This is a repository copy of *Sample sizes for the SF-6D preference based measure of health from the SF-36: a practical guide.*

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/10947/

Monograph:

HEDS Discussion Paper 02/03

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

[White Rose logo]
HEDS Discussion Paper 02/03

Disclaimer:
This is a Discussion Paper produced and published by the Health Economics and Decision Science (HEDS) Section at the School of Health and Related Research (ScHARR), University of Sheffield. HEDS Discussion Papers are intended to provide information and encourage discussion on a topic in advance of formal publication. They represent only the views of the authors, and do not necessarily reflect the views or approval of the sponsors.

White Rose Repository URL for this paper:
http://eprints.whiterose.ac.uk/10947/

Once a version of Discussion Paper content is published in a peer-reviewed journal, this typically supersedes the Discussion Paper and readers are invited to cite the published version in preference to the original version.

Published paper
None.

White Rose Research Online
eprints@whiterose.ac.uk
Sample sizes for the SF-6D preference based measure of health from the SF-36: a practical guide

Stephen J. Walters*
Lecturer in Medical Statistics
Sheffield Health Economics Group, University of Sheffield

John E. Brazier
Professor of Health Economics
Sheffield Health Economics Group, University of Sheffield

* Corresponding Author:
Sheffield Health Economics Group, School of Health and Related Research
University of Sheffield, Regent Court, 30 Regent Street, Sheffield, UK, S1 4DA
Tel +44 114 222 0715 Fax +44 114 272 4095
email: s.j.walters@sheffield.ac.uk

This series is intended to promote discussion and to provide information about work in progress. The views expressed are those of the authors, and should not be quoted without their permission. The authors welcome your comments.
ABSTRACT

Background

Health Related Quality of Life (HRQoL) measures are becoming more frequently used in clinical trials and health services research, both as primary and secondary endpoints. Investigators are now asking statisticians for advice on how to plan and analyse studies using HRQoL measures, which includes questions on sample size. Sample size requirements are critically dependent on the aims of the study, the outcome measure and its summary measure, the effect size and the method of calculating the test statistic. The SF-6D is a new single summary preference-based measure of health derived from the SF-36 suitable for use clinical trials and in the economic evaluation of health technologies.

Objectives

To describe and compare two methods of calculating sample sizes when using the SF-6D in comparative clinical trials and to give pragmatic guidance to researchers on what method to use.

Methods

We describe two main methods of sample size estimation. The parametric (t-test) method assumes the SF-6D data is continuous and normally distributed and that the effect size is the difference between two means. The non-parametric (Mann-Whitney MW) method assumes the data are continuous and not normally distributed and the effect size is defined in terms of the probability that an observation drawn at random from population Y would exceed an observation drawn at random from population X.
We used bootstrap computer simulation to compare the power of the two methods for detecting a shift in location.

Results
This paper describes the SF-6D and retrospectively calculated parametric and non-parametric effect sizes for the SF-6D from a variety of studies that had previously used the SF-36. Computer simulation suggested that if the distribution of the SF-6D is reasonably symmetric then the t-test appears to be more powerful than the MW test at detecting differences in means. Therefore if the distribution of the SF-6D is symmetric or expected to be reasonably symmetric then parametric methods should be used for sample size calculations and analysis. If the distribution of the SF-6D is skewed then the MW test appears to be more powerful at detecting a location shift (difference in means) than the t-test. However the differences in power (between the t and MW tests) are small and decrease as the sample size increases.

Conclusions
We have provided a clear description of the distribution of the SF-6D and believe that the mean is an appropriate summary measure for the SF-6D when it is to be used in clinical trials and the economic evaluation of new health technologies. Therefore pragmatically we would recommend that parametric methods be used for sample size calculation and analysis when using the SF-6D.

Keywords: Sample size, Health-Related Quality of Life, SF-36, preference-based measures of health, bootstrap simulation
1. INTRODUCTION

Health Related Quality of Life (HRQoL) measures are becoming more frequently used in clinical trials and health services research, both as primary and secondary endpoints. Investigators are now asking statisticians for advice on how to plan and analyse studies using HRQoL measures, which includes questions on sample size. Sample size calculations are now mandatory for many research protocols and are required to justify the size of clinical trials in papers before they will be accepted by journals.¹

Thus, when an investigator is designing a study to compare the outcomes of an intervention, an essential step is the calculation of sample sizes that will allow a reasonable chance (power) of detecting a predetermined difference (effect size) in the outcome variable, at a given level of statistical significance. Sample size is critically dependent on the purpose of the study, the outcome measure and how it is summarised, the proposed effect size and the method of calculating the test statistic.

Whatever type of study design is used the problem of sample size must be faced. Sometimes we may wish to show that a new treatment is clinically equivalent in efficacy to the standard treatment. Machin et al describe statistical methods for calculating the appropriate sample sizes for demonstrating equivalence between two treatments. For simplicity in this paper we will assume that we are interested in comparing the effectiveness (or superiority) of a new treatment compared to a standard treatment.
The increasing use of economic evaluation in the assessment of health care interventions has resulted in a growing demand for methods of measuring and valuing health that can be readily used in clinical trials. However, many conventional health-related quality of life measures are not suitable for use in economic evaluation. These measures of health status or health related quality of life (HRQoL) are standardised questionnaires used to assess patient health across broad areas such as symptoms, physical functioning, work and social activities, and mental well-being. Responses to items are combined into either a single index or a profile of several sub-indices of scores. Most of these measures of HRQoL are scored using a summation of coded responses to the items. Such instruments have become widely used by clinical researchers and can provide useful descriptive information on the effectiveness of health care interventions. The main shortcoming of using such instruments in economic evaluation is that they do not explicitly incorporate preferences into their scoring algorithms. Another type of instrument is the utility or preference-based measure of health, that combine a descriptive system with preference weights obtained from members of the general population, such as the EQ-5D and the Health Utility Index (HUI).

