
This is a repository copy of Reconstruction of time-dependent coefficients from heat 
moments.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/109850/

Version: Accepted Version

Article:

Huntul, MJ, Lesnic, D and Hussein, MS (2017) Reconstruction of time-dependent 
coefficients from heat moments. Applied Mathematics and Computation, 301. pp. 233-253.
ISSN 0096-3003 

https://doi.org/10.1016/j.amc.2016.12.028

© 2016 Elsevier Inc. Licensed under the Creative Commons 
Attribution-NonCommercial-NoDerivatives 4.0 International 
http://creativecommons.org/licenses/by-nc-nd/4.0/

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Reconstruction of time-dependent coefficients from
heat moments

M.J. Huntul1,2, D. Lesnic1 and M.S.Hussein1,3

1Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, UK
2Department of Mathematics, College of Science, Jazan University, Jazan, Saudia Arabia
3Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq
E-mails addresses: mmmjmh@leeds.ac.uk (M.J.Huntul), amt5ld@maths.leeds.ac.uk (D.
Lesnic), mmmsh@leeds.ac.uk (M.S.Hussein).

Abstract

This paper investigates the inverse problems of simultaneous reconstruction of time-
dependent thermal conductivity, convection or absorption coefficients in the parabolic
heat equation governing transient heat and bio-heat thermal processes. Using initial and
boundary conditions, as well as heat moments as over-determination conditions ensure
that these inverse problems have a unique solution. However, the problems are still ill-
posed since small errors in the input data cause large errors in the output solution. To
overcome this instability we employ the Tikhonov regularization. A discussion of the
choice of multiple regularization parameters is provided. The finite-difference method
with the Crank-Nicolson scheme is employed as a direct solver. The resulting inverse
problems are recast as nonlinear minimization problems and are solved using the lsqnon-
lin routine from the MATLAB toolbox. Numerical results are presented and discussed.

Keywords: Inverse problem; Tikhonov’s regularization; heat transfer; heat moments.

1 Introduction

Simultaneous determination of several unknown physical property coefficients in heat
transfer which dependent on time, space or temperature has been investigated in various
studies, see e.g. [6–9,11].

In a recent paper [6] by the authors we have investigated the inverse problems of
simultaneous numerical reconstruction of time-dependent thermal conductivity and con-
vection coefficients in a one-dimensional parabolic equation from Cauchy boundary data
measurements represented by the boundary temperature and heat flux. In this paper,
we investigate the reconstruction of the same coefficients, as well as of the absorption
coefficient, using the measurement of the heat moments instead of the heat flux.

The paper is organized as follows: In Section 2, the mathematical of formulation
of the inverse problems are reformulated and uniqueness results are stated. In Section
3, the numerical solution of the direct problem based on finite difference method with
the Crank-Nicolson scheme is presented. In Section 4, the numerical approach to solve
the minimization of the nonlinear Tikhonov regularization functional is presented. The
numerical results for various examples are presented and discussed in Section 5. The
choice of multiple regularization parameters is also addressed. Finally, conclusions are
presented in Section 6.
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2 Mathematical formulation

Fix the parameters L > 0 and T > 0 representing the length of a finite slab and the time
duration, respectively. Denote by ΩT := (0, L)× (0, T ) the solution domain. We consider
the parabolic heat equation

∂u

∂t
(x, t) = a(t)

∂2u

∂x2
(x, t) + b(t)

∂u

∂x
(x, t) + c(t)u(x, t) + f(x, t), (x, t) ∈ ΩT , (1)

where a > 0, b, c and f are coefficients, and u(x, t) is the temperature. For simplicity, we
have assumed that the heat capacity is constant and taken to be unity. Equation (1) has
to be solved subject to the initial condition

u(x, 0) = φ(x), 0 ≤ x ≤ L, (2)

and the Dirichlet boundary conditions

u(0, t) = µ1(t), u(L, t) = µ2(t), 0 ≤ t ≤ T. (3)

If a, b, c and f are given then (1)–(3) constitue a direct Dirichlet problem for the
temperature u(x, t). Other outputs of interest are the heat fluxes

−a(t)ux(0, t) =: q0(t), a(t)ux(L, t) =: qL(t), 0 ≤ t ≤ T, (4)

and the heat moments

Hk(t) =

∫ L

0

xku(x, t)dx, k = 0, 1, 0 ≤ t ≤ T. (5)

However, if any of the coefficients a, b, c and/or f are not known then we are dealing with
inverse coefficient identification problems.

Prior to this study, the simultaneous identification of the coefficients a(t) and b(t) in the
problem (1)–(3) with the additional flux data (4) has been considered in [6]. In this paper,
we consider the simultaneous reconstruction of the same time-dependent coefficients, as
well as of a(t) and c(t), but from the heat moments (5) instead of the heat fluxes (4). The
uniqueness of solution of these inverse problems is stated in the next two subsections.

