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Abstract Collapse of ice sheets can cause significant sea level rise and widespread climate change. We
examine the climatic response to meltwater generated by the collapse of the Cordilleran-Laurentide ice
saddle (North America) ~14.5 thousand years ago (ka) using a high-resolution drainage model coupled to an
ocean-atmosphere-vegetation general circulation model. Equivalent to 7.26m global mean sea level rise in
340 years, the meltwater caused a 6 sverdrup weakening of Atlantic Meridional Overturning Circulation
(AMOC) and widespread Northern Hemisphere cooling of 1–5°C. The greatest cooling is in the Atlantic sector
high latitudes during Boreal winter (by 5–10°C), but there is also strong summer warming of 1–3°C over
eastern North America. Following recent suggestions that the saddle collapse was triggered by the Bølling
warming event at ~14.7–14.5 ka, we conclude that this robust submillennial mechanism may have initiated
the end of the warming and/or the Older Dryas cooling through a forced AMOC weakening.

1. Introduction

During the Last Glacial Maximum 26–19 thousand years ago (ka), a vast ice sheet stretched over North
America [Clark et al., 2009]. In subsequent millennia, as climate warmed and this ice sheet decayed, large
volumes of meltwater flooded to the oceans [Tarasov and Peltier, 2006; Wickert, 2016]. This period, known
as the “last deglaciation,” included episodes of abrupt climate change, such as the Bølling warming, when
Northern Hemisphere temperatures increased by 4–5°C in just a few decades [Lea et al., 2003; Buizert et al.,
2014], coinciding with a 12–22m sea level rise in less than 340 years (Meltwater Pulse 1a (MWP1a))
[Deschamps et al., 2012].

Currently, we do not know how (or even if) MWP1a, the Bølling warming, and a possible concurrent rapid
strengthening of the Atlantic Meridional Overturning Circulation (AMOC) [e.g., McManus et al., 2004;
Roberts et al., 2010] were related. Knowing the source(s) of MWP1a is an important step for resolving these
open questions because the influence of freshwater on ocean circulation and surface climate has been
shown to depend on where it enters the oceans [e.g., Weaver et al., 2003; Roche et al., 2009; Smith and
Gregory, 2009; Menviel et al., 2011; Condron and Winsor, 2012]. For example, it has been suggested that an
Antarctic source of MWP1a could have caused the Bølling warming [Weaver et al., 2003], though possibly only
if the total flux is<0.2 sverdrup (Sv) [Swingedouw et al., 2008], while a Northern Hemisphere sourcewould lead
toNorthernHemisphere cooling, potentially associatedwith theOlderDryas cold event at~14 ka [e.g., Stanford
et al., 2006;Menviel et al., 2011].

From dynamic ice sheet model results forced with a transient simulation of surface climate, Gregoire et al.
[2012; henceforth G12] suggested that the North American ice sheet contributed ~7m of sea level rise in
350 years at the time of MWP1a, mostly due to the Cordilleran and Laurentide ice sheets’ “saddle collapse”
during their separation (Figure 1a). Recent sea level fingerprinting also supports this mechanism as a major,
possibly dominant source of MWP1a [Gomez et al., 2015; Liu et al., 2016], although exclusively Antarctic
provenance is not ruled out. Thus, the Cordilleran-Laurentide ice saddle collapse is a plausible source of
meltwater to the deglacial ocean at ~14.5 ka.

Previous modeling of ice sheet meltwater’s influence on ocean circulation and climate has often employed
highly idealized meltwater fluxes (in terms of timing, location, and their evolution through time) that may
have been unrealistically large [e.g., Ganopolski and Rahmstorf, 2001; Otto-Bliesner and Brady, 2010;
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Singarayer and Valdes, 2010; Kageyama et al., 2013] (compared to estimates by Roberts et al. [2014]) or that
attempted to constrain meltwater source, magnitude, and duration by their climatic fingerprint [e.g.,Weaver
et al., 2003; Liu et al., 2009;Menviel et al., 2011]. Here, for the first time, we evaluate the impact of an increased
ice meltwater flux to the ocean from the Cordilleran-Laurentide saddle collapse. Also, for the first time, we
connect global ice sheet mass balance to the ocean by using a drainage network model that produces fully
distributed meltwater inputs. To do this, we combine results from the ice sheet modeling of G12 with the
high-resolution drainagemodel ofWickert [2016] to determine how the icemelt is routed andwhere it reaches
the ocean. For the remaining ice sheet meltwater fluxes (including Eurasia and Antarctica), the same drainage
model is driven by the ICE-6G_C (VM5a) reconstruction [Argus et al., 2014; Peltier et al., 2015].We then input this
global, spatially distributed meltwater flux into the Hadley Centre Coupled Model version 3 (HadCM3) global
general circulation model (GCM) to examine its impact on ocean circulation and climate.

2. Methodology
2.1. Ice Sheet Meltwater Histories

In earlier work, G12 used transient climate model outputs for the last 21 ka (from the Fast Met Office/U.K.
Universities Simulator (FAMOUS) GCM) to force the Glimmer-Community Ice Sheet Model (Glimmer-CISM)

Figure 1. (a) Northern Hemisphere ice sheet mass balance 14.5–14.3 ka and its influence onmean annual sea surface salinity 14.4 ka (100 year mean; SC_southminus
NoSC_south); the thick black lines delimit major drainage basins at 14.5 ka, the colored circles indicate meltwater outlets with discharge at >0.001 Sv, and the
arrows show the manual rerouting of meltwater accumulating near Lake Superior (within dashed lines) to honor geologic constraints on meltwater discharge
pathways, the Cordilleran and Laurentide ice sheets are labeled; land is masked in light gray with modern coastlines also outlined (thin black line). Meltwater
drainage scenarios: (b) SC_south, (c) NoSC_south, (d) SC_east, and (e) NoSC_east; see text (section 2.4); colors match the drainage outlets in Figure 1a.
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dynamical ice sheet model and hence simulate the deglaciation of the North American and Greenland ice
sheets. This component of the deglacial ice sheet evolution captures the Cordilleran-Laurentide ice sheet
saddle collapse. Although the peak of the melt happens at 11.6 ka in their model, G12 suggested that the
event could have happened at the time of MWP1a (14.7–14.3 ka [Deschamps et al., 2012]). It may have
been triggered or at least partly forced by the Bølling warming event [Gregoire et al., 2016; henceforth
G16]. For the purpose of this study, we accept the G12 hypothesis and shift the saddle collapse
2900 years backward in time such that the peak in North American ice melt corresponds to the timing
of MWP1a at ~14.5 ka (see section 4 for discussion on timing). As well as the event itself, the simulation
includes the more gradual, ongoing “background” melt of the North American and Greenland ice sheets.