HRQoL outcome (both preference and non-preference) data may not meet the distributional requirements (usually that the data have a Normal distribution) of parametric methods of analysis. Therefore non-parametric methods are most often used to analyse HRQoL data. The main aim of this paper is to describe and compare two methods of sample size estimation (parametric and non-parametric) when using the SF-6D as an outcome in comparative clinical trials and to provide pragmatic guidance to researchers on what method to use.
The remainder of this paper is structured into the following sections. Section 2 briefly describes the SF-36 measure and the single preference weighted SF-6D index. Section 3 talks about cost-effectiveness analysis. Section 4 summarises the methods and the sample size formulae. Section 5 describes some of the effect sizes that have been observed in previous studies using the SF-6D. The next section (6) compares the different methods of sample size calculation using computer simulation. The final sections (7 and 8) talk about the choice of sample size method with the SF-6D and conclusions.

2. SF-36 HEALTH SURVEY AND THE SF-6D HEALTH STATE CLASSIFICATION

The SF-36 originated in the USA, but it has been anglicised for use in the UK. It contains 36 questions measuring health across eight dimensions - physical functioning, role limitation because of physical health, social functioning, vitality, bodily pain, mental health, role limitation because of emotional problems and general health. Responses to each question within a dimension are combined to generate a score from 0 to 100, where 100 indicates “good health”. Two further summary components, the Mental Component Summary (MCS) and Physical Component Summary (PCS) have also been derived from the eight dimensions using factor analysis. The PCS and MCS scales of the SF-36 are standardised such that a mean score of 50 (standard deviation 10) reflects the mean score of a standard population. Thus, the SF-36 generates a profile of HRQoL outcomes (on up to 10 dimensions), which makes statistical analysis and interpretation difficult.
Furthermore the method of scoring the SF-36 is not based on preferences. The simple scoring algorithm for the eight dimensions assumes equal intervals between the response choices, and that all items are of equal importance, which may not be appropriate. Brazier et al10, 11 have derived a preference-based or utility measure of health from the SF-36, called the SF-6D, which reduces all the outcomes to a single summary measure for use in clinical trials and economic evaluations. All responders to the original SF-36 questionnaire can be assigned SF-6D score provided the 11 items used in the six dimensions of the SF-6D have been completed. The SF-6D preference-based measure can be regarded as a continuous outcome scored on a 0.29 to 1.00 scale, with 1.00 indicating "full health".

3. QUALITY ADJUSTED LIFE YEARS AND COST-EFFECTIVENESS ANALYSIS

Preference-based health state scores or utilities do not have natural units. Since health is a function of both length of life and quality of life the QALY (Quality-adjusted life year) has been developed in an attempt to combine the value of these attributes into a single index number. If utilities are multiplied by the amount of time spent in that particular health state then they become QALYs (and are measured in units of time). QALYs allow for varying times spent in different states by calculating an overall score for each patient. If a patient progress through four health states (i= 1 to 4) that have estimated utilities, U_1, U_2, U_3 and U_4, spending time T_i in each state then:

$$\text{QALY} = U_1T_1 + U_2T_2 + U_3T_3 + U_4T_4.$$

QALYs are analogous to the Area Under the Curve (AUC), which is a useful way of summarising the information from a series of measurements on one individual12.
The Central Limit Theorem (CLT)\(^{13}\) suggests that if we have a series of independent, identically distributed random variables, then their sum tends to a Normal distribution as the number of variables increases. Although utilities measured on the same individual are not independent and likely to be serially correlated, the distribution of the ‘sum’ of these utilities (i.e. the AUCs or QALYs), are more likely to be symmetric and a fairly good fit to the Normal. This result implies that parametric methods for both sample calculations and analysis can be used when the outcome is a QALY. Multiple linear regression methods can be used to adjust QALYs for other covariates.\(^{14}\)

Cost-effectiveness and Cost Utility Analysis

If information on the resources consumed and the cost of the resources is collected then an economic evaluation may be performed alongside the clinical trial. Cost-effectiveness analysis (CEA) is one form of full economic evaluation, where both the costs and consequences of health programmes or treatments are examined.\(^{15}\) If we know the expected costs of the standard control treatment (\(\mu_{CC}\)) and the new experimental treatment (\(\mu_{CT}\)), and similarly their expected effectiveness \(\mu_{EC}\) and \(\mu_{ET}\), respectively, then differences in costs and effects can be defined as \(\Delta C = \mu_{CT} - \mu_{CC}\) and \(\Delta E = \mu_{ET} - \mu_{EC}\).

When \(\Delta C > 0\) and \(\Delta E > 0\) or \(\Delta C < 0\) and \(\Delta E < 0\), neither the experimental nor standard is dominant, the convention is to examine the incremental cost effectiveness ratio (ICER), \(R\), defined as

\[
R = \frac{\mu_{CT} - \mu_{CC}}{\mu_{ET} - \mu_{EC}} = \frac{\Delta C}{\Delta E} \quad (1).
\]
The ICER, R measures the extra cost for achieving an extra unit of effectiveness by adopting the experimental treatment over the standard.

In cost-utility analysis (CUA) the incremental cost of a programme, from a particular viewpoint, is compared to the incremental health improvement attributable to the programme, where the health improvement is measured in QALYs gained. The results are usually expressed as a cost per QALY gained.

