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Jupiter’s dynamo is modelled using the anelastic convection-driven dynamo equations. The reference
state model is taken from French et al. [2012]. Astrophys. J. Suppl. 202, 5, (11pp), which used density
functional theory to compute the equation of state and the electrical conductivity in Jupiter’s interior.
Jupiter’s magnetic field is approximately dipolar, but self-consistent dipolar dynamo models are rather
rare when the large variation in density and the effective internal heating are taken into account.
Jupiter-like dipolar magnetic fields were found here at small Prandtl number, Pr ¼ 0:1. Strong differential
rotation in the dynamo region tends to destroy a dominant dipolar component, but when the convection
is sufficiently supercritical it generates a strong magnetic field, and the differential rotation in the
electrically conducting region is suppressed by the Lorentz force. This allows a magnetic field to develop
which is dominated by a steady dipolar component. This suggests that the strong zonal winds seen at
Jupiter’s surface cannot penetrate significantly into the dynamo region, which starts approximately
7000 km below the surface.
� 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/3.0/).
1. Introduction

Jupiter has the strongest magnetic field of any planet in the
Solar System (Connerney, 1993). It is believed to be generated by
convection-driven flows in the metallic hydrogen region of the pla-
net (Parker, 1979; Stevenson, 1983, 2003; Jones, 2011). As the pla-
net gradually cools, convection rather than radiation carries the
heat flux out (Guillot et al., 2005), leading to an equilibrium refer-
ence state which is close to adiabatic. To model the dynamo, we
use the self-consistent convection-driven dynamo equations in
the anelastic approximation (Braginsky and Roberts, 1995; Lantz
and Fan, 1999), which takes into account the large variation in den-
sity with depth. The model is based on an equilibrium reference
state which uses an equation of state derived from density func-
tional theory, and the electrical conductivity used here is also
based on ab initio calculations (French et al., 2012). The model con-
tains a small rocky core releasing less than 2% of Jupiter’s intrinsic
heat flux. As Jupiter cools, it releases an approximately uniform
specific entropy everywhere outside the core, so the driving is
different from the geodynamo, where the main buoyancy source
is believed to be near the inner core boundary (basal heating).

In Boussinesq convection-driven dynamos, dipolar solutions
occupy a large region of the numerically accessible parameter
space (e.g. Olson et al., 1999; Jones, 2011). Strong dipolar
dominance is found for low E=Pm and moderate Rm, where E is
the Ekman number, Pm the magnetic Prandtl number, and Rm
the magnetic Reynolds number. Here dynamos are even more
dipolar than the geomagnetic field (Christensen et al., 2010).

Jupiter’s magnetic field is approximately dipolar, but strongly
dipolar solutions for anelastic dynamos with large density ratios
across the convecting shell are much harder to find (Gastine
et al., 2012), a result confirmed here. Polytropic reference state
models with uniform electrical conductivity only give dipolar
solutions for density ratios less than 5 at Pr ¼ 1 (Gastine et al.,
2012). At high density ratios the convective velocities are largest
near the surface both in the linear (Glatzmaier and Gilman,
1981; Jones et al., 2009) and nonlinear (Jones and Kuzanyan,
2009) regimes, and this enhances the helicity and zonal flow in
the outer regions, leading to large small-scale fields there which
dominate the dipolar component (Gastine et al., 2012). When the
low electrical conductivity region in the non-metallic outer zone
is taken into account, dipolar dynamos have been found in Bous-
sinesq (Gómez-Pérez et al., 2010) and polytropic models (Duarte
et al., 2013), because the strong convection beyond the transition
zone no longer generates disruptive small-scale fields. However,
it was generally found that the transition zone between the electri-
cally conducting region and the molecular insulating region must
be in the range 0.7 to 0:8rjup (Duarte et al., 2013) to get dipolar
solutions. The recent ab initio calculations (French et al., 2012) sug-
gest the transition zone is further out at �0:9rjup. These polytropic
models were driven by basal heating; the more realistic uniform
entropy source models compound the difficulty by enhancing the
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convection in the outermost layers. Simulations at low E and
Pr ¼ 0:03 were performed by Glatzmaier (Stanley and Glatzmaier,
2010) for a Jupiter model: dipolar fields were obtained, though
the generated field pattern was not very Jupiter-like.

The new features of this model compared with previous anelas-
tic work (Gastine et al., 2012; Duarte et al., 2013) are (i) the refer-
ence state model is based on a Jupiter model (French et al., 2012)
rather than a polytropic state; this reference state is broadly simi-
lar to other existing models (Hubbard, 1968; Hubbard and Marley,
1989; Guillot, 1999). (ii) there is a uniform specific entropy source
rather than basal heating; (iii) a different range of parameter space
was explored, in particular the Prandtl number was varied and
more strongly driven models were investigated. Basal heating
may be appropriate for geodynamo models where compositional
convection is occurring, but in Jupiter the bulk of the heat flux
comes from the cooling of the hydrogen/helium envelope and
not from the small core. Many different runs of this model, some
with a combination of internal and basal heating, were performed,
but only a few are discussed in detail here. Stable dipolar solutions
were found when basal heating dominates, as also found by Duarte
et al. (2013), but with a uniform specific entropy source, dipole
dominated solutions were found only at low Prandtl number, so
this is where our results are focussed. The anelastic version of
the Leeds dynamo code (see e.g. Gubbins et al., 2007) was used,
which has passed the anelastic dynamo benchmark test (Jones
et al., 2011). The simulations required substantial computational
resources. Most runs confirmed the view that dipolar runs are hard
to find (Gastine et al., 2012; Duarte et al., 2013). While the precise
form of the convection and magnetic field patterns do depend on
the reference state model, the switch to the new reference state
does not appear to change the general picture dramatically,
because our runs with basal heating gave similar results to those
of Duarte et al. (2013), who used a polytropic model. As expected,
the switch to a uniform entropy source makes dipolar fields even
harder to find. The enhanced convection in the outer regions gen-
erated more magnetic activity there (Gastine et al., 2012; Duarte
et al., 2013), and this activity is typically small-scale and cannot
co-exist with a dipolar field. Consistent with previous work
(Gastine et al., 2012) we found small-scale dynamos, hemispheri-
cal dynamos (Grote and Busse, 2000) in which the generated field
is predominantly in one hemisphere, and Parker dynamo waves
(Parker, 1979) in various regions of the parameter space. It is not
computationally possible to extend the model to the surface of
Jupiter, because the convection becomes very small-scale near
the surface, demanding very small time-steps and a massive reso-
lution requirement. The model has therefore been cut off at r ¼ rcut ,
3000 km below the surface, above which the electrical conductiv-
ity is essentially zero.