There remains considerable uncertainty on the source of MWP1a. A major contribution from the North
American ice sheet is supported by a large body of evidence [Keigwin et al., 1991; Marshall and Clarke,
1999; Peltier, 2005; Tarasov and Peltier, 2005; G12; Tarasov et al., 2012]. While this scenario is compatible with
fingerprinting of sea level change, additional contributions from other ice sheets are needed to explain the
observations [Gomez et al., 2015; Liu et al., 2016]. Although Antarctica is not thought to have made a major
contribution to sea level rise until much later (around 12 ka onward [Whitehouse et al., 2012; Gomez et al.,
2013; Argus et al., 2014; Briggs et al., 2014; Mackintosh et al., 2014]), several lines of reasoning and evidence
suggest that it was at least a partial source of MWP1a and could have contributed 2m of sea level rise in
340 years [Golledge et al., 2014; Weber et al., 2014].

Here, longer-term melt histories from Antarctica and Eurasia are incorporated in the meltwater flux routed to
the ocean GCM, producing 0.41 and 1.36m global eustatic sea level rise (respectively) in 340 years (centered
at 14.5 ka; the peak in global meltwater; Figure 1b). These fluxes are calculated from the recent ICE-6G_C
(VM5a) reconstruction [Argus et al., 2014; Peltier et al., 2015] with interpolation between the 500 year time-
steps. Between 15.5 and 13.5 ka, Eurasia and Antarctica provide a maximum discharge of less than 0.05 Sv
and 0.02 Sv, respectively, remaining well below North America’s discharge (always >0.1 Sv) and contributing
to the background flux. Thus, it is possible that additional melt from Antarctica and Eurasia, not included in
this study, could have had further influence [e.g., Golledge et al., 2014]. This work focusses on the climatic
impacts of melt from the North American ice sheet saddle collapse as a necessary first step toward disentan-
gling the events that took place at ~14.5 ka.

2.2. Calculating Meltwater Drainage

Time-varying ice mass balance calculated from G12 (�2900 years) for North America and Greenland (100 year
time step), and ICE-6G_C (500 year time step) for Eurasia [Peltier et al., 2015] and Antarctica [Argus et al., 2014]
was dynamically routed to the ocean on a 30 arcsec (<1 km) grid as a function of surface topography, ice
sheet thickness, and Glacial-Isostatic Adjustment (GIA). The computed transient meltwater flux was output
as a distributed grid of coastal flow to the oceans (m3 s�1) at 100 year time steps. In this way, the saddle col-
lapse event and the background melt of ice into the oceans were combined into a global ice meltwater flux
that retains its geographic distribution. Major drainage basins and outlets at 14.5 ka are indicated in Figure 1a.

Pairing the G12 ice sheet with the VM2 solid Earth model in the drainage network routing,Wickert [2016] pro-
duced excessive GIA that formed a marine embayment in the vicinity of the Laurentian Great Lakes, resulting
in midcontinental river mouths for ice melting around and to the west of Lake Superior. Much of the Great
Lakes corridor was ice-free in G12 because its southern Laurentide margin closely tracked the geologic record
of deglaciation, meaning that a �2900 year shift in G12’s ice evolution produced ice retreat past the St.
Lawrence lowlands before 14.5 ka. In reality, the southern Laurentide ice melt was drained by the
Mississippi and Hudson Rivers at this time (Figure 1a), with most of the flow routed toward the Mississippi
River until ~12.9 ka when St. Lawrence drainage began [Williams et al., 2012; Wickert et al., 2013; Wickert,
2016]. To evaluate the effect of this uncertainty in North American drainage during MWP1a, we created
two meltwater scenarios. In SC_south, we route all meltwater from Lake Superior down the Mississippi
River. In SC_east, 40% of this meltwater is diverted to the Hudson River. The shape of other North
American drainage basins are more robust as they are less sensitive to ice sheet geometry at this time.

2.3. The Climate Model

The climate model used in this study is HadCM3, a coupled ocean-atmosphere-vegetation GCM. The atmo-
sphere [Pope et al., 2000] has a horizontal resolution of 2.5° × 3.75° and 19 hybrid-coordinate vertical layers.
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Coupled within the atmospheric GCM and connected to the land surface scheme (Met Office Surface
Exchange Scheme (MOSES) version 2.1) is the Top-down Representation of Interactive Foliage and Flora
including Dynamics (TRIFFID) vegetation model [Cox, 2001]. The ocean GCM [Gordon et al., 2000] has a
horizontal resolution of 1.25° × 1.25° and 20 vertical layers. It has a fixed lid; the volume of ocean grid boxes
cannot vary. Therefore, hydrological fluxes (such as evaporation, precipitation, river runoff, and ice melt) are
represented as virtual salinity fluxes. It is possible that steric behavior would otherwise influence the propa-
gation pathways of freshwater input to the ocean. However, such effects are likely to be small for pulses
~0.1 Sv or less [Yin et al., 2010], and on the time scale studied here, it is likely that the large-scale end-
destination of such “real” surface fluxes would be similar to those of the virtual fluxes.

The land-surface has grid-defined river catchments that instantaneously deliver meteoric water to the coast.
These catchments remain constant throughout our experiments, while the routing of ice sheet meltwater is
independently varied (section 2.2) as a separate input to the model.

2.4. Climate Model Experiment Design

The control simulation is based on the 15 ka simulation from Singarayer et al. [2011]. Orbital parameters follow
Berger and Loutre [1991]. For the atmospheric trace gases, CO2 is 225 ppmv, CH4 is 473 ppbv, and N2O is
241 ppbv [Petit et al., 1999; Spahni et al., 2005; Parrenin et al., 2007; Loulergue et al., 2008]. The ice sheets,
bathymetry, coastlines, and topography match the ICE-5G (VM2) reconstruction [Peltier, 2004], using an
anomaly method for consistency with existing preindustrial boundary conditions [Singarayer and Valdes,
2010]. This is an earlier ice sheet reconstruction from the same family as ICE-6G_C (VM5a) and was the most
up-to-date version when the climate simulation was initially carried out [Singarayer et al., 2011]. All of these
boundary conditions were kept constant throughout the runs, so that the simulations were not complicated
by their effect on climate. No ice meltwater was included in this control simulation.