In the case of preference-based measures one might argue that the ultimate objective is to influence resource allocation decisions. Therefore, it is the difference in cost-effectiveness (e.g. incremental cost per QALY) that is important not the change in HRQoL. Hence changes in the HRQoL measure alone may not be of interest without also considering the cost of bringing about those changes. Thus, the sample size calculation if one was performed, would be designed such that it would be possible to assess whether the incremental cost per QALY for the new treatment, compared with the existing one, is within an acceptable interval (e.g. less than £30,000 per QALY). There are several statistical methods for constructing confidence intervals for incremental cost-effectiveness ratios (e.g. Taylor series approximation, Fieller’s Method and the bootstrap).

If decision makers at the design stage of a study, can specify their maximum threshold willingness to pay for an additional unit of effectiveness, say \(R_{\text{Max}} \), and we have the necessary estimates of \(\Delta C \) and \(\Delta E \), their variances \((\sigma_{\text{EC}}^2, \sigma_{\text{ET}}^2, \sigma_{\text{CC}}^2, \sigma_{\text{CT}}^2)\) and covariances (or the correlation between cost and effects, \(\rho_{\text{CE}} \)). Then using formulae developed by Willan and O’Brien we can determine the required sample
size n, such that the upper limit of the 95% CI for the R is less than R_{Max}. A strong limitation of this method is the quantities that must be pre-specified. Even if we assume that the variances of costs and effectiveness respectively are the same in the Treatment and Control groups, we still require more than double the information to calculate a sample size to demonstrate cost-effectiveness, rather than effectiveness alone.

A likely consequence of designing studies to test hypotheses jointly about costs and effects is that the sample required may be larger than that to show differences in effects only. O'Brien et al raise an important ethical question: would it be ethical to continue a clinical trial to reach sufficient power to test a cost-effectiveness question when the number to show efficacy has been reached? They suggest a pragmatic way forward in that both the clinical and economic questions can be assessed by the same sample size (n for efficacy), but the investigator must simply accept greater uncertainty and wider 95% confidence intervals for the economic outcomes. Therefore, for the rest of this paper we will consider the estimation of sample sizes for differences in efficacy, not cost-effectiveness.

In this paper we will assume the SF-6D is being used as the primary HRQoL endpoint in a two group comparative clinical study, at a single time point, to assess the superiority (not equivalence) of a new treatment over a control treatment.
4. WHICH SAMPLE SIZE FORMULAE?

In principle, there are no major differences in planning a study using the SF-6D as an outcome to those using conventional clinical outcomes. Pocock outlines five key questions regarding sample size:

1. **What is the main purpose of the trial?**
2. **What is the principal measure of patient outcome?**
3. **How will the data be analysed to detect a treatment difference?**
4. **What type of results does one anticipate with standard treatment?**
5. **How small a treatment difference is it important to detect and with what degree of certainty?**

Thus, after deciding on the purpose of the study and the principle outcome measure, the investigator must decide how the data is to be analysed to detect a treatment difference. We must also identify the smallest treatment difference that is of such clinical value that it would be very undesirable to fail to detect it. Given answers to all of the five questions above, we can then calculate a sample size.

Campbell *et al.*²¹ outline the ways of calculating sample sizes in two group studies for binary, ordered categorical and continuous outcomes. Further details, examples and tables are given in the book by Machin *et al.*² We describe two methods of sample-size estimation when using the SF-6D in the comparative clinical trials of two health technologies (Table 1). The first method (Method 1) assumes the SF-6D is continuous and Normally distributed and the second method (Method 2) assumes the SF-6D is continuous and non-Normally distributed.
Figure 1 shows the overall distribution of the SF-6D in a general population sample aged 16 to 74 years. The SF-6D does not appear to be Normally distributed and appears to be negatively skewed, with more people reporting better health in this general population sample. Conversely Figure 2 shows the distribution of the SF-6D in a group of patients with venous leg-ulcers. The distribution of the SF-6D in this group is more symmetric with patients reporting poorer health than the general population sample.

Method 1: Normally distributed continuous data – comparing two means

Suppose we are planning a two-group study comparing HRQoL (using the SF-6D as the primary outcome) between the groups. We believe that the mean difference in SF-6D scores between the two groups is an appropriate comparative summary measure. Therefore using Method 1 and assuming a standard deviation σ of 0.12 and that a mean difference $(\mu_{ET} - \mu_{EC})$ of 0.05 or more points between the two groups is clinically and practically relevant gives a standardised effect size (from equation 2) of 0.417. Using this standardised effect size in equation 3 with a two-sided 5% significance level and 80% power gives the estimated number of subjects per group as 93.

Transformations

If the SF-6D outcome data were continuous but had a skewed distribution they may be transformed using a logarithmic transformation. The transformed variable may have more symmetric distribution that is better approximated by the Normal form. One problem with transforming data is that some preference-based utility measures
are scored on 0.0 to 1.0 scales and the natural logarithm of zero does not exist. Unfortunately log-transforming the general population data in Figure 2 did not make the distribution of the data more symmetric. The mean log-transformed SF-6D score was now -0.27 (SD 0.17).

Equation 3 can now be applied to the log-transformed scale once the standardised effect size δ_{Normal} is specified. Unfortunately, there is no simple interpretation for the log-transformed SF-6D scale, and so the inverse transformation is used to obtain scores corresponding to the original (0.3 to 1.0) SF-6D scale. The mean SF-6D score (on the 0.3 to 1.0 scale) using the inverse transformation is now $\exp(-0.27) = 0.76$ compared to the original value of 0.78.

As before, if a 0.05 unit change on the original SF-6D scale is considered the minimum clinically important difference to detect. Using the log-transformed scale of the SF-6D, a 0.05 increase is approximately from 0.76 to 0.81. This is then expressed as an anticipated effect on the log transformed scale as $\delta_{\text{Normal}} = (\mu_{\text{ET}} - \mu_{\text{EC}})/\sigma_{\text{E}} = [\log_e(0.76 + 0.05) - \log_e(0.76)]/0.17 = 0.37$. Using equation 3 with $\delta_{\text{Normal}} = 0.37$ gives $n_{\text{Normal}} = 117$ patients per group. This can be compared with an untransformed standardised effect size of 0.42, and an estimated sample size of 93 patients per group.