2. Equations of the model

The Lantz–Braginsky–Roberts anelastic dynamo equations
(Braginsky and Roberts, 1995; Lantz and Fan, 1999; Jones et al.,
2011) were used in a spherical shell between the core radius rc

and the cut-off radius rcut .
The usual form of the equation of motion in dimensional form is

(e.g. Jones et al., 2011),
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and a perfect gas is often assumed, but the metallic hydrogen in the
dynamo region of Jupiter means that the gas is far from perfect.
Here u is the velocity in the rotating frame, j is the current density,
B is the magnetic field, X is the rotational angular velocity, p is the
gas pressure (including that coming from electron degeneracy in
the metallic hydrogen region), q is the density and U the
gravitational potential. The equilibrium state is assumed to be
spherically symmetric for simplicity, but no symmetry is assumed
for the disturbances (denoted by primes) produced by the convec-
tion. As usual in the anelastic approximation these disturbances
are assumed not to alter the equilibrium density and pressure sig-
nificantly (e.g. Lantz and Fan, 1999), and since the convective veloc-
ity in Jupiter is always much less than the sound speed this is a
reasonable assumption. Hence the gravitational acceleration of
the equilibrium state is g ¼ �gr̂ ¼ �rU and U is decomposed into
UþU0. We now put this equation into Lantz–Braginsky–Roberts
form without assuming a perfect gas: see also (Ingersoll and
Pollard, 1982; Braginsky and Roberts, 1995; Kaspi et al., 2009).
Define p̂ ¼ p0=�qþU0, so
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overbars denoting equilibrium state values. Now
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since the basic state is close to adiabatic, so making use of the
hydrostatic equation d�p=dr ¼ �g�q,
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We can rewrite this in a more useful form using Maxwell’s thermo-
dynamic relations. The enthalpy H ¼ U þ p=q can be expressed in
differential form as dH ¼ TdSþ dp=q:. So
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Again using the hydrostatic equation and the fact that the reference
state is close to adiabatic,
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so the equation of motion in final form is
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The equations are scaled using the units

t ¼ d2

gm
t�; r ¼ 1
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r�; where d ¼ rcut � rc; �q ¼ qm �q�; ð2:8Þ
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where rcut ¼ 6:7� 107 m is the cut-off radius, rc is the core radius,
and the subscript m denotes values at the midpoint
r ¼ rm ¼ ðrc þ rcutÞ=2. The small entropy drop across the layer is
DS. The equation of motion (2.7) becomes, dropping the *,
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The entropy equation is
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assuming that the entropy diffusivity is constant throughout the
spherical shell. Here PmH=Pr is the source term, and the induction
and mass conservation equations are

@B
@t
¼ r� u� Bð Þ � r� �gr� B; r � �qu ¼ 0: ð2:12;2:13Þ

Assuming constant kinematic viscosity,
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The dimensionless parameters are the Rayleigh number, the Prandtl
number, the magnetic Prandtl number, the Ekman number and the
radius ratio, which is the same in all runs described here.

Ra ¼ Tmd2DS
mK

; Pr ¼ m
K
; Pm ¼ m

gm
; E ¼ m

Xd2 ; b ¼ rc

rcut

¼ 0:0963: ð2:16Þ

In the entropy Eq. (2.11) S is the entropy per unit mass or specific
entropy. We have assumed that turbulent entropy diffusion arising
from small-scale motions dominates over radiative conductivity.
Note that the viscous and ohmic dissipation terms appear in the
anelastic heat equation. The source term PmH=Pr arises from the
secular cooling of Jupiter which drives the convection. We assume
that Jupiter evolves along a sequence of adiabats, so the specific
entropy drops uniformly in space throughout the shell as time
passes, i.e. H is independent of position. The value of H was chosen
so that the heat flux coming out of the core is small compared to the
internal heat flux coming out of the planet, as the mass of the core is
so small it seems unlikely that it contributes significantly to the
heat budget.

The boundary conditions used were a stress-free outer bound-
ary, a no-slip boundary at the core, constant entropy on both
boundaries, and electrically insulating in the core and outside the
cut-off radius. The small-scale convection that occurs in the low
density region as the surface is approached (Glatzmaier and
Gilman, 1981; Jones et al., 2009), causes severe numerical difficul-
ties. It is not practical to compute this small scale flow as well as
integrating on the long time-scales needed for the dynamo. We
therefore introduced a cut-off radius for the model which we took
as r ¼ rcut ¼ 6:7� 107 m for the runs presented here, but different
values were also tried. Some simulations were done using fixed
flux rather than fixed entropy boundaries, as this can make a differ-
ence to Boussinesq dynamo models (Sakuraba and Roberts, 2009;
Hori et al., 2010), but we found less difference in the anelastic
cases.