With this setup, the control simulation was run for 1000 years with prescribed (preindustrial) vegetation,
followed by a further 750 years with the TRIFFID dynamic vegetation model, providing a total spin-up of
1750 years. The result is a climate, land-surface, and ocean in near steady state, from which the meltwater
simulations (described below) were initialized. The control simulation was continued for a further 2000 years
in parallel with the meltwater simulations, confirming that the model was in an equilibrium state for the
duration of the experiment.

We ran two 2000 year experiments (15.5–13.5 ka) to capture the saddle collapse event, driving the climate
model with the two transient meltwater scenarios described in section 2.2: SC_south and SC_east. To
isolate the effect of the century-scale saddle collapse meltwater pulse from the multimillennial scale
background melt of the ice sheets, we ran two further simulations: NoSC_south and NoSC_east, each with
no saddle collapse meltwater pulse. In these simulations, meltwater discharge from the SC_south and
SC_east scenarios (respectively) was held constant at their 14.8 ka values for the remainder of
the simulation.

For each scenario (Figures 1b–1e), the time-varying meltwater inputs were transformed onto the climate
model grid and spread over adjacent ocean grid boxes with depths >500m, along the coastline and off
the continental shelf. Distributing the water prevents cells from reaching negative salinity, which would be
unphysical, and keeps them within the valid range of the equation of state [Fofonoff, 1962; Bryan and Cox,
1972; Fofonoff and Millard, 1983]. Hyperpycnal meltwater flows were not simulated because these occur
rarely, and typically in small, steep catchments that contribute an insignificant amount of water to the global
ocean (see discussion in Wickert et al. [2013]).

3. Results
3.1. Sea Surface Salinity and Ocean Circulation

In SC_south, ~50% of the saddle collapse meltwater is routed down the Mackenzie River into the Arctic
Ocean, with just under 50% routed down the Mississippi River into the Gulf of Mexico and Atlantic
(Figure 1b). In SC_east, the Mississippi-boundmeltwater is reduced to ~30% of the total saddle collapse pulse,
with ~20% of the flux now heading to the North American East Coast (mostly down the St. Lawrence and
Hudson Rivers; Figure 1d).
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On the centennial time scale investigated here, there is no discernible effect on sea surface salinity from
diverting 40% of the Mississippi discharge in SC_south eastward in SC_east. This is because freshwater that
enters the western North Atlantic is rapidly mixed and dispersed by the subtropical (and to a lesser extent,
the subpolar) gyre(s). Consequently, there is also little difference in large-scale ocean circulation patterns,
such as the AMOC (e.g., Figure 2b), suggesting that there is low sensitivity to precisely where meltwater is
delivered to the Atlantic subtropical gyre region. In deference to the geologic record, the remaining presen-
tation of results and discussion will focus on SC_south (with NoSC_south used for reference), bearing in mind
that the results for SC_east (and NoSC_east) are equivalent.

Meltwater runoff from the saddle collapse caps the Arctic Ocean, making it 1–6 practical salinity units (psu)
fresher in the upper 200m than in NoSC_south and less than 0.5 psu fresher below that (100 year mean,
14.4 ka). Minimummean Arctic and Greenland-Iceland-Norwegian (GIN) sea surface salinity (Figure 2a) occurs
around the same time as maximum Mackenzie River meltwater discharge is reached (14.4 ka; Figure 1b),
100 years after the peak saddle collapse event.

The relatively fresh water propagates across the Arctic, through Fram Strait and into the North Atlantic
(Figure 1a). Here it is joined by ~0.07 Sv of melt from Hudson Strait, the North American East Coast, and
the Mississippi River (Figure 1b). Due to vigorous mixing in the gyres, the North Atlantic has a weaker max-
imum freshwater anomaly and is less stratified than in the Arctic, especially in the subtropical gyre, where
freshening of 1–3 psu (with respect to NoSC_south) extends to 400–500m deep.

Broadly, this North Atlantic-Arctic freshwater cap increases the vertical density gradient, thus acting to
stabilize the water column in mid-high latitudes. The change in ocean buoyancy reduces North Atlantic
Deep Water (NADW) formation. By 14.4 ka, AMOC is 6 Sv weaker (�40%) and 200–400m shallower than
NoSC_south, coincident with minimum Arctic salinity and maximum meltwater discharge to the Arctic, after
which it begins to recover (Figure 2b). While this significant weakening is a robust response to such
freshwater forcing, the exact magnitude of the change may be model-specific, depending on the initial
AMOC strength and depth, ocean structure, and sites of deepwater formation. After 14.1 ka, AMOC becomes
stronger than when it started at 15.0 ka. There are signs that this strong AMOC recovery leads to an
“overshoot” effect [Liu et al., 2009] at 14.1–14.0 ka, followed by a more gradual increase caused by the
continued reduction in Arctic-, Atlantic-, and Pacific-bound meltwater (Figure 1b). That a more stratified
high-latitude freshwater cap is produced by Arctic-draining meltwater than by Atlantic/Gulf of Mexico
sources is consistent with previous findings [e.g., Condron and Winsor, 2012, who ran shorter, higher-
resolution simulations].

It has previously been demonstrated that a strong reduction in AMOC can lead to the development of North
Pacific overturning [e.g., Saenko et al., 2004; Okazaki et al., 2010; Chikamoto et al., 2012]. Here the effect on
North Pacific overturning is negligible, likely due to a smaller freshwater forcing.

3.2. Surface Climate

All surface climate anomalies discussed in this section are calculated from the 100 year means for SC_south
(with respect to NoSC_south), centered at 14.4 ka.