We have used a logarithmic transformation for non-normal data and made the sample size calculations accordingly. Other possible transformations for this purpose are the reciprocal or square root. A difficulty with the use of transformations is that they distort HRQoL scales and make interpretation of treatment effects difficult. In
fact, only the logarithmic transformation gives results interpretable on the original scale. The logarithmic transformation expresses the effect as a ratio of the geometric mean for patients in the treatment group to the geometric mean for patients in the control group. This is because the difference between two logarithms is the logarithm of the ratio: \(\log(T) - \log(C) = \log(T/C) \).

However, this ratio will vary in a way that depends on the geometric mean value of the control treatment \(C \). For example, if the geometric mean for the control treatment \(C \) is 0.6 and treatment \(T \) induces a change in SF-6D of 0.10 compared to this level, then this implies an effect size of \(\log_e(0.70/0.60) = 0.15 \). On the other hand, for geometric mean of 0.8 for the treatment \(C \) but the same numerical change of 0.10 implies an effect size of \(\log_e(0.9/0.8) = 0.12 \). Thus, although in this example the effect size is a 0.10 unit difference in HRQoL in both cases when expressed on the untransformed SF-6D scale, the logarithmic transformation results in a second effect size that is almost 80\% \((0.12/0.15 = 0.80) \) of the first. This makes interpretation difficult.

Method 2: Non-normally distributed continuous data

If the SF-6D outcome is assumed to be continuous and plausibly not sampled from a Normal distribution then the most popular (not necessarily the most efficient) non-parametric test for comparing two independent samples is the two-sample *Mann-Whitney U* (also known as the Wilcoxon rank sum test).

Suppose we have two independent random samples \(X_1, X_2, ..., X_m \) and \(Y_1, Y_2, ..., Y_n \) and we want to test the hypothesis that the two samples have come from the same
population against the alternative that the Y observations tend to be larger than the X observations. As a test statistic we can use the Mann-Whitney (MW) statistic U, i.e.,

$$U = \#(Y_j > X_i), \ i = 1, \ldots, m; \ j = 1, \ldots, n,$$

which is a count of the number of times the Y_js are greater than the X_is. The magnitude of U has a meaning, because U/nm is an estimate of the probability that an observation drawn at random from population Y would exceed an observation drawn at random from population X.

Noether25 derived a sample size formula for the Mann-Whitney test (see equation 5 in Table 1), using an effect size p_{Noether}, that makes no assumptions about the distribution of the data (except that it is continuous), and can be used whenever the sampling distribution of the test statistic U can be closely approximated by the Normal distribution, an approximation that is usually quite good except for very small n.26

Thus to determine the sample size, we have to find the ‘effect size’ p_{Noether}. There are several ways of estimating p_{Noether} under various assumptions, one possibility is $p_{\text{Noether}} = U/nm$.28 If we let μ_X, σ^2_X, μ_Y, and σ^2_Y be the mean and variance of the X and Y variables respectively. Then if $X \sim N(\mu_X, \sigma^2_X)$ and $Y \sim N(\mu_Y, \sigma^2_Y)$ then Simonoff et al27 show that the maximum likelihood estimator of $\text{Prob}(Y > X)$ using the sample estimates of the mean and variance $(\hat{\mu}_X, \hat{\sigma}_X^2, \hat{\mu}_Y, \hat{\sigma}_Y^2)$ is:

$$p = \text{Prob}(Y > X) = \Phi \left(\frac{\hat{\mu}_Y - \hat{\mu}_X}{\left(\frac{\hat{\sigma}_X^2}{\sqrt{n}} + \frac{\hat{\sigma}_Y^2}{\sqrt{n}}\right)^{1/2}} \right)$$

(6),

where Φ is the Normal cumulative distribution function.
If we assume the SF-6D is Normally distributed then equation 6 allows the calculation of two comparable ‘effect sizes’ \(p_{\text{Noether}} \) and \(\delta_{\text{Normal}} \) thus enabling the two methods of sample size estimation (Equations 3 and 5) to be directly contrasted. If this SF-6D is not Normally distributed then we cannot use equation 6 to calculate comparable effect sizes and must rely on the empirical estimates calculated post hoc from the data.

Suppose we are planning a two-group study comparing HRQoL (using the SF-6D as the primary outcome) between the groups. We believe the SF-6D to be continuous, but not Normally distributed and are intending to compare SF-6D scores in the two groups with a Mann-Whitney U test. Therefore Noether’s method will be appropriate. As before if we assume a mean difference of 0.05 and a standard deviation of 0.12 for the SF-6D, then using equation 6 this leads to an effect size \(p_{\text{Noether}} = \text{Prob}(Y > X) \) of 0.616. Substituting \(p_{\text{Noether}} = 0.616 \) in equation 5 with a two-sided 5% significance level and 80% power gives the estimated number of subjects per group as 98.

The two methods have given similar sample size estimates. The two methods can be regarded as equivalent when the two distributions have the same shape and equal variances. When the two distributions are Normally distributed with equal variances, the MW test will require about 5% more observations than the two-sample t-test to provide the same power against the same alternative. For non-Normal populations, especially those with long tails, the MW test may not require as many observations as the two-sample t-test. 29

Withdrawals and protocol departures
Some allowance should be made for a proportion of subjects who withdraw or are lost to a study during the course of the investigation. If a proportion, θ, are lost so that the outcome (SF-6D) is not recorded, then the final analysis will be based on $1 - \theta$ times the number of subjects entering the study. To ensure an adequate sample size at the end of the study it would be necessary to start with a sample size n', given by14

$$n' = \frac{n}{1 - \theta} \quad (7),$$

where n is the sample size determined by the methods given earlier in this section.