3. The reference state

The reference state equilibrium model used is based on model
J11-8a of French et al. (2012). Since the code we use is pseudospec-
tral, the equilibrium quantities need to be smooth functions, so an
interpolating analytic model was used for the reference state
density �q, temperature T and magnetic diffusivity �g ¼ 1=l0 �r
where l0 is the permeability of free space and �r is the electrical
conductivity. The electrical conductivity above the cut-off level
r ¼ rcut ¼ 6:7� 107 m is negligible, so ignoring this region will
not hopefully influence the dynamo generation significantly. It is
however possible that the zonal flow and the enhanced turbulence
in the upper layers (Heimpel et al., 2005; Jones and Kuzanyan,
2009, Showman et al., 2011) could influence the dynamics below.
The conductivity model used decays exponentially towards the
surface. The electrical conductivity model (French et al., 2012)
decays superexponentially, but the difference is only significant
outside the cut-off region of our model, where the conductivity is
negligible from a dynamo point of view.

The reference state is assumed to be spherically symmetric. The
quantities fed into the dynamo model are the temperature TðrÞ and
temperature gradient T 0ðrÞ, the density �qðrÞ, the logarithmic den-
sity gradient �nðrÞ ¼ d log �q=dr; d�n=dr, the magnetic diffusivity
�gðrÞ and its gradient d�g=dr. The kinematic viscosity and m and
entropy diffusivity j are taken to be constants.

The Leeds code uses dimensionless variables, and the unit of
density is the value at the midpoint of the shell rm. Details of the
reference state are given in Appendix A, where Table 2 gives the
dimensional values of the core radius, midpoint radius, density,
temperature and diffusivity units and length unit d. The density,
temperature and diffusivity used are shown in Fig. 1a–c, together
with the data points from the J11-8a model (French et al., 2012).
The ratio of the density at the cut-off radius to that at the
core boundary is 0.046. The discontinuity in density at
r ¼ 4:4� 107 m in the J11-8a data arises from an assumed compo-
sitional change which has been smoothed out here.
4. Simulation results

The anelastic dynamo benchmark (Jones et al., 2011) showed
that dipolar fields can be found for Pr ¼ 1, very large Pm and
E ¼ 2� 10�3 and Ra close to critical. However, very large Pm is
not appropriate for giant planets, and we expect the convection
to be strongly nonlinear. The most promising parameter regime
found in our exploration of parameter space, where robust dipolar
solutions occur, is at low Pr � 0:1 and at Rayleigh numbers high
enough to ensure a magnetic Reynolds number over 103, and in
consequence a strong magnetic field. Dynamos with long periods
of dipolarity were found at Pr ¼ 0:15, but the dipole occasionally
collapsed and regenerated with the opposite sign. At Pr ¼ 0:1 we
found robust stable dipolar fields. The advantage of these non-
reversing models is that they can be integrated to a statistically
steady state with large but realistic computing resources.

The molecular thermal diffusivity and kinematic viscosity at
r ¼ rm are given by French et al. (2012) as 1:7� 10�5 m2 s�1 and
3� 10�7 m2 s�1 respectively, so the Prandtl number there is
0.018. In the molecular H/He region it becomes order unity, but
there radiative diffusion may be important keeping the effective
Pr small. It is sometimes argued that turbulent diffusion by
small-scale eddies will lead to a turbulent Pr of order unity,
because the same small-scale eddies that transport momentum
will also transport entropy. It is therefore likely that the effective
Prandtl number will be greater 0.018, but how much greater is
hard to estimate, so it seems sensible to explore Prandtl numbers
in the range 0.018 to unity. The linear theory of rapidly rotating
convection (Jones et al., 2009, 2000, Zhang, 1992) shows that at
small Pr the pattern of convection at onset is somewhat more
spread out, even at large density ratio, and also has a lower azi-
muthal wavenumber than at Pr ¼ 1 or larger. This helps generate
dipole fields, because it spreads the dynamo action throughout
the metallic hydrogen zone, rather than having it concentrated
near the outer boundary.
4.1. Details of the runs