The strong 14.4 ka AMOC reduction reduces northward flow of relatively warm shallow-intermediate ocean
water, leading to northern hemisphere cooling and slight Southern Hemisphere warming (up to +1°C;
Figures 2d and 2e). This bipolar anomaly is particularly strong in Boreal winter (December-January-
February), when surface air temperatures widely cool by 1–5°C, locally dropping by up to 20°C and 12°C in
the GIN and Labrador Seas, respectively.

During Boreal summer (June-July-August), sea ice increases in the North Atlantic-GIN Seas (above 40°N;
Figure S1b in the supporting information), amplifying the initial high-latitude cooling through an ice-albedo
feedback (+0.1–0.3 albedo change). In Boreal winter, sea ice expansion is limited to the Labrador and GIN
Seas (Figure S1a), corresponding to regions with greatest surface air cooling because the enhanced sea ice
thermally insulates the relatively warm underlying ocean water. The elevated albedo (+0.2–0.5 below 70°N)
may also produce a modest positive feedback.

Widespread winter cooling reduces precipitation across the Northern Hemisphere, particularly over
Greenland and the Labrador and GIN Seas (Figures S2a and S2b). Expanded sea ice over the Labrador and
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GIN Seas and cooler open ocean temperatures likely contribute by reducing evaporation by 1 to 2mmd�1 in
these regions (Figures S3a and S3b).

In the tropics, the bipolar surface climate anomaly causes the Intertropical Convergence Zone to shift
southward year-round (Figure S2) in order to scavenge heat [Chiang and Bitz, 2005; Broccoli et al., 2006].
These changes are very similar to the effect of 100 years of 0.4 Sv freshwater hosing across the HadCM3
North Atlantic under Last Glacial Maximum conditions [Kageyama et al., 2013].

Contrastingwithoverall northernwinter temperature reductions is 1–3°Cwarmingover easternNorthAmerica
(Figure 2d), whereby widespread North Atlantic surface cooling develops higher pressures over the eastern
North Atlantic, drawing relatively warm air northward from the Gulf of Mexico. This dipole anomaly of cooling
in the high-latitude North Atlantic and warming over North America is broadly reproduced by different
freshwater-forced experiments performed with multiple GCMs when similar surface air temperature condi-
tions are met, specifically, high-latitude cooling of more than 5°C and a tongue of cooling reaching westward

Figure 2. Evolution of (a) mean Arctic Ocean and Greenland-Iceland-Norwegian sea surface salinity; (b) maximum Atlantic Meridional Overturning Circulation
(AMOC) stream function; (c) surface air temperature over central Greenland (“Summit” region; 35–45°W, 70–75°N). (d) December-January-February and (e) June-
July-August surface air temperature anomaly at 14.4 ka (SC_south minus NoSC_south, 100 year mean).
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across the tropical NorthAtlantic (e.g., as simulatedby theCCSM-MARUM,COSMOS-W,HadCM3-0.4 and IPSL in
Kageyama et al. [2013, Figure 2]).

It is unlikely that such warming would provide a significant positive feedback to Southern Laurentide melt
because it is most powerful in the winter, when local temperatures are �40 to �50°C, and is nonexistent in
summer. Thewarming results in greater precipitation locally (Figures S2a and S2b) and could increase southern
Laurentide ice sheet mass balance, but coupled climate-ice sheet model simulations are needed to test this.

The temperature increase observed from Panama to Brazil (Figures 2d and 2e) is from regional drying (Figure
S2), which causes dieback of the broadleaf rainforest to be replaced by C4 grasslands and bare soil. Locally,
this acts as a positive feedback, amplifying the warming and drying. The signal arises from large seasonal lati-
tudinal swings in Amazonian precipitation belts, resulting in some regions struggling to achieve sufficient
year-round moisture to maintain a tropical rain forest. The same pattern is simulated by Community
Climate System Model 1.4-carbon (CSM1.4-carbon) when AMOC is weakened by northern-sourced fresh-
water [Bozbiyik et al., 2011]. However, this signal may not be robust; a revised representation of leaf respira-
tion (based on the Joint UK Land Environment Simulator (JULES) [Clark et al., 2011]) reduces the sensitivity of
the rainforest but shows that it does not significantly impact the main results (away from the Amazon)
discussed above.

4. Discussion and Conclusions

To assess the effect of the North American ice saddle collapse, we developed a physically consistent numer-
ical approach whereby a transient GCM climate simulation was used to drive a dynamical ice sheet model,
which in turn drove a high-resolution drainage model, providing freshwater forcing scenarios to plug back
into a GCM.

We find that half of the melt from the Cordilleran-Laurentide saddle collapse is routed to the Arctic Ocean.
Biases in the timing and distribution of meltwater routing from the ice sheet model (possibly passed through
from the initial GCM used to drive the dynamical ice sheet) introduce some temporal error in the routing of
southern Laurentide ice sheet melt. However, our results show that the climatic response is insensitive to this
error, which affects whether meltwater is routed to the Mississippi River or the North American East Coast.
Furthermore, in agreement with previous research [Condron and Winsor, 2012], the climate model displays
greater sensitivity to Arctic-bound meltwater than outlets draining directly into the North Atlantic or via
the Gulf of Mexico.

These results have been quantitatively derived from a feasible, dynamically simulated mechanism of accel-
eration in North American ice sheet melt that is supported by geological data [Dyke, 2004; Tarasov and
Peltier, 2004; G12; Tarasov et al., 2012; Gomez et al., 2015; Wickert, 2016]. They provide compelling evidence
that through the production of meltwater, the separation of the Cordilleran and Laurentide ice sheets was
capable of weakening the AMOC (�6 Sv in HadCM3) and cooling the Northern Hemisphere (up to �6°C in
the winter over central Greenland).

