This is a repository copy of On Accuracy of Virtual Signal Injection based MTPA Operation of Interior Permanent Magnet Synchronous Machine Drives.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/109828/

Version: Accepted Version

Article:

https://doi.org/10.1109/TPEL.2016.2638020

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/
On Accuracy of Virtual Signal Injection based MTPA Operation of Interior Permanent Magnet Synchronous Machine Drives

Tianfu Sun, Member, IEEE, Jiabin Wang, Senior Member, IEEE, Mikail Koc, Student Member, IEEE.

Abstract—This correspondence analyzes the accuracy of maximum torque per Ampere (MTPA) operations of interior permanent magnet machines based on the technique described in “Maximum Torque Per Ampere (MTPA) Control for Interior Permanent Magnet Synchronous Machine Drives Based on Virtual Signal Injection”, IEEE Trans. On Power Electronics, vol. 30, no. 9, pp. 5036-45, in responses to a few inquiries made by audiences. It is shown that due to parameter variations with stator currents, any technique for MTPA tracking based on piecewise constant parameter assumption, i.e., the machine parameters are assumed as constants during the calculation of $\partial T_e/\partial \beta$, would result in tracking error even though the machine parameters are obtained from lookup table or online machine parameter estimations. The error is dependent on machine non-linear characteristics and operating conditions. It is also shown that for the prototype IPMSM the virtual signal injection control (VSIC) technique described in the paper yields a better tracking accuracy.

Index Terms—maximum torque per ampere (MTPA), signal injection; virtual signal injection control (VSIC), interior permanent magnet synchronous machine (IPMSM) drives

I. INTRODUCTION

Since the publication of the paper entitled “Maximum Torque Per Ampere (MTPA) Control for Interior Permanent Magnet Synchronous Machine Drives Based on Virtual Signal Injection”, we have received a few inquiries from audiences with regards to MTPA tracking accuracy of the proposed technique. Rigorous analysis supported by extensive simulations and experiments have been made, and our findings are described in this letter.

The mathematical model of an IPMSM in the d-q reference frame neglecting high order space harmonics is given by:

\[
\begin{align*}
v_d &= L_d \frac{di_d}{dt} + R_i i_d + p\omega_m i_q + p\omega_m \Psi_m \\
v_q &= L_q \frac{di_q}{dt} + R_i i_q + p\omega_m i_d + p\omega_m \Psi_m \\
T_e &= \frac{3p}{2} [\Psi_m i_q + (L_d - L_q) i_d i_q] \\
i_d &= -i_a \sin(\beta)
\end{align*}
\]

Where v_d, v_q are the d- and q-axes stator voltages; i_d, i_q, L_d are the d- and q-axes stator currents and the current vector amplitude; R is the stator phase resistance; L_d, L_q are the d- and q-axes inductances; T_e is the electromagnetic torque; p is the number of pole pairs of the motor; ω_m is the rotor angular speed in rad/s; Ψ_m is the flux linkage due to permanent magnet excitation; β is the current angle between the current vector and the q-axis, also known as leading angle.

In most IPM machines, Ψ_m, L_d and L_q are dependent on the stator currents due to magnetic saturation. According to (1) and (2) the following relations can be derived in steady state:

\[
\begin{align*}
\Psi_m &= \Psi_m - L_d i_d = \frac{v_d - Ri_d}{p\omega_m} - L_d i_d \\
(L_d - L_q) &= \frac{v_d - Ri_d}{p\omega_m} + L_d
\end{align*}
\]

Substituting (6) and (7) into (3) leads to:

\[
T_{e,1} = \frac{3p}{2} \left(\frac{v_d - Ri_q}{p\omega_m} - L_d i_d + L_d + \frac{v_d - Ri_d}{p\omega_m} i_q \right) i_q
\]

(8)

The significance of the expression in (8) is that only L_d is required for torque evaluation. If a small high frequency sinusoidal signal $\Delta \beta$ is injected into the stator current angle, β, according to (4) and (5) the corresponding d- and q-axis currents, i_{d}^b and i_{q}^b, can be expressed in (10) and (11) respectively.

\[
\begin{align*}
\Delta \beta &= A \sin(\omega_h t) \\
i_{d}^b &= -i_{q} \sin(\beta + \Delta \beta) \\
i_{q}^b &= i_{d} \cos(\beta + \Delta \beta)
\end{align*}
\]

(9)(10)(11)

where ω_h is the angular frequency of the injected signal. If the machine parameters are assumed to be piecewise constant and varies with operation conditions, the relationship between the torque and d- and q-axis currents can be approximated by a polynomial in the form of (12) where a and b given in (13) and (14) and are assumed to be piecewise constant and varies with operation conditions:

\[
\begin{align*}
T_{e,1} &= \frac{3p}{2} (a + b i_d) i_q \\
a &= \Psi_m - \frac{v_d - Ri_q}{p\omega_m} - L_d i_d \\
b &= (L_d - L_q) = \frac{v_d - Ri_d}{p\omega_m} + L_d
\end{align*}
\]

Substituting (10) and (11) into (12) yields:
The significance of the current angle should be expressed in (24): according to (3), the actual torque derivative with respect to the parameters. The errors of virtual signal injection based on (15) and (16) will be discussed and compared below.