2.1 Inverse Problem 1

Assuming that c(t) = 0, the inverse problem 1 (IP1) requires the simultaneous deter-
mination of the time-dependent thermal conductivity a(t) > 0 and the convection (or
advection) coefficient b(t), together with the temperature u(x, t) satisfying

∂u

∂t
(x, t) = a(t)

∂2u

∂x2
(x, t) + b(t)

∂u

∂x
(x, t) + f(x, t), (x, t) ∈ ΩT , (6)

subject to (2), (3) and (5).
The uniqueness of solution (a(t), b(t), u(x, t)) of this inverse problem was established

in [13] and reads as follows.
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Theorem 1. Let φ ∈ C1[0, L], µk ∈ C1[0, T ], Hk ∈ C1[0, T ] for k = 0, 1, and f ∈ C(ΩT ).
Suppose that the following condition is satisfied:

U1(t) :=
(

µ2(t)− µ1(t)
)

∫ L

0

xf(x, t)dx−
(

Lµ2(t)−H0(t)
)

∫ L

0

f(x, t)dx 6= 0,

∀t ∈ [0, T ]. (7)

Then a solution (a(t), b(t), u(x, t)) ∈ C[0, T ]×C[0, T ]×
(

C2,1(ΩT )∩C(ΩT )
)

with a(t) > 0

for t ∈ [0, T ], to the problem (2), (3), (5) and (6) is unique.

Remark 1. Observe that by multiplying equation (6) by xk, k = 0, 1, integrating with
respect to x from 0 to L, and taking into account condition (5), we obtain,

H ′

0(t) = a(t)
(

ux(L, t)− ux(0, t)
)

+ b(t)
(

u(L, t)− u(0, t)
)

+
∫ L

0
f(x, t)dx,

H ′

1(t) = a(t)
(

Lux(L, t)− u(L, t) + u(0, t)
)

+ b(t)
(

Lu(L, t)−H0(t)
)

+
∫ L

0
xf(x, t)dx.

Taking t = 0 in these equations, using the compatibility conditions ux(0, t) = φ′(0),
ux(L, t) = φ′(L), the Dirichlet boundary conditions (3) and solving for a(0) and b(0), we
obtain,

a(0) =
(

∆(0)
)

−1
[

(

H ′

0(0)−

∫ L

0

f(x, 0)dx
)(

Lµ2(L)−H0(0)
)

−
(

µ2(L)− µ1(0)
)(

H ′

1(0)−

∫ L

0

xf(x, 0)dx
)

]

,

b(0) =
(

∆(0)
)

−1
[

(

φ′(L)− φ′(0)
)(

H ′

1(0)−

∫ L

0

xf(x, 0)dx
)

−
(

H ′

0(0)−

∫ L

0

f(x, 0)dx
)(

Lφ′(L)− µ2(L) + µ1(0)
)

]

, (8)

where

∆(0) =
(

µ2(L)− µ1(0)
)2

+ L
(

φ′(L)µ1(0)− φ′(0)µ2(L)
)

−H0(0)
(

φ′(L)− φ′(0)
)

.

2.2 Inverse Problem 2

Assuming that b(t) = 0, the inverse problem 2 (IP2) requires the simultaneous determina-
tion of the time-dependent thermal conductivity a(t) > 0 and the absorption coefficient
c(t), together with the temperature u(x, t) satisfying

∂u

∂t
(x, t) = a(t)

∂2u

∂x2
(x, t) + c(t)u(x, t) + f(x, t), (x, t) ∈ ΩT , (9)

subject to (2), (3) and (5). In bio-heat transfer, equation (9) is known as the Pennes
bio-heat equation and c(t) represents the perfusion coefficient, [15]. In case where the
thermal conductivity coefficient a(t) is known, and taken to be unity, the inverse problem
(2), (3), (9) with the the integral condition (5) for k = 0, for recovering the perfusion
coefficient c(t) and the temperature u(x, t) was studied both theoretically and numerically
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in [2] and [15], respectively.
The uniqueness of solution (a(t), c(t), u(x, t)) of the IP2 was established in [8] and

reads as follows.

Theorem 2. Let φ ∈ C1[0, L], µk ∈ C[0, T ], Hk ∈ C1[0, T ] for k = 0, 1, and f ∈ C(ΩT ).
Suppose that the following condition is satisfied:

U2(t) := H0(t)H
′

1(t)−H
′

0(t)H1(t) +

∫ L

0

(

H1(t)− xH0(t)f(x, t)
)

dx 6= 0,

∀t ∈ [0, T ]. (10)

Then a solution (a(t), c(t), u(x, t)) ∈ C[0, T ]× C[0, T ]×
(

C2,1(ΩT ) ∩ C1,0(ΩT )
)

with

a(t) > 0 for t ∈ [0, T ], to the problem (2), (3), (5) and (9) is unique.

Remark 2. Observe that by multiplying equation (8) by xk, k = 0, 1, integrating with
respect to x from 0 to L, and taking into account condition (5), we obtain, [8],

H ′

0(t) = a(t)
(

ux(L, t)− ux(0, t)
)

+ c(t)H0(t) +
∫ L

0
f(x, t)dx,

H ′

1(t) = a(t)
(

Lux(L, t)− u(L, t) + u(0, t)
)

+ c(t)H1(t) +
∫ L

0
xf(x, t)dx.

As before in Remark 1, taking t = 0 in these equations and solving for a(0) and c(0), we
obtain,

a(0) =
(

Θ(0)
)

−1
[

H1(0)
(

H ′

0(0)−

∫ L

0

f(x, 0)dx
)

−H0(0)
(

H ′

1(0)−

∫ L

0

xf(x, 0)dx
)

]

,

c(0) =
(

Θ(0)
)

−1
[

(

H ′

1(0)−

∫ L

0

xf(x, 0)dx
)(

φ′(L)−φ′(0)
)

−
(

H ′

0(0)−

∫ L

0

f(x, 0)dx
)(

Lφ′(L)− µ2(L) + µ1(0)
)

]

, (11)

where
Θ(0) = H1(0)

(

φ′(L)− φ′(0)
)

−H0(0)
(

Lφ′(L)− µ2(L) + µ1(0)
)

.