The dimensionless parameters used for the runs described here
are given in Table 1. Runs A, B, C and D all have the same input
parameters. Runs A, C and D all started from a strong dipole solu-
tion, and maintained the dipole throughout. The parameters Nr,
Nth and Nphi refer to the number of grid points in the r; h and /
directions respectively. The maximum spherical harmonic degree
(h-direction) is 2Nth/3-1, and the maximum order (/-direction)
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Fig. 1. (a) Density as a function of radius for the reference state. The smooth curve is the interpolation formula used in the model, crosses are data points from model J11-8a
(French et al., 2012). (b) Diffusivity as a function of radius. (c) Temperature as a function of radius.
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is Nphi/3-1 because of de-aliasing. The h and / resolutions shown
in Table 1 are defined as
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where Elm is the energy in the spherical harmonic of degree l and
order m and Etot is the energy summed over all harmonics. hres is
the energy in the last 5 spherical harmonics, i.e. those of degree
L� 4 6 l 6 L, divided by the product of the total energy and the
number of modes that contribute to the last 5 harmonics. The
/-resolution is defined similarly but using the order of the spherical
harmonics rather than the degree. Note that because m cannot
exceed l, a much larger number of harmonics can contribute to
the last five l harmonics than to the last five m harmonics. To com-
pensate for this, in (4.1) we divide by the number of modes contrib-
uting as well as the total energy. This gives a convenient measure of
how fast the higher harmonics are dropping off in the energy
spectrum. Table 1 shows the results using the kinetic energy spec-
trum. In this region of the parameter space, the convergence of the
magnetic energy spectrum and the entropy spectrum are similar in
magnitude. Run C had the lowest resolution, and was run for over 2
diffusion times. The behaviour is very similar to that of run A. Run D
has the highest resolution in h and was run for about 0.5 magnetic
diffusion times. Note that the extra harmonics introduced in runs D
and G by increasing Nth have dramatically improved the h-conver-
gence, as we would expect, but have not reduced the /-convergence
as much. The cumulative average of the dipole at t ¼ 1:2 was 0.40
for Run A and 0.41 for run D. This indicates satisfactory convergence
in the spherical harmonic expansions. The differences between the
Nr = 128 and Nr = 160 runs were minor. Checks were also made on
the timestep controller, to ensure the timestep was small enough to
make no major differences to long term averages. The timestep was
normally around 10�7 or slightly less in the presented runs.

4.2. Time-dependence of the solutions

Fig. 2 shows results for the case Pr ¼ 0:1; Pm ¼ 3;
E ¼ 2:5� 10�5; Ra ¼ 1:1� 107, details of the runs being given in
Table 1. The magnetic energy, kinetic energy, and dimensionless
heat flux, are defined as in Section 4 of Jones et al. (2011). To show
how key quantities are converging to a steady mean, cumulative
averages are shown starting at t ¼ 0:2 magnetic diffusion times,
to remove the effect of initial transients. It was noted in Jones
et al. (2011) that very long runs are needed to obtain very accurate
values of the average energies, and the high resolution require-
ment and short timestep makes this impractical, but the cumula-
tive average gives an idea of how the energies and dipole
moment are approaching statistically steady values. The cumula-
tive average over all available data for each run is given in Table 1,
with a brief comment on the nature of each dynamo. Starting with



Table 1
Parameters for the runs. Ra; E; Pr and Pm are the Rayleigh, Ekman, Prandtl and magnetic Prandtl numbers respectively. H is the heat source, chosen in all runs so that the heat flux
from the core is small. M.E. and K.E. are the magnetic energy and kinetic energy, Zon. Flow is the kinetic energy associated with the axisymmetric component of u/ , and g10 is the
dipole coefficient of the magnetic field: these are all estimates of the time-averaged values in dimensionless units. The remaining quantities concerned with the numerical
resolution are defined in Section 4.1.

Run Ra E Pr Pm H Start
M.E. K.E. Zon. Flow g10 Nr Nth Nphi
h-res /-res Finish

A 1:1� 107 2:5� 10�5 0.1 3 1.5 Strong dipole

3:2� 106 1:5� 106 4:9� 105 0.40 160 192 384

2:3� 10�7 3:3� 10�7 Strong stable dipole

B 1:1� 107 2:5� 10�5 0.1 3 1.5 Weak dipole

2:1� 106 2:7� 106 1:1� 106 0 160 192 384

9:3� 10�8 4:9� 10�8 Erratic dynamo wave

C 1:1� 107 2:5� 10�5 0.1 3 1.5 Strong dipole

3:1� 106 1:5� 106 4:8� 105 0.38 128 192 384

2:8� 10�7 5:3� 10�7 Low resolution strong dipole

D 1:1� 107 2:5� 10�5 0.1 3 1.5 Strong dipole

3:2� 106 1:5� 106 4:4� 105 0.41 160 288 384

5:0� 10�9 5:8� 10�8 High resolution strong dipole

E 2:0� 107 1:5� 10�5 0.1 3 1.4 Strong dipole

4:5� 106 1:9� 106 6:4� 105 0.35 160 192 384

3:7� 10�7 8:2� 10�7 Strong stable dipole

F 2:0� 107 1:5� 10�5 0.1 3 1.4 Weak seed field

4:3� 106 1:9� 106 5:6� 105 0.34 160 192 384

4:0� 10�7 1:0� 10�6 Strong stable dipole

G 2:0� 107 1:5� 10�5 0.1 3 1.4 Strong dipole

4:8� 106 1:8� 106 5:9� 105 0.39 160 288 384

5:2� 10�9 3:8� 10�7 High resolution strong dipole

H 2:8� 107 1:5� 10�5 0.15 3 1.5 Strong dipole

2:7� 106 2:3� 106 8:6� 105 0 160 192 384

4:7� 10�7 1:1� 10�6 Reversing dynamo

I 2:0� 107 1:5� 10�5 0.1 3 1.4 Strong dipole

6:0� 106 1:4� 106 4:3� 105 0.43 160 192 384

4:8� 10�7 2:1� 10�6 Fixed outer flux: dipolar
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a strong dipolar field, run A maintained the dipole for over 2 mag-
netic diffusion times, i.e. 6 viscous diffusion times and 60 thermal
diffusion times. Run B has the same parameters as run A but the
run started from a smaller dipolar field. There is bistability
(Simitev and Busse, 2009; Gastine et al., 2012; Duarte et al.,
2013) as the run B solution does not have a persistent dipolar
field. However, at smaller E strongly dipolar solutions do
emerge from a small seed field, for example in the case
E ¼ 1:5� 10�5; Ra ¼ 2� 107 as shown in Fig. 3a. A-dip is the Gauss
coefficient g10 at the outer boundary. A-quad is the g20 Gauss coef-
ficient, proportional to the quadrupole moment. It is always small
and has zero long term average. Curve A-me shows the magnetic
energy, and A-me its cumulative average, and similarly for B-me.
The magnetic energy tracks the dipole coefficient, a result of the
dipole dominance. Run B has a lower magnetic energy than run
A. The cumulative averages indicate that the run is long enough
for the time-averaged behaviour to emerge, though even longer
runs would be needed to get very accurate values of these mean
quantities (precise definitions given in Jones et al. (2011)).