In our simulations, both the meltwater pulse and the climatic response (Figures 1 and 2) last approximately
600 years, but the timing, duration, and amplitude of the cooling event modeled here are affected by
uncertainties in the timing, duration, and amplitude of the Cordilleran-Laurentide ice saddle collapse melt-
water pulse. Quantification of this uncertainty by G16 demonstrated that the Bølling warming can trigger
the saddle collapse, with peak melting occurring at the maximum warming (14.5 ka) or a few centuries later.
The resultingmeltwater pulse is 200–600 years long and ~70–100% of themagnitude used in SC_South (G16).
In this scenario (Scenario1; Figure 3b), a shorter meltwater pulse would likely result in a shorter climatic
signal. However, the magnitude of cooling would not necessarily decrease, since changes in ocean circula-
tion (and Greenland temperature) may depend more on discharge rate than total meltwater volume.
Another possibility arising from G16 is that the saddle collapse happened earlier than the Bølling warming
(also compatible with geological records [Dyke, 2004; Munyikwa et al., 2011]), producing a 400–600 yearlong
pulse at ~16 ka that was 15–70% of the magnitude used in SC_South. We could assume that this would pro-
duce a climatic signal 15–70% of the SC_South magnitude (Scenario2; Figure 3b), though again, this is likely
affected by meltwater discharge rate. Simulations run by G16 show that shorter saddle collapse events can
release a similar volume of meltwater as longer ones. Furthermore, shorter events have faster meltwater
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discharges, which could result in a strong[er] AMOC reduction and Greenland cooling, even if the total
volume of meltwater is less (and vice versa). Hence, it is possible that the climatic impact of a shorter saddle
collapse would be similar to the impact of a longer one.

Scenario1would explain the cooling period after the Bølling warming and/or the Older Dryas. Scenario2 could
correspond to cooling recorded in Greenland ~16 ka. Both scenarios are feasible from a surface climate
perspective (Figure 3), but Scenario1 could also explain 40–60% of the MWP1a rapid sea level rise at
~14.5 ka (12–22m in 340 years [Deschamps et al., 2012]). This is further supported by high-resolution sea
surface temperature records from North Atlantic faunal assemblages [e.g., Thornalley et al., 2010], which show
pronounced cooling for a few hundred years following the abrupt Bølling warming.

Since the Cordilleran-Laurentide ice saddle collapse only accounts for 40–60% of MWP1a, it is possible that
Antarctica also made a significant contribution [Golledge et al., 2014], compatible with sea level fingerprinting
scenarios [Gomez et al., 2015; Liu et al., 2016]. Swingedouw et al. [2008] noted that a Southern Ocean bound
meltwater flux at <0.2 Sv invigorates NADW formation by reducing Antarctic Bottom Water formation
(deepening the Atlantic pycnocline and reducing Southern Ocean density) and increasing Southern
Hemisphere wind stress, with both processes acting to enhance NADW export. The precise influence of such
additional Antarctic melt on the scenario simulated here has yet to be tested; it may reduce the duration and
possibly themagnitude of the effect, pushing the surface climate signal closer to observed events (Figure 3b).

Figure 3. (a) Central Greenland surface air temperature [Buizert et al., 2014], with possible cooling episodes caused by the
Laurentide-Cordilleran ice saddle collapse delimited with colored boxes. (b) Event duration and maximum central
Greenland cooling in SC_South (black ellipsis) and as identified in Figure 3a (colored dots); dates indicate event onset; colors
match Figure 3a. Scenario1 and Scenario2 are described in section 4.
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In conclusion, we propose a chain of events whereby the abrupt Bølling warming triggered the North
American ice saddle collapse as demonstrated by Gregoire et al. [2016]. Delivery of the resultant meltwater
to the oceans subsequently ended the Bølling warming and/or caused the Older Dryas cooling via a
multicentennial reduction in AMOC and surface temperature (Scenario1; Figure 3b) that would have
lasted 200–400 years.

References
Argus,D.F.,W.R.Peltier,R.Drummond,andA.W.Moore (2014),TheAntarcticacomponentofpostglacial reboundmodel ICE-6G_C(VM5a)based

onGPS positioning, exposure age dating of ice thicknesses, and relative sea level histories,Geophys. J. Int., ggu140, doi:10.1093/gji/ggu140.
Berger, A., and M. F. Loutre (1991), Insolation values for the climate of the last 10 million years, Quat. Sci. Rev., 10(4), 297–317, doi:10.1016/

0277-3791(91)90033-Q.
Bozbiyik, A., M. Steinacher, F. Joos, T. F. Stocker, and L. Menviel (2011), Fingerprints of changes in the terrestrial carbon cycle in response to

large reorganizations in ocean circulation, Clim Past, 7(1), 319–338, doi:10.5194/cp-7-319-2011.
Briggs, R. D., D. Pollard, and L. Tarasov (2014), A data-constrained large ensemble analysis of Antarctic evolution since the Eemian, Quat. Sci.

Rev., 103, 91–115, doi:10.1016/j.quascirev.2014.09.003.
Broccoli, A. J., K. A. Dahl, and R. J. Stouffer (2006), Response of the ITCZ to Northern Hemisphere cooling, Geophys. Res. Lett., 33, L01702,

doi:10.1029/2005GL024546.
Bryan, K., and M. D. Cox (1972), An approximate equation of state for numerical models of ocean circulation, J. Phys. Oceanogr., 2(4), 510–514,

doi:10.1175/1520-0485(1972)002<0510:AAEOSF>2.0.CO;2.
Buizert, C., et al. (2014), Greenland temperature response to climate forcing during the last deglaciation, Science, 345(6201), 1177–1180,

doi:10.1126/science.1254961.
Chiang, J. C. H., and C. M. Bitz (2005), Influence of high latitude ice cover on the marine Intertropical Convergence Zone, Clim. Dyn., 25(5),

477–496, doi:10.1007/s00382-005-0040-5.
Chikamoto, M. O., L. Menviel, A. Abe-Ouchi, R. Ohgaito, A. Timmermann, Y. Okazaki, N. Harada, A. Oka, and A. Mouchet (2012), Variability in

North Pacific intermediate and deep water ventilation during Heinrich events in two coupled climate models, Deep Sea Res., Part II, 61–64,
114–126, doi:10.1016/j.dsr2.2011.12.002.

Clark, D. B., et al. (2011), The Joint UK Land Environment Simulator (JULES), model description—Part 2: Carbon fluxes and vegetation
dynamics, Geosci Model Dev, 4(3), 701–722, doi:10.5194/gmd-4-701-2011.

Clark, P. U., A. S. Dyke, J. D. Shakun, A. E. Carlson, J. Clark, B. Wohlfarth, J. X. Mitrovica, S. W. Hostetler, and A. M. McCabe (2009), The Last Glacial
Maximum, Science, 325(5941), 710–714, doi:10.1126/science.1172873.