3 Numerical solution of direct problem

In this section, we consider the direct initial boundary value problem given by equations
(1)–(3). We use the finite-difference method (FDM) with the Crank-Nicholson scheme,
[14], which is unconditionally stable and second-order accurate in space and time. We
denote u(xi, tj) = ui,j, a(tj) = aj, b(tj) = bj, c(tj) = cj and f(xi, tj) = fi,j, where
xi = i∆x, tj = j∆t for i = 0,M, j = 0, N, and ∆x = L

M
, ∆t = T

N
.

Considering the general partial differential equation

ut = G(x, t, u, ux, uxx), (12)

the Crank-Nicolson method, [14], discretises (12), (2) and (3) as

ui,j+1 − ui,j

∆t
=

1

2
(Gi,j +Gi,j+1), i = 1, (M − 1), j = 0, (N − 1), (13)
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ui,0 = φ(xi), i = 0,M, (14)

u0,j = µ1(tj), uM,j = µ2(tj), j = 0, N, (15)

where

Gi,j = G
(

xi, tj, ui,j,
ui+1,j − ui−1,j

2(∆x)
,
ui+1,j − 2ui,j + ui−1,j

(∆x)2

)

,

Gi,j+1 = G
(

xi, tj+1, ui,j+1,
ui+1,j+1 − ui−1,j+1

2(∆x)
,
ui+1,j+1 − 2ui,j+1 + ui−1,j+1

(∆x)2

)

,

i = 1, (M − 1), j = 0, (N − 1). (16)

For our problem, equation (1) can be discretised in the form of (12) as

−Aj+1ui−1,j+1 + (1 + Bj+1)ui,j+1 − Cj+1ui+1,j+1 =

Ajui−1,j + (1− Bj)ui,j + Cjui+1,j +
∆t

2
(fi,j + fi,j+1), (17)

for i = 1, (M − 1), j = 0, (N − 1), where

Aj =
(∆t)aj
2(∆x)2

−
(∆t)bj
4(∆x)

, Bj =
(∆t)aj
(∆x)2

−
(∆t)cj

2
, Cj =

(∆t)aj
2(∆x)2

+
(∆t)bj
4(∆x)

.

At each time step tj+1, for j = 0, (N − 1), using the Dirichlet boundary conditions
(15), the above difference equation can be reformulated as a (M − 1) × (M − 1) system
of linear equations of the form,

Duj+1 = Euj + b, (18)

where

uj+1 = (u1,j+1, u2,j+1, ..., uM−2,j+1, uM−1,j+1)
T,

D =















1 + Bj+1 −Cj+1 0 ... 0 0 0
−Aj+1 1 + Bj+1 −Cj+1 ... 0 0 0

...
...

...
. . .

...
...

...
0 0 0 ... −Aj+1 1 + Bj+1 −Cj+1

0 0 0 ... 0 −Aj+1 1 + Bj+1















,

E =















1− Bj Cj 0 ... 0 0 0
Aj 1− Bj Cj ... 0 0 0
...

...
...

. . .
...

...
...

0 0 0 ... Aj 1− Bj Cj

0 0 0 ... 0 Aj 1− Bj















,

and

b =















∆t
2
(f1,j + f1,j+1) + Ajµ1(tj) + Aj+1µ1(tj+1)

∆t
2
(f2,j + f2,j+1)

...
∆t
2
(fM−2,j + fM−2,j+1)

∆t
2
(fM−1,j + fM−1,j+1) + Cjµ2(tj) + Cj+1µ2(tj+1)















.
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As an example, consider the direct problem (1)–(3) with T = L = 1,

c(t) = 0, φ(x) = u(x, 0) = e−x + x2, µ1(t) = u(0, t) = et,

µ2(t) = u(1, t) = (e−1 + 1)et, f(x, t) = et
(

(1 + t)e−x + x2 − 2(1 + t)− 2x(1 + 2t)
)

, (19)

and

a(t) = 1 + t, b(t) = 1 + 2t. (20)

The exact solution is given by

u(x, t) = (e−x + x2)et. (21)

The numerical results for the interior temperature u(x, t) have been obtained in ex-
cellent agreement with the exact solution (21) and therefore they are not presented.

Apart from the interior temperature u(x, t), other outputs of interest are the heat
fluxes in equation (4) and the heat moments in equation (5) over the time interval [0, T ],
which analytically are given by

q0(t) = −a(t)ux(0, t) = (1 + t)et, t ∈ [0, 1], (22)

q1(t) = a(t)ux(1, t) = (1 + t)(2− e−1)et, t ∈ [0, 1], (23)

H0(t) =

∫ 1

0

et(e−x + x2)dx = et
(

− e−1 +
4

3

)

, t ∈ [0, 1], (24)

H1(t) =

∫ 1

0

xet(e−x + x2)dx = et
(

− 2e−1 +
5

4

)

, t ∈ [0, 1]. (25)