Fig. 2b shows the heat fluxes, kinetic energies and zonal flow
(Jones et al., 2011). The internal heating coefficient has been cho-
sen so the heat flux coming out of the core, A-coreflux, is very small
as it will be in Jupiter. A-topflux, the heat coming out of the cut-off
surface, is very similar in both runs, and is very stable (only run A
shown). Run B has a much higher zonal flow and kinetic energy.
This indicates that the magnetic field is controlling the zonal flow
in run A. This control appears to be essential to get a dipolar
dynamo for our model. In the dipolar regime the magnetic energy
is about twice the kinetic energy but the scaling arguments below
suggest a ratio of around 200 in Jupiter.

The results from runs E and F are shown in Fig. 3a and b. Run E
has a lower Ekman number and higher Rayleigh number. The
dipole was maintained for this run, though because the timestep
is smaller it was only run for just over 0.6 diffusion times. Run F
has the same parameter values but started from a small seed field.
This run grew into a strong dipole, and ends up on the same solu-
tion as run E, so the bistability is lost by going to lower E. Run G
was a higher resolution version of run E. Comparison in Table 1
shows convergence is still satisfactory, but not quite as good as
in runs A–D, as might be expected from the smaller Ekman
number.

It is possible that Jupiter’s magnetic field reverses, like the geo-
magnetic field, but there is no observational evidence. A question
of interest is whether there are Jupiter-like dynamo models which
have reversals, like the geodynamo models (Glatzmaier and
Roberts, 1995). The dipole coefficient time-series of Run B has
reversals, but the surface radial magnetic field is never very Jupi-
ter-like in run B. Run H, shown in Fig. 4, was the best reversing
dynamo model found here. The Prandtl number is a little higher
at 0.15, but the Ekman number is low enough to avoid bistability.
This dynamo lies at the border of the steady dynamo window and
the intervals between reversals are longer than in run B, and
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whenever the absolute value of the dipole moment is above around
0.15 the field is similar to that shown in Fig. 5 for run D. Since the
magnetic diffusion time is several hundred thousand years (see
Section 5 below), a Jupiter-like field could be maintained for many
thousands of years according to this model before declining and
reversing. However, the reversal behaviour in run H is somewhat
different from that found in geodynamo reversals, where there
are long periods of rather steady dipolarity with short intervals
over which the dynamo reverses (e.g. Glatzmaier and Roberts,
1995; Kutzner and Christensen, 2004). Here the decline and build
up are comparatively slow, and the dynamo has significant inter-
vals of low dipolarity.
4.3. The spatial structure of the solutions

Fig. 5 shows snapshots taken from the highest resolution run D,
with the same parameters as run A. Fig. 5a is the actual field of
Jupiter (Connerney, 1993) on a spherical surface at the mean radius
of Jupiter. Spherical harmonics of degree greater than 5 are not yet
known reliably, and so are not included in Fig. 5a. Fig. 5c is a snap-
shot from the highest resolution run shown at full resolution, while
Fig. 5b is the same solution but with all spherical harmonics of
degree greater than 5 removed, to compare with Fig. 5a. The gen-
eral similarity between Fig. 5a and b is notable. This is a snapshot,
and there are times when the strong polar flux patches in the polar
regions split in two, but they always recombine subsequently.
Fig. 5d shows the axisymmetric part of the azimuthal field. Note
that is essentially zero outside the metallic hydrogen region where
the electrical conductivity is very small. If we take the ratio of the
surface field strength to the internal axisymmetric azimuthal field
strength as representative for Jupiter, then since the observed field
strength at rcut is about 1.3 mT, the axisymmetric component of the
azimuthal field would be about 6.5 mT. The highest strength field
found anywhere in the model is about 12 times the surface value,
about 16 mT. The antisymmetric nature of B/ is also predicted for
geodynamo models (Olson et al., 1999; Jones, 2011).

Fig. 6a shows the azimuthal flow on the outer boundary, from
which we see that the axisymmetric part (the zonal flow) domi-
nates the convective part at the equator, but not away from the
equatorial belt. Fig. 6b shows the zonal flow (axisymmetric compo-
nent of u/) in a meridional plane. Strong zonal flow near the outer
boundary at the equator is a robust feature of rapidly rotating con-
vection (Zhang, 1992; Christensen, 2002; Heimpel et al., 2005;
Jones and Kuzanyan, 2009) with a stress-free outer boundary. In
our dipolar solution run D the zonal flow is mostly restricted to
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the low conductivity region, the flow in the metallic hydrogen
region having little zonal flow, due to locking by the magnetic field.
There is a small transition region at the edge of the metallic hydro-
gen region where there is some zonal flow with non-negligible
electrically conductivity, but this transition region seems to be
too thin to affect the run D dynamo significantly. In Fig. 6c, the
run B solution, the zonal flow is important in the metallic hydrogen
region. Differential rotation then shears the convection columns,
and a highly nonaxisymmetric nondipolar field pattern results.
This separation of the zonal flow and toroidal field into distinct
regions outside and inside the transition zone appears to be crucial
to obtaining a dipolar Jupiter-like magnetic field. Fig. 6d shows the
radial velocity in the equatorial plane. The convection columns
outside the metallic hydrogen region are disconnected from those
inside. Movies show that the small scale convection in the current-
free region is strongly advected by the zonal flow, whereas the con-
vecting columns in the metallic hydrogen are not significantly
sheared over their lifetime. At Pr ¼ 1 the convection outside the
metallic hydrogen region is on a smaller scale than the convection
in the magnetically influenced region (Gastine et al., 2012) but at
Pr ¼ 0:1 the dominant azimuthal wavenumber is not so different.
Gastine et al. (2012) argue that the vigorous small scale convection
in the outer regions makes large scale dipolar dynamo action
problematic, so the larger scales at Pr ¼ 0:1 may be connected with
the existence of the dipolar window there. The meridional section
Fig. 6e of ur shows that the flow is columnar, though the columns
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do not reach right across the planet. Columnar convection appears
to be essential for dynamo action dominated by the dipolar
component (Olson et al., 1999; Sreenivasan and Jones, 2011).