Comparison of (22) with (24) leads to:

\[
\frac{\partial T_{e,1}}{\partial \beta} = \frac{\partial T_{e}}{\partial \beta} - \text{error}_1
\] \hspace{1cm} (25)

Comparison of (23) with (24) leads to:

\[
\frac{\partial T_{e,2}}{\partial \beta} = \frac{\partial T_{e}}{\partial \beta} - \text{error}_2
\] \hspace{1cm} (26)

As can be seen from (27) and (28), the MTPA tracking error based on (15) will be zero. This condition obtained assuming constant machine parameters (without taking account of the piecewise constant parameter assumptions) at points A, B and C on locus 1 are also recorded. Simulations were then performed based on (3) with the machine parameters at points A, B and C, respectively. The resultant torque variations with \(\beta \) for the same current amplitude are denoted as locus 2, 3, and 4, respectively. As can be seen from Fig. 1, the derivatives, \(\frac{\partial T_{e}}{\partial \beta} \), obtained from the non-linear parameter model at points A, B and C are always greater than \(\frac{\partial T_{e}}{\partial \beta} \) \(\text{A} \), \(\frac{\partial T_{e}}{\partial \beta} \text{B} \) , and \(\frac{\partial T_{e}}{\partial \beta} \text{C} \) obtained assuming constant parameters at these points. This is due to the fact that \(\text{error}_1 > 0 \). Moreover, the torque variation with \(\beta \) of the nonlinear machine model in the vicinity of the MTPA point is flatter than those of loci 2, 3 and 4 around their MTPA points. The machine parameter variations with \(\beta \) cause the true MTPA point to shift toward the right.

The implication of the foregoing analysis must be appreciated. First, for IPMSMs with constant parameters, the MTPA tracking error based on (15) will be zero. This condition is unlikely to be true in a practical IPMSM machine due to magnetic saturation. However, numerous papers reported in literature derived MTPA or loss minimization conditions based on the piecewise constant parameter assumptions (without taking account of the \(\frac{\partial \Psi_m}{\partial \beta} \), \(\frac{\partial L_d}{\partial \beta} \), \(\frac{\partial L_q}{\partial \beta} \) in (24).
These include online calculation of MTPA reference current commands based on parameter look-up tables through Lagrange Multiplier Method [2], Newton’s method [3] or through Ferrari’s method [4], and based on online parameter estimations [5]–[9]. They will not yield accurate MTPA operations if parameter variations with the stator currents are significant. For example, point B in Fig. 1 is very close to the true MTPA point. However, the MTPA point obtained by assuming piecewise constant machine parameters at this point is close to point A, and deviates significantly from the true MTPA operation.

Since:
\[
\frac{\partial \Psi_m}{\partial \varphi} = \frac{\partial \Psi_m}{\partial \beta} + \frac{\partial L_d}{\partial \beta} i_d - L_d i_q \tag{27}
\]
\[
\frac{\partial \Psi_m}{\partial \beta} = \frac{\partial L_d}{\partial \beta} i_d - L_d i_q \tag{28}
\]
can be further expressed as:
\[
\text{error}_1 = \frac{3p}{2} \left[\frac{\partial L_d}{\partial \beta} i_d - \frac{\partial L_d}{\partial \beta} i_d i_q + L_d i_q^2 \right] \tag{30}
\]
\[
\text{error}_2 = \frac{3p}{2} \left[\frac{\partial \Psi_m}{\partial \beta} - \frac{\partial \Psi_m}{\partial \beta} i_d i_q \right] \tag{31}
\]
Since for both motoring operations and generating operations \(i_d \frac{\partial \Psi_m}{\partial \beta} \) and \(i_d i_q \frac{\partial L_d}{\partial \beta} \) are negative and \(L_d \frac{\partial \Psi_m}{\partial \beta} \) is positive, (30) and (31) can be written as (32) and (33):
\[
\text{error}_1 = \frac{3p}{2} \left[\frac{\partial L_d}{\partial \beta} i_d^2 + L_d i_q^2 \right] - \frac{\partial \Psi_m}{\partial \beta} L_d \cos(\beta) \tag{32}
\]
\[
\text{error}_2 = \frac{3p}{2} \left[\frac{\partial L_d}{\partial \beta} i_d i_q - \frac{\partial \Psi_m}{\partial \beta} L_d \cos(\beta) \right] \tag{33}
\]
In order to study the relationship between the terms \(L_d \frac{\partial L_d}{\partial \beta} \frac{\partial \Psi_m}{\partial \beta} \), \(L_d \frac{\partial L_d}{\partial \beta} \frac{\partial \Psi_m}{\partial \beta} \), \(L_d \frac{\partial L_d}{\partial \beta} \frac{\partial \Psi_m}{\partial \beta} \), their variations with \(\beta\) when \(L_d = 77\ A\) obtained from the nonlinear IPMSM model are shown in Fig. 2.