Figure 1 shows that the exact and numerical solutions for the heat fluxes (4) and heat
moments (5) are indistinguishable. The exact solutions are given in equations (22)–(25),
whilst the numerical solutions have been calculated using the following O((∆x)2) finite-
difference approximation and trapezoidal rule formulas:

q0(tj) = −a(tj)ux(0, tj) = −
(4u1,j − u2,j − 3µ1(tj))aj

2∆x
, j = 0, N, (26)

q1(tj) = a(tj)ux(1, tj) = −
(4uM−1,j − uM−2,j − 3µ2(tj))aj

2∆x
, j = 0, N, (27)

and

Hk(tj) =

∫ 1

0

xku(x, tj)dx =
1

2N

(

xk
0u0,j + xk

MuM,j +
M−1
∑

i=1

xk
i ui,j

)

, k = 0, 1, j = 0, N, (28)

with the convention that x0
0 = 1. Note that for j = 0 in (24) and (25), using (2) and (5),

we obtain,

Hk(0) =

∫ 1

0

xku(x, 0)dx =
1

2N

(

xk
0φ(x0) + xk

Mφ(xM) +
M−1
∑

i=1

xk
i φ(xi)

)

, k = 0, 1. (29)
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Figure 1: The exact and the numerical (a) heat fluxes qk(t) and (b) heat moments Hk(t),

k = 0, 1, for M = N = 40, for the direct problem.

The root means square errors (rmse) between the numerical and exact solutions for
heat fluxes and heat moments (4) and (5) are shown in Table 1. These have been calcu-
lated using the formulas

rmse(qk) :=

√

√

√

√

1

N

N
∑

j=1

(qnumerical
k (tj)− qexactk (tj))2, k = 0, 1, (30)

rmse(Hk) :=

√

√

√

√

1

N

N
∑

j=1

(Hnumerical
k (tj)−Hexact

k (tj))2, k = 0, 1. (31)

From Table 1 it can be seen that the (rmse) (30) and (31) decrease, as M = N increase.
They also confirm that the error is of O((∆x)2).
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Table 1: The (rmse) given by equtions (30) and (31) between the exact and numerical solutions

for the heat fluxes and heat moments, for M = N ∈ {10, 20, 40}, for the direct problem.

M = N 10 20 40
rmse(q0)
rmse(q1)
rmse(H0)
rmse(H1)

0.0089
0.0046
0.0041
0.0031

0.0022
0.0011
0.0009
0.0007

0.0005
0.0002
0.0002
0.0001

4 Numerical approach to solve the inverse problem

In the inverse problems, we assume that the coefficients a(t), b(t) or c(t) are unknown.
Usually, the nonlinear inverse problem can be formulated as a nonlinear least-squares
minimization. The regularized objective function which is minimized is given by

F (a, b) =
∥

∥

∥

∫ 1

0

u(x, t)dx−H0(t)
∥

∥

∥

2

+
∥

∥

∥

∫ 1

0

xu(x, t)dx−H1(t)
∥

∥

∥

2

+ β1

∥

∥

∥
a(t)

∥

∥

∥

2

+ β2

∥

∥

∥
b(t)

∥

∥

∥

2

, (32)

or

F (a, c) =
∥

∥

∥

∫ 1

0

u(x, t)dx−H0(t)
∥

∥

∥

2

+
∥

∥

∥

∫ 1

0

xu(x, t)dx−H1(t)
∥

∥

∥

2

+ β1

∥

∥

∥
a(t)

∥

∥

∥

2

+ β2

∥

∥

∥c(t)
∥

∥

∥

2

, (33)

where u solves (2), (3) and (6) or (9) for given (a, b) or (a, c), respectively, β1, β2 ≥ 0 are
regularization parameters and the norm is usually the L2[0, T ]-norm. The discretizations
of (32) and (33) are:

F (a,b) =
N
∑

j=1

[

∫ 1

0

u(x, tj)dx−H0(tj)
]2

+
N
∑

j=1

[

∫ 1

0

xu(x, tj)dx−H1(tj)
]2

+ β1

N
∑

j=1

a2j + β2

N
∑

j=1

b2j . (34)

and

F (a, c) =
N
∑

j=1

[

∫ 1

0

u(x, tj)dx−H0(tj)
]2

+
N
∑

j=1

[

∫ 1

0

xu(x, tj)dx−H1(tj)
]2

+ β1

N
∑

j=1

a2j + β2

N
∑

j=1

c2j . (35)

The case β1 = β2 = 0 yields the ordinary nonlinear least-squares method which is
usually unstable. The minimization of F subject to the physical constraints a > 0 is
accomplished using the MATLAB toolbox routine lsqnonlin, [12]. This routine finds the
minimum of the sum of squares of functions starting from an initial guess and is based
on the Trust-Region-Reflection algorithm, [3].

We take the parameters of the routine as follows:
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• Number of variables M = N = 40.

• xTolerance (xTol) = 10−30.

• Function Tolerance (FunTol) = 10−30.

• Initial guess (a(0),b(0)) = (a(0),b(0)) for IP1 and (a(0), c(0)) = (a(0), c(0)) for IP2.
The values of a(0), b(0) and c(0) are calculated from equations (8) and (11).

• The lower and upper simple bounds are 10−10 and 103 for a, and −103 and 103 for
b and c.