Fig. 7 shows a sequence of snapshots of the axisymmetric part
of the azimuthal field at different times taken from run B, a
non-dipolar run. The sequence shows evidence of a dynamo wave
progressing from pole to equator, as happens in the solar dynamo.
In Fig. 7a, the field is dominated by negative field in the northern
hemisphere and positive field in the southern hemisphere, the
antisymmetric form of the azimuthal field being consistent with
a dipolar dynamo generated field. However, in Fig. 7b high-latitude
reversed field starts to grow, and by the time of Fig. 7c the original
azimuthal field is being squeezed by these reverse flux patches
moving towards the equator. By the time of Fig. 7d, the original
flux patches have gone, and the field is approximately reversed
from Fig. 7a. The cycle then repeats, with faint patches of the ori-
ginal field parity now visible at high latitudes. The sequence shown
in Fig. 7 has been chosen because the dynamo wave is quite clear-
cut, but in general the dynamo waves are rather erratic, as can be
anticipated from the run B plots in Fig. 2a, superimposed on
chaotic field fluctuations typical of high Rm numerical dynamos.
However, the radial component of the field is consistent with a
dynamo wave interpretation. Dynamo waves were seen by
Duarte (2014) in a compressible Jupiter model dynamo at Pr ¼ 1,
though these travelled from equator to pole.

The parameter space is large, and it has not yet been fully
mapped. However, at Pr between 0.1 and unity with uniform heat-
ing, the run B behaviour was frequently found at relatively low Rm.
At larger Rm, the flow is less columnar, and the dynamo is small
scale, as found in Boussinesq models when the local Rossby
number becomes too large (Sreenivasan and Jones, 2006; Olson
and Christensen, 2006). As the Prandtl number is reduced towards
0.1, the weak high latitude reversed flux patches seen in Fig. 7 no
longer grow, though there is a faint trace of them in Fig. 5d.

In Boussinesq dynamo models, changing from a fixed tempera-
ture outer boundary condition to a fixed flux outer boundary con-
dition can make a significant difference to the form of the magnetic
field and the convection (Sakuraba and Roberts, 2009; Hori et al.,
2010). This seems to be less true in these anelastic dynamo models,
but to explore this effect we present in Fig. 8 typical snapshots
from runs E and I, which differ only in that in run I the flux is fixed
at the outer boundary to the average value found in run E (see
Fig. 3b). This means of course that the entropy is no longer fixed
at zero there, and in run I the poles were slightly cooler and the
equator slightly hotter. Since the convection is driven by very small
entropy changes (Jupiter’s interior is close to adiabatic) this corre-
sponds to only a very small pole-equator temperature difference,
well below any observational constraints. Fig. 8b, d and f corre-
spond to the fixed flux case, Fig. 8a, c, and e to the fixed entropy
case. There is no great difference between the two cases, but the
dipole is slightly stronger in the fixed flux case, and this is the case
for most times, though occasionally the dipole in run E will exceed
that in run I. The zonal flow in run I is more confined to the equa-
torial region as we would expect from the stronger dipole leading
to more efficient locking of the zonal flow. In Fig. 8e and f the axi-
symmetric radial magnetic fields are compared. There is more
reversed flux near the equator in the fixed entropy case, and this
leads to a belt of slightly weaker radial field near the equator in
Fig. 8a compared to Fig. 8b; although this feature is not very
striking, it is persistent.
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5. Scaling of the dimensionless units

Estimates of the velocity of convection in the deep interior of
Jupiter varying from 10�3 m s�1 to 10�2 m s�1 are derived from
scaling laws (Christensen and Aubert, 2006; Showman et al.,
2011) using the surface convective flux which is (Guillot et al.,
2005) 5.4 W m�2. The uncertainty arises because an extrapolation
over many orders of magnitude must be made from the numeri-
cally accessible parameters to those obtaining in Jupiter and the
exact power laws governing rapidly rotating convection remain
uncertain. An alternative would be to use the secular variation of
Jupiter’s magnetic field, a successful technique for the Earth
(Holme, 2007). There is still uncertainty over whether the secular
variation has been unambiguously observed (Yu et al., 2010). Nev-
ertheless, the magnetic field data acquired by NASA over the period
1973–2003 is better fitted by a model with a 0.012% per year
increase in g10 over this period (Ridley, 2010). The root mean
square _g10=g10 for run A was 41 in our dimensionless units, and



Table 2
Parameters for the equilibrium reference state.

