field, new methodology must be validated against a gold-

standard. While some groups may argue that there is no gold standard in the case of DmCO and 

VC, we feel it is important that the finite șNO calculations be validated against a method that does 

not utilize NO. We have performed such optimizations on our calculations, which assume an 

infinite șNO, using both the single breath and rebreathe techniques (Ceridon et al., 2010; Coffman 

et al., 2016). We feel it is important that those groups that are invested in the use of a finite șNO 

apply a similar method, where the șNO value would be systematically varied with respect to the 

other two required assumptions (the șCO equation and Krogh coefficient) of the finite șNO 

calculations. This methodology would produce optimized values for all three calculation 

parameter assumptions, thus adding confidence to the use of the finite method. 
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All in all, while the finite șNO calculations have merit and may move into standard practice in the 

future, we feel that two main issues remain with the use of a finite șNO in practice, including the 

lack of validation of the currently established șNO value as well as the non-physiological 

response to exercise.  

 

Additionally, we cannot stress enough that while alveolar-capillary membrane conductance and 

pulmonary-capillary blood volume are anatomical phenomena, the calculations that have been 

established to determine these variables from measured values of DLNO and DLCO are entirely 

dependent on the mathematical relationships underlying the given assumptions. In this sense, 

perhaps it is better to consider DmCO and VC functional variables that can be used to observe 

changes over time, whether that be during exercise studies or clinically in disease, instead of true 

representations of anatomy.  

 

4.3 Conclusions 

The nuances of the calculations required for both assumptions can be discussed endlessly, but 

our ability to utilize DmCO and VC to contribute meaningfully to the field is the overriding goal. 

We have shown that the values themselves are very dependent on the mathematical relationships, 

and therefore are likely not entirely in agreement with the physiology regardless of the 

assumptions. However, by using a consistent method for calculation of DmCO and VC, it is 

entirely possible to observe changes within study participants or differences between study 

groups. If DmCO and VC are to eventually enter clinical practice, an assumption regarding șNO 

must be determined, in addition to a șCO equation and Į ratio, and standardized across the 
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practice. Once the optimal calculation parameters have been chosen, it will then be possible to 

systematically investigate appropriate cutoffs for the determination of disease states. At the 

current time, with a number of conflicting assumptions and methods, the results are simply too 

variable to determine how a particular result should be interpreted. In the research arena, the 

choice of calculation parameters is of little concern as long as the resulting data remain within 

the physiologic range (i.e. positive) and have appropriate response to stimuli, such as pulmonary-

capillary blood volume increasing with exercise. While we respect the work of the recent ERS 

task force, we believe their findings are premature as no study has been designed to calculate an 

exact șNO in vivo in humans, and we are also uncomfortable with their conclusions regarding the 

correct DmNO/DmCO (Į-) ratio. Additionally, the ERS task force has not presented any new 

evidence for use of a finite șNO beyond the evidence discussed above (Zavorsky et al., 2017). 

Therefore at this time, we suggest the continued use of the assumption that șNO is infinite until 

further optimization of the finite șNO method can be performed. 
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Figure 1: DmCO and VC values calculated from rebreathe data using both the finite and 

infinite șNO assumptions. Both assumptions yield reasonable values for DmCO and VC – i.e., 

positive and within range of previously reported values. Outliers (red +) are defined as ± 2.7 

standard deviations from the mean. Finite DmCO values are significantly greater that infinite 

DmCO values (p < 0.001); VC values are not statistically different. DmCO, alveolar capillary 

membrane conductance; VC, pulmonary capillary blood volume. 
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Figure 2: DmCO and VC values calculated from single breath data using both the finite and 

infinite șNO assumptions. Both assumptions yield reasonable values for DmCO and VC – i.e., 

positive and within range of previously reported values. Outliers (red +) are defined as ± 2.7 

standard deviations from the mean. Finite DmCO values are significantly greater, and finite VC 

values are significantly lower, that the infinite assumption values (both p < 0.001). DmCO, 

alveolar capillary membrane conductance; VC, pulmonary capillary blood volume. 

 

Figure 3: Response of DmCO and VC to incremental exercise calculated from rebreathe 

data. A linear mixed effects model was implemented to separate the individual and group effects 

on either DmCO or VC throughout incremental cycling exercise. The group effects for both the 

infinite and finite șNO assumptions are plotted as a function of workload. For both assumptions, 
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DmCO and VC increased significantly throughout exercise (all p < 0.001). DmCO, alveolar 

capillary membrane conductance; VC, pulmonary capillary blood volume. 

 

 

 

Figure 4: Effective Į ratio for the conversion of DLNO to DmCO for the finite șNO 

assumption. The effective Į ratio, which converts DLNO directly to DmCO for the finite șNO 

assumption, was calculated for a range for DLNO/DLCO ratios. The resulting effective Į ratio is 

lower than the Krogh Coefficient (1.97) because the finite șNO assumption calculations only 

factor in the theoretical red blood cell resistance to the transfer of NO. The resulting effective Į 

ratio is also lower than the Į ratio used under the infinite șNO assumption (2.26) for 

DLNO/DLCO ratios below ~6.5.  
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Figure 5: Theoretical DmCO values over a range of DLNO/DLCO ratios. DmCO was 

calculated under both the infinite and finite șNO assumptions using DLCO = 20 ml/min/mmHg. 

The finite calculation of DmCO is also dependent on PO2; values of 80, 100, and 120 mmHg are 

show here. While the infinite calculation of DmCO is stable over a large range of DLNO/DLCO 

ratios, the finite calculation of DmCO rapidly increases as the DLNO/DLCO ratio increases. 