5 Numerical results and discussion

In this section, we discuss a few test examples to illustrate the accuracy and stability
of the numerical solutions. We take T = L = 1. We investigate the cases when the
coefficients a(t), b(t) or c(t) are smooth and non-smooth. In addition, we add noise to
the measured heat moments input data (5) as

Hnoise
k (tj) = Hk(tj) + ǫ

j

k, k = 0, 1, j = 1, N, (36)

where ǫ
j

k are random variable generated from a Gaussian normal distribution with mean
zero and standard deviations σk, given by

σk = p× max
t∈[0,T ]

|Hk(t)|, k = 0, 1, (37)

where p represents the percentage of noise. We use the MATLAB function normrnd to
generate the random variables as

ǫk = normrnd(0, σ,N), k = 0, 1. (38)

The root mean square error (rmse) to analyse the error between the exact and esti-
mated coefficients, is defined as,

rmse(a(t)) =

√

√

√

√

1

N

N
∑

j=1

(

anumerical(tj)− aexact(tj)
)2

, (39)

and similar expressions exist for b(t) and c(t).

Example 1 (for IP1)

Consider the IP1 given by equations (2), (3), (5) and (6) with unknown coefficients a(t),
b(t) and solve this inverse problem with the input data (19), (24) and (25). The graph
of the function U1(t) given by equation (7) is shown in Figure 2. From this figure it
can be seen that this function never vanishes over the time interval t ∈ [0, 1] and hence
condition (7) is satisfied. Consequently, according to Theorem 1, a solution to the IP1
given by equations (2), (3), (5) and (6) with data (19), (24) and (25) is unique. In fact,
it can easily be verified by direct substitution that the solution (a(t), b(t), u(x, t)) is given
by equations (20) and (21). Note also that the direct problem (1)–(3) associated to this

9



example has been previously solved numerically using the FDM in Section 3.
First, we consider that there is no noise in the input data (5). The unregularized

objective function (34), i.e. with β1 = β2 = 0, as a function of the number of iterations, is
shown in Figure 3. From this figure it can be seen that it decreases rapidly to a very low
value of O(10−28) in 20 iterations. The numerical results for the corresponding coefficients
a(t) and b(t) are presented in Figure 4. From this figure it can be seen that the retrieved
coefficients are in very good agreement with the exact solution (20).

Next, we add p = 1% noise to the heat moments H0(t) and H1(t), as given by equation
(36). Taking first β1 = β2, the L-curve, [5], for the choice of the regularization parameter
is shown in Figure 5, where the

Residual norm =

√

√

√

√

1
∑

k=0

∥

∥

∥

∫ 1

0

xku(x, ·)dx−Hnoise
k (·)

∥

∥

∥

2

. (40)

From this figure it can be seen that the three regularization parameters near the ”corner”
of the L-curve are β1 = β2 ∈ {10−4, 10−3, 10−2}. Second, allowing for independent values
of β1 and β2 we obtain the numerical results summarised in Table 2. In this table, we have
highlighted some representative choices for β1 and β2 with the corresponding numerical
solutions for a and b plotted in Figure 6 and the absolute errors between numerical and
exact solutions for u plotted in Figure 7.

We note that for the choice of the two-parameter family of regularization parameters
(β1, β2) we have initially tried to apply the heuristic L-surface method, [1], but without
success. Next, we investigate the application of the discrepancy domain principle, [4],
which selects the regularization parameters (β1, β2) belonging to the domain

D(ε) =
{

(β1, β2) ∈ R
2
+

∣

∣

∣ ε < Residual norm ≤ τε
}

, (41)

for some constant τ > 1 independent on β1, β2 and ε, where

ε = ε(p) =

√

√

√

√

1
∑

k=0

N
∑

j=1

(ǫjk)
2 (42)

represents the total amount of noise which is input in (36). For p = 1%, from (42)
we report ε(1%) = 0.2459. By inspecting Table 2 and invoking criterion (41) one can
discard choices with β1 ≤ 10−3 as producing unstable solutions. Also, one can observe
that the choices β1 = 10−2, β2 = 10−3 and β1 = 10−2, β2 = 10−2 satisfy criterion (41)
for some τ > 1, but the choice β1 = 10−3, β2 = 10−4 does not. This is consistent with
the numerical results presented in Figure 6 where the numerical solution obtained with
the under-regularization parameters β1 = 10−3, β2 = 10−4 is rather unstable, whilst the
choice β1 = 10−2, β2 = 10−3 seems optimal.

From the above discussion and related solution [1,4,10] one can realise that the choice
of multiple regularization parameters is a difficult and open topic and more research needs
to be undertaken in the future. In what follows, in Examples 2–4, for simplicity, we present
results obtained with some trial-and-error typical values of β1 and β2 which ensure that
stable solutions are obtained.

10



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

t

U 1(t)
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Figure 4: (a) Coefficient a(t) and (b) Coefficient b(t), for Example 1 with no noise and no

regularization.

Figure 5: The residual norm (40) versus the solution norm
√

||a||2+||b||2 for the L-curve with

various regularization parameters, for Example 1 with p = 1% noise.
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Table 2: The objective function (34), rmse, residual and norms for estimated coefficients
for IP1 of Example 1 with p = 1% noise and various regularization parameters.