5. EFFECT SIZES

There is general agreement that further research is required to establish what are realistic and clinically meaningful effect sizes for the SF-36 and SF-6D. To date two broad strategies have been used to interpret differences or changes in HRQoL following treatment:30

1. Distribution based approaches - the effect size (ES);
2. Anchor-based measures - the minimum clinically important difference (MCID).

Distribution based approaches rely on relating the difference between treatment and control groups to some measure of variability. The most popular approach uses Cohen's31 standardised effect size, the mean change divided by the standard deviation (i.e. equation 2) to serve as an “effect size index”, that is suitable for sample size estimation. Cohen suggested that standardised effect sizes of 0.2 to 0.5 should be regarded as "small", 0.5 to 0.8 as "moderate" and those above 0.8 as "large". Cohen’s effect size is strongly influenced by the degree of homogeneity or heterogeneity in the sample.
Anchor-based methods examine the relationship between an HRQoL measure and an independent measure (or anchor) to elucidate the meaning of a particular degree of change. One anchor-based approach uses an estimate of the MCID, the difference on the HRQoL scale corresponding to self-reported small but important change on a global scale.32

We used a distribution-based approach to determine the observed effect sizes (both Cohen's and Noether's), using the SF-6D, for a variety of studies including randomised controlled trials,33 34 cross-sectional surveys7 35 and observational studies.36, 37, 38, 39 Tables 2, 3 and 4 show the observed effect sizes (both Cohen's and Noether's), and that most of the standardised effect sizes (δNormal) using Cohen's criteria are in the small to moderate interval. The information on mean differences, standard deviations and effect sizes shown in the tables may be helpful when estimating sample sizes for future studies using the SF-6D. To illustrate the various methods of sample size calculation we assumed a mean difference of 0.05 in SF-6D scores was the MCID difference worth detecting, although further empirical research is require to determine this. Research on the HUI has suggested that a difference of 0.03 is considered important.16 A number of studies in a variety of disease areas have suggested that the MCID appears to average approximately 0.5 on a seven-point scale or 1 part in 14.32, 40, 41 With the SF-6D's minimum and maximum of 0.29 to 1.00 (i.e. a range of 0.71), one-fourteenth of the scale equates to 0.05.

6. COMPARISON OF THE TWO METHODS OF SAMPLE SIZE ESTIMATION

We used bootstrap methods to compare the power of the t-test and Mann-Whitney for detecting a shift in location using the SF-6D as an outcome.26, 42 The bootstrap is
a computer intensive method for statistical analysis. It involves repeatedly drawing random samples from the original data, with replacement. It seeks to mimic in an appropriate manner the way the sample is collected from the population in the bootstrap samples from the observed data. The ‘with replacement’ means that any observation can be sampled more than once.

Suppose (as before) we have two independent random samples \(X_1, X_2, \ldots, X_m \) and \(Y_1, Y_2, \ldots, Y_n \). The Xs are Ys are random samples from continuous distributions having cumulative distribution functions, \(F_X \) and \(F_Y \) respectively. We will consider situations where the distributions have the same shape, but the locations may differ. Thus if \(d \) denotes the location difference (i.e. mean (\(Y \)) - mean (\(X \)) = \(d \)), then \(F_Y(y) = F_X(y - d) \), for every \(y \). We shall focus on the null hypothesis \(H_0: d = 0 \) against the alternative \(H_A: d > 0 \). We can test these hypotheses using an appropriate significance test (e.g. Mann-Whitney or t-test), and will let \(\pi(F, d, \alpha, n) \) denote the power function of the test.

The bootstrap strategy is to use pilot data to a provide a non-parametric estimate of \(F \) and to use a simulation method for finding the power of the test associated with any specified sample size \(n \) if the data follow the estimated distribution function. If we denote the distribution function estimate by \(G \), under the alternative hypothesis \(d \), we can estimate the approximate power, \(\hat{\pi}(G, d, \alpha, n) \) by the following computer simulation procedure.

1. Draw a random sample with replacement of size \(2n \) from \(G \). The first \(n \) observations in the sample form a simulated sample of \(X \)'s, denoted by
Then d is added to each of the other n observations in the sample to form the simulated sample of Y's, denoted by $Y_1^*, ..., Y_n^*$. (The Y^*'s and X^*'s have been generated from the same distribution except that the distribution of the Y^*'s is shifted d units to the right.)

2. The test statistic (Mann-Whitney or t-test) is calculated for the X^*'s and Y^*'s, yielding T^*. If $T^* \geq T_{1-\alpha/2}$, (where $T_{1-\alpha/2}$ is the critical value of the test statistic) a success is recorded; otherwise a failure is recorded.

3. Steps 1 and 2 are repeated J times. The estimated power of the test, $\hat{π}(G, d, \alpha, n)$, is approximated by the proportion of successes among the J repetitions. (In all cases discussed in this paper, $J = 10,000$).

The software Resampling Stats was used for the bootstrapping. The bootstrap computer simulation procedure involved separately using two datasets. The first used SF-6D data from a general population survey based on 1373 people aged 16-74 years as the pilot dataset. Figure 1 shows the non-symmetric distribution of the SF-6D. The second pilot data used SF-6D data from a sample of 232 patients with venous leg-ulcers. Figure 2 shows the more symmetric distribution of the SF-6D in the leg ulcer sample.