DLCO, lung diffusing capacity for carbon monoxide; DLNO, lung diffusing capacity for nitric 

oxide; DmCO, alveolar capillary membrane conductance. 
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Figure 6: Theoretical VC values over a range of DLNO/DLCO ratios. VC was calculated 

under both the infinite and finite șNO assumptions using DLCO = 20 ml/min/mmHg. The infinite 

calculation of VC is dependent on the technique used in our laboratory; hence, both rebreathe and 

single breath are shown here. Under both assumptions, calculation of VC is increases rapidly 

when the DLNO/DLCO ratio is equal to the Į ratio/Krogh coefficient used. DLCO, lung 

diffusing capacity for carbon monoxide; DLNO, lung diffusing capacity for nitric oxide; VC, 

pulmonary capillary blood volume. 
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Table 1. Source of over 750 DLCO and DLNO observations 

 

 

 

 

 

 

 

 

Values are reported as mean ± SD. BMI, body mass index; HF, heart failure; Wpeak, peak work rate. 

  

Study ID Age (y) Height (cm) Weight (kg) BMI (kg/m 2) Exercise Condition 
  
 Rebreathe 

1.  66.5 ± 10.0 172.4 ± 10.3 82.2 ± 17.6 27.8 ± 4.4 -- HF + Control 
2.  59.7 ± 10.6 174.5 ± 8.9 85.8 ± 17.6 28.1 ± 5.0 -- HF + Control 
3. 25.9 ± 4.0 176.4 ± 11.7 71.3 ± 10.5 22.8 ± 2.1 Incremental to 70% Wpeak Healthy 
4.  46.1 ± 20.6 176.2 ± 5.1 75.1 ± 7.4 24.2 ± 2.4 Incremental to 90% Wpeak Healthy 

Average 49.6 ± 19.6 175.3 ± 8.2 78.7 ± 14.1 25.6 ± 4.1 -- -- 
  
 Single Breath 

5.  25.1 ± 2.4 180.7 ± 6.4 74.0 ± 10.1 22.6 ± 2.4 Constant @ 80 Watts Healthy 
6.  26.9 ± 3.3 173.5 ± 7.4 65.4 ± 6.8 21.7 ± 1.5 Constant @ 82 ± 27 Watts Healthy 

Average 25.9 ± 2.9 177.7 ± 7.7 70.6 ± 9.9 22.3 ± 2.1 -- -- 
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Table 2. DLCO/DLNO data and resulting DmCO and VC values calculated via both the infinite and finite șNO assumptions 

 Infinite Method Finite Method P-value 
   

 Rebreathe  
DLCO 26.5 ± 11.9  

Range 5.9 – 72.1  
DLNO 93.1 ± 40.0  

Range 15.1 – 276.9  
DLNO/DLCO 3.58 ± 0.59  

Range 2.33 – 7.03  
        
DmCO 41.2 ± 17.7 63.8 ± 31.1 < 0.001 

Range 6.7 – 122.5 8.33 – 319.8  
VC 85.8 ± 46.3 89.8 ± 43.3 0.111 

Range 18.1 – 497.2 20.1 – 253.3  
   

 Single Breath  
DLCO 40.7 ± 8.2  

Range 29.3 – 68.6  
DLNO 217.7 ± 36.8  

Range 165.4 – 335.4  
DLNO/DLCO 5.39 ± 0.43  

Range 4.59 – 6.62  
        
DmCO 49.5 ± 8.4 281.7 ± 81.5 < 0.001 

Range 37.6 – 76.2 183.6 – 55.8  
VC 223.2 ± 141.2 82.5 ± 18.7 < 0.001 

Range 73.0 – 878.5 55.8 – 144.4  
Values are reported as mean ± SD. Values include all rest, submaximal, and incremental exercise observations as well as data from both healthy individuals and 
heart failure patients. DLCO, lung diffusing capacity for carbon monoxide; DLNO, lung diffusing capacity for nitric oxide; DmCO, alveolar capillary membrane 
conductance; VC, pulmonary capillary blood volume. 
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Table 3. Rest and submaximal exercise values for DmCO and VC using the single breath technique calculated via both the infinite and finite șNO assumptions 

 Rest Exercise (80 ± 17 W) Absolute Change % Change P-value 
    
 Infinite Method 
DmCO 45.6 ± 6.5 53.7 ± 8.2 7.7 ± 3.6 16.9 ± 7.3 < 0.001 

Range 37.6 – 63.7 42.0 – 76.2 1.4 – 18.8 2.9 – 31.4  
VC 162.6 ± 68.6 288.9 ± 168.9 129.0 ± 160.7 92.0 ± 112.2 < 0.001 

Range 73.0 – 427.8 109.7 – 878.5 –119.5 – 725.1 –52.1 – 472.4  
    
 Finite Method 
DmCO 279.1 ± 95.4 284.5 ± 64.2 0.1 ± 76.9 4.79 ± 27.0 0.498 

Range 185.4 – 608.0 183.6 – 422.7 –219.3 – 177.0 –37.9 – 95.5  
VC 72.7 ± 12.9 93.1 ± 18.3 20.3 ± 10.9 28.5 ± 16.4 < 0.001 

Range 55.8 – 110.9 64.5 – 144.4 –3.6 – 39.9 –4.9 – 69.8  
Values are reported as mean ± SD. DmCO, alveolar capillary membrane conductance; VC, pulmonary capillary blood volume. 

 