β1\β2 10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1

10−9

Obj.function
rmse(a)
rmse(b)
Residual
||a||
||b||

0.0116
1.1252
2.8876
0.1078
12.199
23.242

0.0116
1.1252
2.8862
0.1078
12.201
23.231

0.0117
1.1253
2.8717
0.1078
12.211
23.122

0.0121
1.1254
2.7267
0.1079
12.303
22.063

0.0152
1.1235
1.7860
0.1144
12.941
14.508

0.0193
1.2054
1.8301
0.1359
14.207
2.8511

0.0200
1.1365
2.0577
0.1411
14.087
0.2680

0.0201
1.1261
2.0829
0.1416
14.062
0.0265

0.0201
1.1252
2.0854
0.1416
14.060
0.0027

10−8

Obj.function
rmse(a)
rmse(b)
Residual
||a||
||b||

0.0116
1.1251
2.8876
0.1078
12.199
23.243

0.0116
1.1251
2.8862
0.1078
12.200
23.232

0.0117
1.1253
2.8717
0.1078
12.211
23.123

0.0121
1.1253
2.7268
0.1079
12.302
22.064

0.0152
1.1235
1.7860
0.1144
12.941
14.509

0.0193
1.2054
1.8301
0.1359
14.207
2.8513

0.0200
1.1364
2.0577
0.1411
14.087
0.2679

0.0201
1.1261
2.0829
0.1416
14.062
0.0265

0.0201
1.1252
2.0854
0.1416
14.060
0.0027

10−7

Obj.function
rmse(a)
rmse(b)
Residual
||a||
||b||

0.0116
1.1246
2.8876
0.1078
12.196
23.249

0.0116
1.1246
2.8861
0.1078
12.197
23.238

0.0117
1.1248
2.8717
0.1078
12.208
23.129

0.0122
1.1249
2.7265
0.1079
12.299
22.068

0.0152
1.1231
1.7860
0.1144
12.939
14.5135

0.0193
1.2050
1.8299
0.1359
14.205
2.8518

0.0200
1.1354
2.0577
0.1411
14.083
0.2678

0.0201
1.1251
2.0829
0.1416
14.058
0.0265

0.0201
1.1242
2.0854
0.1416
14.056
0.0026

10−6

Obj.function
rmse(a)
rmse(b)
Residual
||a||
||b||

0.0118
1.1200
2.8884
0.1078
12.163
23.309

0.0118
1.1201
2.8869
0.1078
12.164
23.298

0.0118
1.1203
2.8723
0.1078
12.175
23.187

0.0123
1.1207
2.7245
0.1079
12.270
22.111

0.0154
1.1198
1.7860
0.1143
12.919
14.559

0.0195
1.2016
1.8282
0.1359
14.190
2.8544

0.0202
1.1254
2.0576
0.1411
14.045
0.2665

0.0202
1.1165
2.0828
0.1416
14.026
0.0264

0.0203
1.1158
2.0854
0.1416
14.024
0.0026

10−5

Obj.function
rmse(a)
rmse(b)
Residual
||a||
||b||

0.0131
1.0854
2.9189
0.0856
11.884
23.965

0.0131
1.0854
2.9171
0.1080
11.885
23.952

0.0131
1.0856
2.8995
0.1080
11.899
23.820

0.0136
1.0882
2.7385
0.1080
12.021
22.634

0.0168
1.0938
1.7776
0.1139
12.742
15.023

0.0213
1.1446
1.8147
0.1361
13.960
2.8359

0.0219
1.0713
2.0565
0.0219
13.840
0.2641

0.0220
1.0692
2.0827
0.1417
13.846
0.0263

0.0220
1.0691
2.0854
0.1417
13.847
0.0026

10−4

Obj.function
rmse(a)
rmse(b)
Residual
||a||
||b||

0.0236
0.9040
3.7526
0.1175
9.8774
31.558

0.0236
0.9039
3.7494
0.1175
9.8789
31.538

0.0237
0.9022
3.7169
0.1173
9.8940
31.333

0.0245
0.8995
3.3481
0.1162
10.067
29.148

0.0297
0.9146
1.9023
0.0297
11.154
19.9816

0.0373
0.9100
1.6453
0.1383
12.972
3.6333

0.0385
0.9353
2.0384
0.1437
13.322
0.3591

0.0386
0.9371
2.0809
0.1442
13.353
0.0359

0.0386
0.9372
2.0852
0.1442
13.356
0.0036

10−3

Obj.function
rmse(a)
rmse(b)
Residual
||a||
||b||

0.0581
0.9978
6.1800
0.1996
4.2682
49.073

0.0581
0.9977
6.1775
0.1996
4.2687
49.059

0.0583
0.9968
6.1525
0.1995
4.2743
48.924

0.0604
0.9723
5.4835
0.1983
4.3567
45.311

0.0756
0.8990
4.1854
0.1929
4.8573
38.438

0.1464
0.3452
0.8470
0.1694
9.3536
17.384

0.1737
0.4391
1.8259
0.1837
11.707
1.7106

0.1763
0.4597
2.0598
0.1855
11.901
0.1699

0.1766
0.4618
2.0831
0.1857
11.919
0.0170

10−2

Obj.function
rmse(a)
rmse(b)
Residual
||a||
||b||

0.0868
1.4304
7.4462
0.2815
0.8702
57.551

0.0759
1.4446
8.2955
0.2616
0.8629
62.8293

0.0871
1.4302
7.4317
0.2814
0.8709
57.469

0.0931
1.4166
6.7808
0.2865
0.8974
53.806

0.1141
1.4087
5.3679
0.2898
0.9301
46.3387

0.2812
1.3140
4.4335
0.2942
1.5236
41.400

1.0709
0.2534
0.4258
0.3578
8.4957
14.869

1.2397
0.1848
1.8922
0.4285
10.199
1.2524

1.2535
0.1923
2.0666
0.4348
10.310
0.1231

10−1

Obj.function
rmse(a)
rmse(b)
Residual
||a||
||b||

0.0586
1.5163
9.9355
0.2328
0.2103
73.594

0.0738
1.5173
9.0484
0.2670
0.1573
68.030

0.0722
1.5159
8.8824
0.2619
0.1788
67.018

0.0719
1.5123
8.8319
0.2467
0.2560
67.370