Condron, A., and P. Winsor (2012), Meltwater routing and the Younger Dryas, Proc. Natl. Acad. Sci. U.S.A., 109(49), 19,928–19,933, doi:10.1073/
pnas.1207381109.

Cox, P. M. (2001), Description of the “TRIFFID” dynamic global vegetation model, Hadley Cent. Tech. Note, 24, 17.
Deschamps, P., N. Durand, E. Bard, B. Hamelin, G. Camoin, A. L. Thomas, G. M. Henderson, J. ’ichi Okuno, and Y. Yokoyama (2012), Ice-sheet

collapse and sea-level rise at the Bolling warming 14,600 years ago, Nature, 483(7391), 559–564, doi:10.1038/nature10902.
Dyke, A. S. (2004), An outline of North American deglaciation with emphasis on central and northern Canada, in Quaternary Glaciations-

Extent and Chronology—Part II: North America, vol. 2, Part 2, pp. 373–424, Elsevier, Amsterdam.
Fofonoff, N. P. (1962), The physical properties of seawater, in The Sea, vol. 1, edited by M. N. Hill, pp. 3–30, Interscience, New York.
Fofonoff, N. P., and R. C. Millard (1983), Algorithms for computation of fundamental properties of seawater, UNESCO technical papers in

marine science, Working Paper, UNESCO.
Ganopolski, A., and S. Rahmstorf (2001), Rapid changes of glacial climate simulated in a coupled climate model, Nature, 409(6817), 153–158,

doi:10.1038/35051500.
Golledge, N. R., L. Menviel, L. Carter, C. J. Fogwill, M. H. England, G. Cortese, and R. H. Levy (2014), Antarctic contribution to meltwater pulse 1A

from reduced Southern Ocean overturning, Nat. Commun., 5, doi:10.1038/ncomms6107.
Gomez, N., D. Pollard, and J. X. Mitrovica (2013), A 3-D coupled ice sheet – sea level model applied to Antarctica through the last 40 ky, Earth

Planet. Sci. Lett., 384, 88–99, doi:10.1016/j.epsl.2013.09.042.
Gomez, N., L. J. Gregoire, J. X. Mitrovica, and A. J. Payne (2015), Laurentide-Cordilleran ice sheet saddle collapse as a contribution to melt-

water pulse 1A, Geophys. Res. Lett., 42, 3954–3962, doi:10.1002/2015GL063960.
Gordon, C., C. Cooper, C. A. Senior, H. Banks, J. M. Gregory, T. C. Johns, J. F. B. Mitchell, and R. A. Wood (2000), The simulation of SST, sea ice

extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments, Clim. Dyn., 16(2), 147–168,
doi:10.1007/s003820050010.

Gregoire, L. J., A. J. Payne, and P. J. Valdes (2012), Deglacial rapid sea level rises caused by ice-sheet saddle collapses, Nature, 487(7406),
219–222, doi:10.1038/nature11257.

Gregoire, L. J., B. Otto-Bliesner, P. J. Valdes, and R. Ivanovic (2016), Abrupt Bølling warming and ice saddle collapse contributions to the
Meltwater Pulse 1a rapid sea level rise, Geophys. Res. Lett., 43, 9130–9137, doi:10.1002/2016GL070356.

Kageyama, M., et al. (2013), Climatic impacts of fresh water hosing under Last Glacial Maximum conditions: A multi-model study, Clim Past,
9(2), 935–953, doi:10.5194/cp-9-935-2013.

Keigwin, L. D., G. A. Jones, S. J. Lehman, and E. A. Boyle (1991), Deglacial meltwater discharge, North Atlantic Deep Circulation, and abrupt
climate change, J. Geophys. Res., 96(C9), 16,811–16,826, doi:10.1029/91JC01624.

Lea, D. W., D. K. Pak, L. C. Peterson, and K. A. Hughen (2003), Synchroneity of tropical and high-latitude Atlantic temperatures over the last
glacial termination, Science, 301(5638), 1361–1364, doi:10.1126/science.1088470.

Liu, J., G. A. Milne, R. E. Kopp, P. U. Clark, and I. Shennan (2016), Sea-level constraints on the amplitude and source distribution of Meltwater
Pulse 1A, Nat. Geosci., 9(2), 130–134, doi:10.1038/ngeo2616.

Liu, Z., et al. (2009), Transient simulation of last deglaciation with a newmechanism for Bølling-Allerød warming, Science, 325(5938), 310–314,
doi:10.1126/science.1171041.

Loulergue, L., A. Schilt, R. Spahni, V. Masson-Delmotte, T. Blunier, B. Lemieux, J.-M. Barnola, D. Raynaud, T. F. Stocker, and J. Chappellaz (2008),
Orbital andmillennial-scale features of atmospheric CH4over thepast 800,000 years,Nature,453(7193), 383–386, doi:10.1038/nature06950.

Mackintosh, A. N., et al. (2014), Retreat history of the East Antarctic Ice Sheet since the Last Glacial Maximum, Quat. Sci. Rev., 100, 10–30,
doi:10.1016/j.quascirev.2013.07.024.

Geophysical Research Letters 10.1002/2016GL071849

IVANOVIC ET AL. ICE COLLAPSE CAUSED COOLING ~14.5 KA 9

Acknowledgments
R.F.I. is funded by Natural Environment
Research Council (NERC) grant
NE/K008536/1. Numerical climate
model simulations made use of the N8
HPC Centre of Excellence (N8 consor-
tium and EPSRC grant EP/K000225/1).
We are grateful to Piers Forster and two
anonymous reviewers for helpful
comments and to Kim Cobb for swift
editorial handling. Presented model
data are available upon request, please
e-mail r.ivanovic@leeds.ac.uk.