Temperature gradient dT=d~r coefficients (units K)
t1 t2 t3 t4 t5

2:4198� 105 �2:9725� 105 1:1094� 105 �1:786� 104 2:1942� 104

a1 a2 b1 b2 b3 c1

0.9136 0.015865 1.0248 0.9097 0.02254 �5:987� 103

Logarithmic density gradient �n ¼ d log �q=d~r coefficients (dimensionless)
r1 r2 r3 r4 r5

29.6363 �29:0005 10.6323 0.239974 8.4126
d1 d2 e1 e2 e3 f1

0.646554 0.032229 1.005638 0.6462 0.02694 �1:9152

Logarithmic magnetic diffusivity log �g coefficients
g1 g2 g3 g4 g5

299.08 274.9 1.7781 1.801 20.28

Units for non-dimensionalisation
rc (m) rm (m) qm (kg m�3) Tm (K) gm (m2 s�1) d (m)

6:451� 106 3:673� 107 2:562� 103 1:313� 104 342 (turbulent) 6:055� 107

0.4999 (laminar)
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identifying this with 0:012% per year sets our dimensionless time
unit s ¼ d2

=gm at s ¼ 340;000 years. Since d ¼ 6:055� 107 m, this
means our effective turbulent magnetic diffusivity at the shell mid-
point is d2

=s ¼ 342 m2 s�1, about 700 times the laminar value. Our
unit of velocity d=s is then 6� 10�6 m s�1. The kinetic energy for
run A averages out at 1:5� 106, suggesting a typical velocity of
1:7� 103 near the midpoint of the shell in our dimensionless units
which corresponds to 10�2 m2 s�1, at the top end of the range
deduced from the scaling laws. Note that even if the convective
velocity is at the bottom of the suggested range, 10�3 m s�1, the
magnetic Reynolds number based on the laminar magnetic diffu-
sivity is 105, out of reach numerically. The zonal flow in run A rises
to around 5000 in dimensionless units near the equator at our cut-
off depth 3000 km below the surface, corresponding to only
3� 10�2 m s�1, much less than the surface wind speed at the equa-
tor. However, the reason that the zonal flow in the low conductiv-
ity region only rises to this comparatively small value is that the
viscosity is much greater in our numerical model than in Jupiter.
Lower values of E show the zonal flow increasing, but it is not
yet numerically possible to get E very much lower than 10�5 in a
full dynamo simulation and this is not low enough to get zonal
flows of the correct speeds, but simpler models (e.g. Jones et al.,
2003) do show faster zonal flows. Our model strongly suggests that
intense zonal flows cannot penetrate into the metallic hydrogen
zone, and so the alternating jets poleward of latitudes ±26� must
be ageostrophic. These ageostrophic jets may not penetrate deep
into the interior (Vasavada and Showman, 2005), but the winds
between ±26� (which are much stronger) are geostrophic, and so
can be approximately determined by the surface flow. This predicts
a gravitational signature due to Jupiter’s internal rotation which
may be measured by the Juno mission (Kong et al., 2013).

Comparing Fig. 5a and b suggests that our dimensionless unit of
magnetic field corresponds to 1.3 mT. The azimuthal field in the
deep interior rises to about 5 times this value, 6.5 mT, not far from
the 8 mT predicted by scaling law arguments (Christensen and
Aubert, 2006; Yadav et al., 2013). If the turbulent value of
gm ¼ 342 m2 s�1, is adopted then ðXlqmgmÞ

1=2 (the unit of nondi-
mensionalisation) is about 13.9 mT, roughly ten times too high,
but 1.3 mT lies between the values of ðXlqmgmÞ

1=2 (the unit of
nondimensionalisation) given by the laminar and turbulent values
of g, closer to the laminar value. The fact that the scaled field is too
large with respect to the turbulent magnetic diffusivity is no great
surprise, as scaling laws are needed to translate simulation
estimates into planetary estimates.

The thermal diffusivity (more precisely the entropy diffusivity)
and particularly the viscosity in the model are much greater than
in Jupiter (French et al., 2012), so we have to interpret all our dif-
fusive processes as being enhanced by sub-grid scale turbulence.
This makes it difficult to compare the model heat flux with the
actual heat flux of Jupiter, so the numerical models must be inter-
preted in the light of scaling laws extrapolating them to the realis-
tic parameter regime. The maximum Rossby number in our
calculation is about 0.01, which is actually about the right value
for 100 m s�1 zonal flows, but this agreement is rather artificial;
if we chose Xd as our unit of velocity the maximum zonal flow
would indeed be 100 m s�1, but the typical convective velocity in
the model would be 20 m s�1, much too high. It is not possible with
current computer resources to capture realistic convective veloci-
ties and realistic surface zonal flow speeds in the same model
(Jones and Kuzanyan, 2009; Showman et al., 2011).

6. Conclusions

After many failed attempts, Jupiter-like magnetic fields have
been found using self-consistent convection-driven dynamo mod-
els with a state-of-the-art reference model of Jupiter and a plausi-
ble internal heating model. If the Juno mission succeeds in gaining
a more detailed representation of Jupiter’s field, it will be interest-
ing to compare the new data with the predictions of dynamo mod-
els such as this. Also, the data expected from the measurements of
the gravity field will give information relevant to the dynamo pro-
cess, because the models described here are incompatible with a
differential rotation of the order of magnitude of the surface flow
extending into the metallic hydrogen zone. Such strong differential
rotation would break down the dipolar form of the field. On the
basis of these models, we expect the geostrophic regime to be
limited to the equatorial region, and only to extend to the region
between latitudes ±26� at most. However, our model does suggest
that the zonal flow starts to develop near the equator just below
where the conductivity drops to low values, which is 7000 km
below the surface, much deeper than in some shallow ‘weather
layer’ models.