Figure 3 shows the estimated power curves for the t and Mann-Whitney tests at the 5% two-sided significance level for detecting a location shift (mean difference) $d = 0.05$ in the SF-6D general population data for sample sizes per group varying from 20 to 240. For these general population data a location shift of $d = 0.05$ is equivalent to a standardised effect size $δ_{Normal} = 0.42$ and $p_{Noether} = \text{Prob } (Y > X) = 0.63$. For a sample size per group of 100 the Mann-Whitney test has an estimated power of 0.89
compared to an estimated power of 0.83 for the t-test. The Mann-Whitney test appears to be more powerful at detecting a location shift of \(d = 0.05 \) than the t-test. So for the general population data (with its skewed SF-6D distribution) the MW test is preferable to the t-test. Therefore for a fixed power, significance level and effect size using Noether's method would produce the smaller sample size estimates. However the differences in power are small and decrease as the sample size increases.

Figure 4 shows that for the leg-ulcer data (with their more symmetric SF-6D distribution), the t-test appears to be slightly more powerful at detecting a location shift of \(d = 0.05 \) than the MW test. For these data a location shift of \(d = 0.05 \) is equivalent to a standardised effect size \(\delta_{\text{Normal}} = 0.38 \) and \(p_{\text{Noether}} = \text{Prob}(Y > X) = 0.61 \). However again the differences in power between the t-test and MW tests are small and decrease as the sample size increases.

7. CHOICE OF SAMPLE SIZE METHOD WITH THE SF-6D OUTCOMES

It is important to make maximum use of the information available from other related studies or extrapolation from other unrelated studies. The more precise the information the better we can design the trial. We would recommend that researchers planning a study with SF-6D as the primary outcome pay careful attention to any evidence on the validity and frequency distribution of the SF-6D.

The frequency distribution of SF-6D scores from previous studies should be assessed to see whether parametric or non-parametric methods should be used for sample size calculations and analysis. Computer simulation has suggested that if the distribution of the SF-6D is reasonably symmetric then the t-test appears to be
slightly more powerful than the Mann-Whitney test at detecting differences in means. Therefore if the distribution of the SF-6D is symmetric or expected to be reasonably symmetric then parametric methods should be used for sample size calculations and analysis. The use of parametric methods for analysis (i.e. t-test) also enables the relatively easy estimation of confidence intervals, which is regarded as good statistical practice.1

If the distribution of the SF-6D is skewed then the Mann-Whitney test appears to be more powerful at detecting a location shift (difference in means) than the t-test. So in these circumstances the MW test is preferable to the t-test and non-parametric methods could be used for sample size calculations and analysis. However the differences in power (between the t and MW tests) are small and decrease as the sample size increases. The use of non-parametric methods for sample size estimation requires the effect size to be defined in terms of $P (Y > X)$, which is difficult to quantify and interpret. The arithmetic mean and mean difference is a better summary measure for health care providers in deciding whether to offer a new treatment or not to its population. The mean provides information about the total benefit or utility from treating all patients, which is needed as the basis for health care policy decisions.45 Therefore pragmatically we would recommend that parametric methods be used for sample size calculation and analysis when using the SF-6D in clinical trials and economic evaluations.

If the sample size is "sufficiently large" then the CLT guarantees that the sample means will be approximately Normally distributed.13 Thus, if the investigator is planning a large study and the sample mean is an appropriate summary measure of
the SF-6D outcome, then pragmatically there is no need to worry about the distribution of the SF-6D outcome and we can use equation (3) to calculate sample sizes. Although the Normal distribution is strictly only the limiting form of the sampling distribution of the sample mean as the sample size \(n \) increases to infinity, but it provides a remarkably good approximation to the sampling distribution even when \(n \) is small and the distribution of the data is far from Normal.\(^4\) Generally, if \(n \) is greater than 25, these approximations will be good. However, if the underlying distribution is symmetric, unimodal, and of the continuous type, a value of \(n \) as small as 4 can yield a very adequate approximation.\(^3\)

More work is required on what is a clinically meaningful effect sizes for the SF-6D. We used a distribution-based approach to calculate effect sizes for the SF-6D, although an anchor-based approach may also be necessary to determine the MCID. To illustrate the various methods of sample size calculation we assumed a mean difference of 0.05 in SF-6D scores was the MCID worth detecting. Retrospectively calculating the SF-6D for a variety of studies that had previously used the SF-36 has shown mean differences between groups varying between 0.025 and 0.12. These differences are mainly 'small' to 'medium' standardised effect sizes using Cohen’s definition. So large differences between groups in SF-6D scores are unlikely. Therefore larger sample sizes may be required to detect statistically significant differences between groups in mean SF-6D scores. We would suggest that investigators consider clinically meaningful effect sizes and not rely on generic 'small', 'medium' or 'large' ones as suggested by Cohen.
There may be considerable uncertainties in estimates of such quantities as the standard deviation and the treatment effect. (Although the data displayed in Tables 2 to 4 may be useful). Sample size calculations are sometimes based on estimates “pulled out of thin air”. If an investigator is uncomfortable with the assumptions then it is good practice to calculate sample sizes under a variety of scenarios so that the sensitivity to assumptions can be assessed. We would recommend that various anticipated benefits be considered, ranging from the optimistic to the more realistic, with sample sizes being calculated for several scenarios within that range. It is a matter of judgement, rather than an exact science, as to which of the options is chosen for the final study size.

In this paper we have concentrated on the issue that HRQoL outcome data (such as the SF-6D) may not meet the distributional requirements of parametric methods of sample size estimation and statistical analysis. There are other equally important problems with HRQoL measures such as ordinal scaling, linearity of the scale, floor/ceiling effects, non-constant variance and missing data which are discussed more fully in Walters et al 2001.