http://doi.org/10.1093/gji/ggu140
http://doi.org/10.1016/0277-3791(91)90033-Q
http://doi.org/10.1016/0277-3791(91)90033-Q
http://doi.org/10.5194/cp-7-319-2011
http://doi.org/10.1016/j.quascirev.2014.09.003
http://doi.org/10.1029/2005GL024546
http://doi.org/10.1175/1520-0485(1972)002%3c0510:AAEOSF%3e2.0.CO;2
http://doi.org/10.1175/1520-0485(1972)002%3c0510:AAEOSF%3e2.0.CO;2
http://doi.org/10.1175/1520-0485(1972)002%3c0510:AAEOSF%3e2.0.CO;2
http://doi.org/10.1126/science.1254961
http://doi.org/10.1007/s00382-005-0040-5
http://doi.org/10.1016/j.dsr2.2011.12.002
http://doi.org/10.5194/gmd-4-701-2011
http://doi.org/10.1126/science.1172873
http://doi.org/10.1073/pnas.1207381109
http://doi.org/10.1073/pnas.1207381109
http://doi.org/10.1038/nature10902
http://doi.org/10.1038/35051500
http://doi.org/10.1038/ncomms6107
http://doi.org/10.1016/j.epsl.2013.09.042
http://doi.org/10.1002/2015GL063960
http://doi.org/10.1007/s003820050010
http://doi.org/10.1038/nature11257
http://doi.org/10.1002/2016GL070356
http://doi.org/10.5194/cp-9-935-2013
http://doi.org/10.1029/91JC01624
http://doi.org/10.1126/science.1088470
http://doi.org/10.1038/ngeo2616
http://doi.org/10.1126/science.1171041
http://doi.org/10.1038/nature06950
http://doi.org/10.1016/j.quascirev.2013.07.024
mailto:r.ivanovic@leeds.ac.uk


Marshall, S. J., and G. K. C. Clarke (1999), Modeling North American freshwater runoff through the last glacial cycle, Quat. Res., 52(3), 300–315,
doi:10.1006/qres.1999.2079.

McManus, J. F., R. Francois, J.-M. Gherardi, L. D. Keigwin, and S. Brown-Leger (2004), Collapse and rapid resumption of Atlantic meridional
circulation linked to deglacial climate changes, Nature, 428(6985), 834–837, doi:10.1038/nature02494.

Menviel, L., A. Timmermann, O. E. Timm, and A. Mouchet (2011), Deconstructing the last glacial termination: The role of millennial and
orbital-scale forcings, Quat. Sci. Rev., 30(9–10), 1155–1172, doi:10.1016/j.quascirev.2011.02.005.

Munyikwa, K., J. K. Feathers, T. M. Rittenour, and H. K. Shrimpton (2011), Constraining the Late Wisconsinan retreat of the Laurentide ice sheet
from western Canada using luminescence ages from postglacial aeolian dunes, Quat. Geochronol., 6(3–4), 407–422, doi:10.1016/j.
quageo.2011.03.010.

Okazaki, Y., A. Timmermann, L. Menviel, N. Harada, A. Abe-Ouchi, M. O. Chikamoto, A. Mouchet, and H. Asahi (2010), Deepwater formation in
the North Pacific during the last glacial termination, Science, 329(5988), 200–204, doi:10.1126/science.1190612.

Otto-Bliesner, B. L., and E. C. Brady (2010), The sensitivity of the climate response to the magnitude and location of freshwater forcing: Last
Glacial Maximum experiments, Quat. Sci. Rev., 29(1–2), 56–73, doi:10.1016/j.quascirev.2009.07.004.

Parrenin, F., et al. (2007), The EDC3 chronology for the EPICA Dome C ice core, Clim Past, 3(3), 485–497, doi:10.5194/cp-3-485-2007.
Peltier, W. R. (2004), Global glacial isostasy and the surface of the Ice-Age Earth: The ICE-5G (VM2) model and GRACE, Annu. Rev. Earth Planet.

Sci., 32(1), 111–149, doi:10.1146/annurev.earth.32.082503.144359.
Peltier, W. R. (2005), On the hemispheric origins of meltwater pulse 1a, Quat. Sci. Rev., 24(14–15), 1655–1671, doi:10.1016/j.

quascirev.2004.06.023.
Peltier, W. R., D. F. Argus, and R. Drummond (2015), Space geodesy constrains ice age terminal deglaciation: The global ICE-6G_C (VM5a)

model, J. Geophys. Res. Solid Earth, 120, 450–487, doi:10.1002/2014JB011176.
Petit, J. R., et al. (1999), Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica, Nature, 399(6735),

429–436, doi:10.1038/20859.
Pope, V. D., M. L. Gallani, P. R. Rowntree, and R. A. Stratton (2000), The impact of new physical parametrizations in the Hadley Centre climate

model: HadAM3, Clim. Dyn., 16(2), 123–146, doi:10.1007/s003820050009.
Roberts, N. L., A. M. Piotrowski, J. F. McManus, and L. D. Keigwin (2010), Synchronous deglacial overturning and water mass source changes,

Science, 327(5961), 75–78, doi:10.1126/science.1178068.
Roberts, W. H. G., P. J. Valdes, and A. J. Payne (2014), A new constraint on the size of Heinrich events from an iceberg/sediment model, Earth

Planet. Sci. Lett., 386, 1–9, doi:10.1016/j.epsl.2013.10.020.
Roche, D. M., A. P. Wiersma, and H. Renssen (2009), A systematic study of the impact of freshwater pulses with respect to different geo-

graphical locations, Clim. Dyn., 34(7–8), 997–1013, doi:10.1007/s00382-009-0578-8.
Saenko, O. A., A. Schmittner, and A. J. Weaver (2004), The Atlantic–Pacific seesaw, J. Clim., 17(11), 2033–2038, doi:10.1175/1520-0442(2004)

017<2033:TAS>2.0.CO;2.
Singarayer, J. S., and P. J. Valdes (2010), High-latitude climate sensitivity to ice-sheet forcing over the last 120 kyr, Quat. Sci. Rev., 29(1-2),

43–55, doi:10.1016/j.quascirev.2009.10.011.
Singarayer, J. S., P. J. Valdes, P. Friedlingstein, S. Nelson, and D. J. Beerling (2011), Late Holocene methane rise caused by orbitally controlled

increase in tropical sources, Nature, 470(7332), 82–85, doi:10.1038/nature09739.
Smith, R. S., and J. M. Gregory (2009), A study of the sensitivity of ocean overturning circulation and climate to freshwater input in different

regions of the North Atlantic, Geophys. Res. Lett., 36, L15701, doi:10.1029/2009GL038607.
Spahni, R., et al. (2005), Atmospheric methane and nitrous oxide of the Late Pleistocene from Antarctic ice cores, Science, 310(5752),