0.0863
1.5217
7.5404
0.2190
0.1255
60.633

0.3054
1.5044
4.7963
0.3327
0.1879
43.724

1.8226
1.4064
4.0608
0.4810
0.8083
39.062

7.0848
0.5129
0.8014
1.3505
6.7276
8.5725

7.5868
0.4327
1.9854
1.4769
7.3235
0.6492
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Figure 6: (a) Coefficient a(t) and (b) Coefficient b(t), for Example 1 with p = 1% noise and

regularization.
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Figure 7: The absolute error between the exact and numerical temperatures u(x, t), for Example

1, with (a) β1 = 10−3, β2 = 10−4, (b) β1 = 10−2, β2 = 10−3, (c) β1 = β2 = 10−2, for p = 1%

noise.

Example 2 (for IP1)

In this example, we consider the IP1 given by equations (2), (3), (5) and (6) with unknown
coefficients a(t) and b(t) and we solve this inverse problem with the following input data:

φ(x) = e−x + x2, µ1(t) = et, µ2(t) = (e−1 + 1)et, H0(t) =
(

− e−1 +
4

3

)

et,

H1(t) =
(

− 2e−1 +
5

4

)

et, T = L = 1,

f(x, t) = (e−x + x2)et −
(∣

∣

∣
t−

1

2

∣

∣

∣
+

1

2

)

(e−x + 2)et −
∣

∣

∣
t2 −

1

2

∣

∣

∣
(−e−x + 2x)et. (43)
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As for Example 1, the graph of the function U1(t) given by equation (7) is shown
in Figure 2 and it can be seen that this function never vanishes over the time interval
t ∈ [0, 1]. Hence, condition (7) is satisfied and consequently, according to Theorem 1, a
solution to the IP1 given by equations (2), (3), (5) and (6) with the input data (43) is
unique. In fact, the exact solution to the inverse problem is given by

a(t) =
∣

∣

∣t−
1

2

∣

∣

∣+
1

2
, b(t) =

∣

∣

∣t2 −
1

2

∣

∣

∣, (44)

and u(x, t) is given by (21).
Considering no noise and no regularization the objective function (34) plotted in Fig-

ure 3 shows a rapid decrease to a low value of O(10−29) in 20 iterations. However, this
convergence is slower than in Example 1 for the first 15 iterations. This is to be expected
because the coefficients (20) for Example 1 are smoother than the coefficients (44) for
Example 2. In Figure 8, we obtain a stable and accurate recovery of a(t) but less stable
for b(t).

When p = 0.01% noise is included in the heat moments data (36), regularization is
even more needed in order to achieve a stable and accurate solution. Table 3 shows the
rmse(a) and rmse(b) for some values of the regularization parameters β1 and β2. Fig-
ure 9 shows the plots of the recovered coefficients a(t) and b(t). From both Table 3 and
Figure 9 it can be seen that the retrieval of the thermal conductivity coefficient a(t) is
more stable and accurate than that of the convective coefficient b(t).

Finally, we mention that a comparison between Figures 8 and 9, and Figures 22 and
24 of [6], respectively, shows that the IP1 based on measuring the heat moments (5) is less
stable than when measuring the heat fluxes (4). This is to be expected since supplying
the bounded normal derivatives (4) contains stronger information than prescribing the
integral average heat moments (5).

In the next two examples we consider solving the IP2 formulated in subsection 2.2.

16



(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

1

t

a(
t)

 

 

exact
final iteration 20
initial guess

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

t

b(
t)

 

 

exact
final iteration 20
initial guess

Figure 8: (a) Coefficient a(t) and (b) Coefficient b(t), for Example 2 with no noise and no

regularization.

Table 3: The rmse values for estimated coefficients for Example 2 with and without noise.

rmse
p = 0
(β1 = β2 = 0)

p = 0.01%
(β1 = β2 = 0)

p = 0.01%
(β1 = β2 = 10−6)

rmse(a)
rmse(b)

0.0016
0.0434

0.0830
0.5360

0.0250
0.0677
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Figure 9: (a) Coefficient a(t) and (b) Coefficient b(t), for Example 2 with p = 0.01% noise, with

and without regularization.