8. CONCLUSIONS

Given that the end goal of using HRQoL outcomes in research studies is to assess a patient’s health and well being, using the right type of HRQoL outcome in the right setting with an appropriate sample size calculation is crucial. Much time and energy is devoted to developing and validating HRQoL measures. We have provided a clear description of the distribution of the SF-6D and believe that the mean is an appropriate summary measure for the SF-6D when it is to be used in comparative
clinical trials and the economic evaluation of new health technologies. Therefore pragmatically we would recommend that parametric methods be used for sample size calculation and analysis when using the SF-6D.

Finally we would stress the importance of a sample size calculation (with all its attendant assumptions), and that any such estimate is better than no sample size calculation at all, particularly in a trial protocol.48 The mere fact of calculation of a sample size means that a number of fundamental issues have been thought about: what is the main outcome variable, what is a clinically important effect, and how is it measured? The investigator is also likely to have specified the method and frequency of data analysis. Thus protocols that are explicit about sample size are easier to evaluate in terms of scientific quality and the likelihood of achieving objectives.
Figure 1: Histogram of the SF-6D in the Sheffield population aged 16-74

![Histogram of SF-6D in Sheffield population](image)

SF-6D preference-based measure of health

N= 1373, mean = 0.78, sd = 0.12

Figure 2: Histogram of the SF-6D in patients with leg-ulcers

![Histogram of SF-6D in leg-ulcers patients](image)

SF-6D preference-based measure of health

n = 233, mean =0.65, sd = 0.13
Figure 3: Estimated power curve for the SF-6D using general population data

SF-6D: two group tests (equal n's)

α = 0.05 (two-sided); mean difference = 0.05; δ_norm = 0.42; p_non-normal = 0.63; 10,000 bootstrap replications

SF-6D General population aged 16-74: N = 1373; mean = 0.78; sd = 0.12

Sample size per group

Power

Figure 4: Estimated power curve for the SF-6D using leg ulcer data

SF-6D: two group test (equal n's)

α = 0.05 (two-sided); mean difference = 0.05; δ_norm = 0.38; p_non-normal = 0.61; 10,000 bootstrap replications

SF-6D: Leg ulcer baseline N = 232; mean = 0.65; sd = 0.13
<table>
<thead>
<tr>
<th>Method 1</th>
<th>Method 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assumptions</td>
<td>Normally distributed continuous data</td>
</tr>
<tr>
<td>Summary Measure</td>
<td>Mean and mean difference</td>
</tr>
<tr>
<td>Hypothesis test</td>
<td>Two-independent samples t-test</td>
</tr>
<tr>
<td>Effect Size</td>
<td>$\delta_{\text{Normal}} = \frac{\mu_T - \mu_C}{\sigma}$ (Equation 2)</td>
</tr>
<tr>
<td>Sample size formulae</td>
<td>$n_{\text{Normal}} = \frac{2\left(z_{1-\alpha/2} + z_{1-\beta}\right)^2}{\delta_{\text{Normal}}^2}$ (Equation 3)</td>
</tr>
</tbody>
</table>

δ_{Normal} is the standardised effect size index, μ_T and μ_C are the expected group means of outcome variable under the null and alternative hypotheses and σ is the standard deviation of outcome variable (assumed the same under the null and alternative hypotheses).

p_{Noether} is an estimate of the probability that an observation drawn at random from population Y would exceed an observation drawn at random from population X.

$z_{1-\alpha/2}$ and $z_{1-\beta}$ are the appropriate values from the standard Normal distribution for the 100 ($1 - \alpha/2$) and 100 ($1 - \beta$) percentiles respectively.

Number of subjects per group n for a two-sided significance level α and power $1 - \beta$.
Table 2: Effect sizes – randomised controlled trial

<table>
<thead>
<tr>
<th>Study</th>
<th>Group</th>
<th>n</th>
<th>mean</th>
<th>sd</th>
<th>difference</th>
<th>Standardised Effect Size<sup>a</sup></th>
<th>Significance<sup>b</sup></th>
<th>P(X > Y)<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>CMSW<sup>34</sup></td>
<td>Intervention</td>
<td>267</td>
<td>0.727</td>
<td>0.118</td>
<td>-0.025</td>
<td>-0.21</td>
<td>0.160</td>
<td>0.433</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>255</td>
<td>0.752</td>
<td>0.117</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leg Ulcer<sup>33</sup></td>
<td>Not healed at 3m</td>
<td>159</td>
<td>0.643</td>
<td>0.126</td>
<td>0.024</td>
<td>0.19</td>
<td>0.320</td>
<td>0.532</td>
</tr>
<tr>
<td></td>
<td>Healed at 3m</td>
<td>35</td>
<td>0.619</td>
<td>0.135</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Walk Freely</td>
<td>108</td>
<td>0.691</td>
<td>0.128</td>
<td>0.073</td>
<td>0.58</td>
<td>0.001</td>
<td>0.670</td>
</tr>
<tr>
<td></td>
<td>Walk with aid/chair/bed bound</td>
<td>124</td>
<td>0.618</td>
<td>0.126</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Not healed/recurred at 12 m</td>
<td>85</td>
<td>0.614</td>
<td>0.130</td>
<td>-0.030</td>
<td>-0.23</td>
<td>0.160</td>
<td>0.388</td>
</tr>
<tr>
<td></td>
<td>Healed/stayed healed at 12m</td>
<td>70</td>
<td>0.644</td>
<td>0.129</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CMSW (Community Midwifery Support Worker) study.

a. Standardised effect size = mean difference divided by the pooled standard deviation.

b. Based on a two-independent samples t-test.