1317–1321, doi:10.1126/science.1120132.
Stanford, J. D., E. J. Rohling, S. E. Hunter, A. P. Roberts, S. O. Rasmussen, E. Bard, J. McManus, and R. G. Fairbanks (2006), Timing of meltwater

pulse 1a and climate responses to meltwater injections, Paleoceanography, 21, PA4103, doi:10.1029/2006PA001340.
Swingedouw, D., T. Fichefet, H. Goosse, and M. F. Loutre (2008), Impact of transient freshwater releases in the Southern Ocean on the AMOC

and climate, Clim. Dyn., 33(2-3), 365–381, doi:10.1007/s00382-008-0496-1.
Tarasov, L., and W. R. Peltier (2004), A geophysically constrained large ensemble analysis of the deglacial history of the North American ice-

sheet complex, Quat. Sci. Rev., 23(3–4), 359–388, doi:10.1016/j.quascirev.2003.08.004.
Tarasov, L., and W. R. Peltier (2005), Arctic freshwater forcing of the Younger Dryas cold reversal, Nature, 435(7042), 662–665, doi:10.1038/

nature03617.
Tarasov, L., and W. R. Peltier (2006), A calibrated deglacial drainage chronology for the North American continent: Evidence of an Arctic

trigger for the Younger Dryas, Quat. Sci. Rev., 25(7–8), 659–688, doi:10.1016/j.quascirev.2005.12.006.
Tarasov, L., A. S. Dyke, R. M. Neal, and W. R. Peltier (2012), A data-calibrated distribution of deglacial chronologies for the North American ice

complex from glaciological modeling, Earth Planet, Sci. Lett., 315–316, 30–40, doi:10.1016/j.epsl.2011.09.010.
Thornalley, D. J. R., H. Elderfield, and I. N. McCave (2010), Intermediate and deep water paleoceanography of the northern North Atlantic over

the past 21,000 years, Paleoceanography, 25, PA1211, doi:10.1029/2009PA001833.
Weaver, A. J., O. A. Saenko, P. U. Clark, and J. X. Mitrovica (2003), Meltwater Pulse 1A from Antarctica as a trigger of the Bølling-Allerød warm

interval, Science, 299(5613), 1709–1713, doi:10.1126/science.1081002.
Weber, M. E., et al. (2014), Millennial-scale variability in Antarctic ice-sheet discharge during the last deglaciation, Nature, 510(7503), 134–138,

doi:10.1038/nature13397.
Whitehouse, P. L., M. J. Bentley, and A. M. Le Brocq (2012), A deglacial model for Antarctica: Geological constraints and glaciological mod-

elling as a basis for a new model of Antarctic glacial isostatic adjustment, Quat. Sci. Rev., 32, 1–24, doi:10.1016/j.quascirev.2011.11.016.
Wickert, A. D. (2016), Reconstruction of North American drainage basins and river discharge since the Last Glacial Maximum, Earth Surf. Dyn.,

4(4), 831–869, doi:10.5194/esurf-4-831-2016.
Wickert, A. D., J. X. Mitrovica, C. Williams, and R. S. Anderson (2013), Gradual demise of a thin southern Laurentide ice sheet recorded by

Mississippi drainage, Nature, 502(7473), 668–671, doi:10.1038/nature12609.
Williams, C., B. P. Flower, and D. W. Hastings (2012), Seasonal Laurentide Ice Sheet melting during the “Mystery Interval” (17.5–14.5 ka),

Geology, 40(10), 955–958, doi:10.1130/G33279.1.
Yin, J., R. J. Stouffer, M. J. Spelman, and S. M. Griffies (2010), Evaluating the uncertainty induced by the virtual salt flux assumption in climate

simulations and future projections, J. Clim., 23(1), 80–96, doi:10.1175/2009JCLI3084.1.

Geophysical Research Letters 10.1002/2016GL071849

IVANOVIC ET AL. ICE COLLAPSE CAUSED COOLING ~14.5 KA 10

http://doi.org/10.1006/qres.1999.2079
http://doi.org/10.1038/nature02494
http://doi.org/10.1016/j.quascirev.2011.02.005
http://doi.org/10.1016/j.quageo.2011.03.010
http://doi.org/10.1016/j.quageo.2011.03.010
http://doi.org/10.1126/science.1190612
http://doi.org/10.1016/j.quascirev.2009.07.004
http://doi.org/10.5194/cp-3-485-2007
http://doi.org/10.1146/annurev.earth.32.082503.144359
http://doi.org/10.1016/j.quascirev.2004.06.023
http://doi.org/10.1016/j.quascirev.2004.06.023
http://doi.org/10.1002/2014JB011176
http://doi.org/10.1038/20859
http://doi.org/10.1007/s003820050009
http://doi.org/10.1126/science.1178068
http://doi.org/10.1016/j.epsl.2013.10.020
http://doi.org/10.1007/s00382-009-0578-8
http://doi.org/10.1175/1520-0442(2004)017%3c2033:TAS%3e2.0.CO;2
http://doi.org/10.1175/1520-0442(2004)017%3c2033:TAS%3e2.0.CO;2
http://doi.org/10.1175/1520-0442(2004)017%3c2033:TAS%3e2.0.CO;2
http://doi.org/10.1175/1520-0442(2004)017%3c2033:TAS%3e2.0.CO;2
http://doi.org/10.1016/j.quascirev.2009.10.011
http://doi.org/10.1038/nature09739
http://doi.org/10.1029/2009GL038607
http://doi.org/10.1126/science.1120132
http://doi.org/10.1029/2006PA001340
http://doi.org/10.1007/s00382-008-0496-1
http://doi.org/10.1016/j.quascirev.2003.08.004
http://doi.org/10.1038/nature03617
http://doi.org/10.1038/nature03617
http://doi.org/10.1016/j.quascirev.2005.12.006
http://doi.org/10.1016/j.epsl.2011.09.010
http://doi.org/10.1029/2009PA001833
http://doi.org/10.1126/science.1081002
http://doi.org/10.1038/nature13397
http://doi.org/10.1016/j.quascirev.2011.11.016
http://doi.org/10.5194/esurf-4-831-2016
http://doi.org/10.1038/nature12609
http://doi.org/10.1130/G33279.1
http://doi.org/10.1175/2009JCLI3084.1


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