Example 3 (for IP2)

In this example, we consider the IP2 given by equations (2), (3), (5) and (9) with unknown
coefficients a(t) and c(t) and solve this inverse problem with the following input data:

φ(x) = (−2 + x)2, µ1(t) = (−2 + t)2 + t, µ2(t) = (−1 + t)2 + t, H0(t) = t2 − 2t+
7

3
,

H1(t) =
1

12

(

6t2 − 10t+ 11
)

, f(x, t) = 1− 2(1 + t) + 2(−2 + x+ t)

−(1 + t)
(

t+ (−2 + x+ t)2
)

, T = L = 1. (45)

The graph of the function U2(t) given by equation (10) is shown in Figure 10 and it
can be seen that this function never vanishes over the time interval t ∈ [0, 1]. Hence,
condition (10) is satisfied and consequently, according to Theorem 2, a solution to the
IP2 given by equations (2), (3), (5) and (9) with input data (45) is unique. In fact, this
solution is given by

a(t) = 1 + t, c(t) = 1 + t, (46)

u(x, t) = (x+ t− 2)2 + t. (47)
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First, we consider the case that there is no noise in the input data (5). The convergence
of the objective function (35) that is minimized with and without regularization is shown in
Figure 11 and the corresponding numerical reconstructions of the coefficients a(t) and c(t)
are shown in Figure 12. We also obtain the rmse values of rmse(a) ∈ {0.0775, 0.1195}
and rmse(c) ∈ {0.1007, 0.1522} with regularization β1 = 10−7, β2 = 10−9 and without
regularization β1 = β2 = 0, respectively. Unlike the Example 1 for IP1, where no regular-
ization was needed for exact data, in this Example 3 for IP2 the numerical results shown
in Figure 12 and the decrease in the rmse values reported above show that including a
little regularization in (35) improves the accuracy and stability of the solution. It also
shows that the IP2 is more ill-posed than the IP1.

To show this ill-posedness more dearly next we perturb the input data (5) by p = 0.01%
noise as in equation (36). Figures 13 and 14 for this noisy data are the analogous of Fig-
ures 11 and 12 for exact data. We also report the values of rmse(a) ∈ {0.0719, 0.2489}
and rmse(c) ∈ {0.1025, 0.3709} with regularization β1 = β2 = 10−7 and without regular-
ization β1 = β2 = 0, respectively. From these figures and rmse values one can observe
that the IP2 is ill-posed and regularization should be included in order to obtain a stable
solution. The results also show that the IP2 is more ill-posed in the absorption coefficient
c(t) than in the diffusion coefficient a(t).
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Figure 10: The graph of the function U2(t), as a function of t, given by (10) for Example 3

( ) and Example 4 (−−−).
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Figure 11: Objective function (35), for Example 3 with no noise, and with and without regu-

larization.
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Figure 12: (a) Coefficient a(t) and (b) Coefficient c(t), for Example 3 with no noise, and with

and without regularization.
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Figure 13: Objective function (35), for Example 3 with p = 0.01% noise, with and without

regularization.
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Figure 14: (a) Coefficient a(t) and (b) Coefficient c(t), for Example 3 with p = 0.01% noise,

with and without regularization.

Example 4 (for IP2)

In this example, we consider the IP2 given by equations (2), (3), (5) and (9) with unknown
coefficients a(t) and c(t) and we solve this inverse problem with the following input data:

φ(x) = (−2 + x)2, µ1(t) = (−2 + t)2 + t, µ2(t) = (−1 + t)2 + t, H0(t) = t2 − 2t+
7

3
,

H1(t) =
1

12

(

6t2 − 10t+ 11
)

, f(x, t) = 1 + 2(−2 + t+ x)− 2
(∣

∣

∣t−
1

2

∣

∣

∣+
1

2

)

−
(

t+ (−2 + x+ t)2
)(∣

∣

∣
t2 −

1

2

∣

∣

∣
+

1

2

)

, T = L = 1. (48)

As in Example 3, the function U2(t), given by equation (10) and plotted in Figure 10,
never vanishes over the time interval t ∈ [0, 1] and consequently, the IP2 given by equations
(2), (3), (5) and (9) with data (48) has at most one solution. In fact, this solution is given
by

a(t) =
∣

∣

∣
t−

1

2

∣

∣

∣
+

1

2
, c(t) =

∣

∣

∣
t2 −

1

2

∣

∣

∣
+

1

2
, (49)

and u(x, t) given by (47).
Figures 15–18 for Example 4 are the analogous of Figures 11–14 for Example 3. For

exact data, we also obtain rmse(a) ∈ {0.0579, 0.0756} and rmse(c) ∈ {0.0690, 0.0890}
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with regurarization β1 = β2 = 10−7 and without regularization β1 = β2 = 0, respectively.
Similar conclusions to those obtained for Example 3 are also obtained for Example 4.
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Figure 15: Objective function (35), for Example 4 with no noise, and with and without regu-

larization.
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Figure 16: (a) Coefficient a(t) and (b) Coefficient c(t), for Example 4 with no noise, and with

and without regularization.
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Figure 17: Objective function (35), for Example 4 with p = 0.01% noise, with and without

regularization.
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Figure 18: (a) Coefficient a(t) and (b) Coefficient c(t), for Example 4 with p = 0.01% noise,

with and without regularization.

6 Conclusions

This paper has presented a simultaneous determination of time-dependent thermal con-
ductivity and convection, or absorption coefficients from the measurements of the heat
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moments in the one-dimensional parabolic heat equation. The resulting inverse problems
have been reformulated as constrained regularized minimization problems which have
been solved using the MATLAB optimization toolbox routine lsqnonlin. The following
conclusions can be made:
• the numerical results are shown to be stable and accurate
• the IP2 seems more ill-posed that the IP1
• the retrieval of the diffusivity a(t) is more stable and accurate than the retrieval of the
lower-order coefficients b(t) or c(t)
• the measurement of the heat moments (5) formulates a less stable inverse problem than
the measurement of the heat fluxes (4).

The determination of three or more unknown coefficients in equation (1) will be in-
vestigated in a future work.
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