A clear message arising from the anelastic models, both those of
Gastine et al. (2012) and ours, is that dipole-dominated solutions
are not easy to find. It is possible that at very low Ekman numbers
(less than 10�5) dipolar solutions exist in a larger region of param-
eter space, but unfortunately exploring below 10�5 is too expen-
sive using the numerical techniques currently available. At
present low Pr (typically around 0.1) and Pm > 1 seem the most
promising values; even lower Pr � 0:03 was used by Glatzmaier
(Stanley and Glatzmaier, 2010). We also found that the Rayleigh
number had to be large enough to give a magnetic Reynolds
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number of order 103 in order to generate fields strong enough to
suppress the differential rotation in the dynamo region. However,
we note that gas giant dynamos are as yet relatively unexplored
compared with geodynamo models.

An important area for further investigation is the role of the cut-
off radius. Although in the model the cut-off occurs in the semi-
conducting region above the transition zone, it is possible that if
the depth of the cut-off was reduced below 3000 km the turbu-
lence level would be enhanced, and this enhanced turbulence
might find its way into the dynamo region and hence affect the
dynamo process. It may prove to be important for there to be rel-
atively little dynamical coupling between the molecular hydrogen
region near the surface and the dynamo region below to get stable
dipolar solutions. Low coupling would also help to explain how a
strong geostrophic differential rotation in the equatorial region
can build up independently of the low zonal flow in the dynamo
region.
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Appendix A

In order to ensure that the results here can be reproduced by
others, simple interpolation formulae for the reference state were
constructed. As can be seen in Fig. 1a–c these give an excellent
fit to the French et al. (2012) model, which in turn satisfies the
hydrostatic balance equation and the Poisson equation for the
gravity field.

The model temperature gradient is taken to be of the form

dT
d~r
¼ t1~r3 þ t2~r2 þ t3~r þ t4 þ c1

ð~r � a1Þ2 þ a2
2

ðb1 � ~rÞ ð~r � b2Þ2 þ b2
3

h i ;
~r ¼ r=rjup; ðA:1Þ

where rjup ¼ 6:9894� 107 m, the mean radius of Jupiter. Note the
temperature gradient from Eq. (A.1) is scaled on the radius of Jupi-
ter, as this is independent of rcut , but the dimensionless temperature
gradient in our scaled units is d=rjup times that gradient, and simi-
larly for the q-derivatives. Integrating equation (A.1) gives

T ¼ t1

4
~r4 þ t2

3
~r3 þ t3

2
~r2 þ t4~r � c2 logðb1 � ~rÞ

þ c2 � c1

2
log ð~r � b2Þ2 þ b2

3

h i
þ c3 arctan

~r � b2

b3

� �
þ t5; ðA:2Þ

where

c2 ¼ c1
ða1 � b1Þ2 þ a2

2

ðb1 � b2Þ2 þ b2
3

;

c3 ¼
2c1a1 þ b1ðc2 � c1Þ � b2ðc1 þ c2Þ

b3
ðA:3Þ

and where the constant of integration is determined by setting
T = 19,500 K at the core boundary, ~r ¼ 0:0923. The constants
appearing in these formulae were determined by a least squares
fit to the French et al. (2012) data points for the temperature, the
results being given in Table 2.

The density is treated similarly to the temperature. The loga-
rithmic density gradient n is chosen to be of the form

�n ¼ r1~r3 þ r2~r2 þ r3~r þ r4 þ f2
ð~r � d1Þ2 þ d2

2

ðe1 � ~rÞ ð~r � e2Þ2 þ e2
3

h i : ðA:4Þ

Integrating (A.4) gives

log �q ¼ r1

4
~r4 þ r2

3
~r3 þ r3

2
~r2 þ r4~r � f2 logðe1 � ~rÞ þ f2 � f1

2

� log ð~r � e2Þ2 þ e2
3

h i
þ f3 arctan

~r � e2

e3
þ r5; ðA:5Þ

with

f2 ¼ f1
ðd1 � e1Þ2 þ d2

2

ðe1 � e2Þ2 þ e2
3

; f 3 ¼
2f 1d1 þ e1ðf2 � f1Þ � e2ðf2 þ f1Þ

e3

ðA:6Þ

the constant of integration r5 now being determined by the require-
ment q ¼ 4:42� 103 kg m�3 at the core boundary, and the con-
stants determined by a least squares fit to the values of log q
calculated from Table 1 of French et al. (2012), omitting the point
at ~r ¼ 0:629. The derivative of n is obtained from (A.4).

The electrical conductivity �r of Table 2 of French et al. (2012)
was converted to diffusivity using �g ¼ 1=4p� 10�7 �r. A hyperbolic
fitting formula,

ðlog �g� g1~r þ g2Þðlog �g� g3~r þ g4Þ ¼ g5; ðA:7Þ

was used, so defining

u ¼ 1
2
ðg1 þ g3Þ~r � g2 � g4½ �; v

¼ ðg1~r � g2Þðg3~r � g4Þ � g5; then �g

¼ exp uþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � v
p� �

; ðA:8Þ

the positive sign being taken in the quadratic formula, and the units
of �g are m2 s�1.

The advantage of these models is that it gives an excellent fit to
the French et al. (2012) model, while giving a smooth function suit-
able for use in a pseudospectral code, where the exponential con-
vergence rate is lost if nonsmooth coefficients appear.
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