![Fig. 2. Variations of \(L_d \frac{\partial L_d}{\partial \beta} \frac{\partial \Psi_m}{\partial \beta} \), \(L_d \frac{\partial L_d}{\partial \beta} \frac{\partial \Psi_m}{\partial \beta} \), and \(L_d \frac{\partial L_d}{\partial \beta} \frac{\partial \Psi_m}{\partial \beta} \) with \(\beta\) when \(L_d = 77\ A\).](image)

As can be seen from Fig. 2, \(L_d \frac{\partial L_d}{\partial \beta} \frac{\partial \Psi_m}{\partial \beta} \) increases monotonically when \(\beta < 45^\circ\) while the terms \(L_d \frac{\partial L_d}{\partial \beta} \frac{\partial \Psi_m}{\partial \beta} \) and \(L_d \frac{\partial L_d}{\partial \beta} \frac{\partial \Psi_m}{\partial \beta} \) decrease. Moreover, \(L_d \frac{\partial L_d}{\partial \beta} \frac{\partial \Psi_m}{\partial \beta} \) and \(L_d \frac{\partial L_d}{\partial \beta} \frac{\partial \Psi_m}{\partial \beta} \) are with opposite signs in (32) but of similar magnitudes since \(\partial \Psi_m/\partial \beta\) and \(i_d \frac{\partial L_d}{\partial \beta}\) in (29) are relative small. Therefore, \(\text{error}_1\) is dominated by \(L_d \frac{\partial L_d}{\partial \beta} \frac{\partial \Psi_m}{\partial \beta} \). Because the value of \(L_d \frac{\partial L_d}{\partial \beta} \frac{\partial \Psi_m}{\partial \beta} \) is dependent on \(L_d\) and \(\beta\), \(\text{error}_1\) will become significant when the resultant torque and the optimal current angle are relative large. For the machine whose MTPA current angle is between 20° and 45°, i.e., IPMSM, the term \(L_d \frac{\partial L_d}{\partial \beta} \frac{\partial \Psi_m}{\partial \beta} \) can partly cancel each other. Therefore, the virtual signal injection based on (16) may have higher accuracy than that based on (15).

To verify the above conclusions, the MTPA tracking results of the virtual signal injections based on (16) and (15) are shown in Fig. 3. As can be seen, the MTPA points tracked by the VSIC based on (16) reported in [1] has higher accuracy than (15) since \(L_d \frac{\partial L_d}{\partial \beta} \frac{\partial \Psi_m}{\partial \beta} \) and \(\partial \Psi_m/\partial \beta\) in (33) can partly cancel each other.

![Fig. 3. The MTPA points and the MTPA tracking simulation results of virtual signal injection control based on (15) and (16).](image)

The variations of \(\text{error}_1\), \(\text{error}_2\), and \(\partial \Psi_m/\partial \beta\) with \(\beta\) when \(L_d = 77\ A\) are compared in Fig. 4. As can be seen, \(\text{error}_1\) and \(\text{error}_2\) are not negligible with \(\partial \Psi_m/\partial \beta\). As the current angle increases, \(\text{error}_2\) increases and always larger than zero. While \(\text{error}_2\) varies from negative to positive. When \(\beta < 22^\circ\), \(\text{error}_2\) is not negligible compared with \(\partial \Psi_m/\partial \beta\). The virtual signal injection based on (16) has relatively small error. If \(\beta > 22^\circ\), \(\text{error}_2\) is less than \(\text{error}_1\), the virtual signal injection based on (16) yields better results due to the \(L_d \sin(2\beta) \frac{\partial L_d}{\partial \beta} \frac{\partial \Psi_m}{\partial \beta} \) and \(\partial \Psi_m/\partial \beta\) in (33) can partly cancel each other.
These characteristics are, indeed, validated by experiments reported in [1]. While the simulations and experiments are performed against a specific prototype IPMSM, the analysis described previously is applicable to any IPMSM. It should also be noted that since torque variation with current angle in the vicinity of the MTPA point is relatively small, small deviation of the d-axis current from the MTPA would not cause a significant reduction in torque, as can be observed in Fig. 3. In a practical application, it would be useful to analyze the non-linear characteristics of the machine and to select an appropriate formula for the VSIC based MTPA tracking and whether (15) or (16) should be adopted can be determined by comparing MTPA tracking accuracy at high torque demand.

II. CONCLUSION

MTPA tracking accuracy of the VSIC scheme for IPMSMs has been analyzed. It has been shown that due to parameter variations with stator currents in IPMSMs, any technique that determines MTPA operating condition by assuming piecewise constant parameters will result in tracking errors. These include online calculation of optimal d-axis current reference using machine parameters obtained from look-up tables or through online parameter estimations. The virtual signal injection control can be realized based on (15) or (16). For IPMSMs with relatively low reluctance torque contribution, including surface mounted permanent magnet machines, the VSIC based on (15) would yield more accurate results. For the IPMSMs with relatively large reluctance torque contribution, the VSIC based on (16) may give the better tracking accuracy. In real applications, whether (15) or (16) should be adopted can be determined by comparing MTPA tracking accuracy at high torque demand. These findings provide fundamental understanding and clarification for achieving MTPA operation of IPMSM drives.

REFERENCES