c. Based on U/nm, where U = MW test statistic.
<table>
<thead>
<tr>
<th>Study</th>
<th>Group</th>
<th>n</th>
<th>mean</th>
<th>sd</th>
<th>difference</th>
<th>ES<sup>a</sup></th>
<th>Sig<sup>b</sup></th>
<th>P(X > Y)<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sheffield</td>
<td>GP consultation in previous 2 weeks:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>283</td>
<td>0.716</td>
<td>0.131</td>
<td>-0.070</td>
<td>-0.59</td>
<td>0.001</td>
<td>0.343</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>1183</td>
<td>0.786</td>
<td>0.115</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inpatient stay in previous 12 months:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>164</td>
<td>0.726</td>
<td>0.145</td>
<td>-0.053</td>
<td>-0.44</td>
<td>0.001</td>
<td>0.394</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>1306</td>
<td>0.779</td>
<td>0.117</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Outpatient attendance in previous 3 months:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>210</td>
<td>0.712</td>
<td>0.138</td>
<td>-0.072</td>
<td>-0.60</td>
<td>0.001</td>
<td>0.346</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>1247</td>
<td>0.783</td>
<td>0.115</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sheffield Elderly</td>
<td>GP consultation in previous 2 weeks:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elderly</td>
<td>Yes</td>
<td>1586</td>
<td>0.622</td>
<td>0.131</td>
<td>-0.060</td>
<td>-0.44</td>
<td>0.001</td>
<td>0.371</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>5329</td>
<td>0.682</td>
<td>0.138</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lives Alone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>2579</td>
<td>0.651</td>
<td>0.140</td>
<td>-0.027</td>
<td>-0.20</td>
<td>0.001</td>
<td>0.442</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>4359</td>
<td>0.678</td>
<td>0.138</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Current smoker</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>1179</td>
<td>0.656</td>
<td>0.141</td>
<td>-0.015</td>
<td>-0.11</td>
<td>0.001</td>
<td>0.467</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>5748</td>
<td>0.670</td>
<td>0.139</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elderly Sheffield</td>
<td>OPCS Disability Survey severity score<sup>d</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Women 70+</td>
<td>Less disabled 0-4</td>
<td>169</td>
<td>0.701</td>
<td>0.123</td>
<td>0.124</td>
<td>1.04</td>
<td>0.001</td>
<td>0.218</td>
</tr>
<tr>
<td></td>
<td>More disabled 5-10</td>
<td>96</td>
<td>0.577</td>
<td>0.113</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GP consultation in previous 2 weeks:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>75</td>
<td>0.621</td>
<td>0.110</td>
<td>-0.048</td>
<td>-0.37</td>
<td>0.008</td>
<td>0.398</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>190</td>
<td>0.669</td>
<td>0.139</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inpatient stay in previous 12 months:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>40</td>
<td>0.614</td>
<td>0.138</td>
<td>-0.051</td>
<td>-0.38</td>
<td>0.029</td>
<td>0.409</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>216</td>
<td>0.665</td>
<td>0.133</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Outpatient attendance in previous 3 months:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>79</td>
<td>0.627</td>
<td>0.139</td>
<td>-0.043</td>
<td>-0.33</td>
<td>0.015</td>
<td>0.420</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>185</td>
<td>0.671</td>
<td>0.128</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GP (General practitioner), OPCS (Office of Population, Censuses and Surveys).

^a ES (Standardised Effect size) = mean difference divided by the pooled standard deviation.

^b Sig (Significance) based on a two-independent samples t-test.

^c Based on U/nm, where U = MW test statistic.

^d Cut off values are the median average for the samples.
Table 4: Effect sizes – longitudinal observation studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Group</th>
<th>n</th>
<th>mean</th>
<th>Sd</th>
<th>Mean difference</th>
<th>Size(^a)</th>
<th>Significance(^b)</th>
<th>P(X > Y)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IBS</td>
<td>IBS Patients</td>
<td>145</td>
<td>0.661</td>
<td>0.126</td>
<td>-0.088</td>
<td>-0.69</td>
<td>0.001</td>
<td>0.305</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>202</td>
<td>0.749</td>
<td>0.129</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OA Knee</td>
<td>Non-musculoskeletal comorbidity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>80</td>
<td>0.493</td>
<td>0.081</td>
<td>-0.044</td>
<td>-0.50</td>
<td>0.001</td>
<td>0.360</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>99</td>
<td>0.537</td>
<td>0.095</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Severity of knee osteoarthritis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mild/Moderate</td>
<td>60</td>
<td>0.535</td>
<td>0.096</td>
<td>0.055</td>
<td>0.59</td>
<td>0.004</td>
<td>0.693</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Severe</td>
<td>42</td>
<td>0.481</td>
<td>0.086</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Health Assessment Score (HAQ)(^d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Good HAQ <=2</td>
<td>123</td>
<td>0.545</td>
<td>0.082</td>
<td>0.090</td>
<td>1.08</td>
<td>0.001</td>
<td>0.778</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Poor HAQ > 2</td>
<td>65</td>
<td>0.455</td>
<td>0.087</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COPD</td>
<td>Having to stop for breath when walking on level ground at own pace</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>26</td>
<td>0.571</td>
<td>0.060</td>
<td>-0.080</td>
<td>-1.16</td>
<td>0.001</td>
<td>0.232</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>18</td>
<td>0.651</td>
<td>0.080</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Distance on 6 minute walking test(^d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><= 302 metres</td>
<td>20</td>
<td>0.561</td>
<td>0.061</td>
<td>-0.078</td>
<td>-1.13</td>
<td>0.001</td>
<td>0.226</td>
<td></td>
</tr>
<tr>
<td></td>
<td>> 302 metres</td>
<td>24</td>
<td>0.639</td>
<td>0.076</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Breathlessness (100mm) VAS(^d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 = not breathless; 100 = severely breathless</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><= 65</td>
<td>19</td>
<td>0.638</td>
<td>0.088</td>
<td>0.059</td>
<td>0.79</td>
<td>0.014</td>
<td>0.694</td>
<td></td>
</tr>
<tr>
<td></td>
<td>> 65</td>
<td>24</td>
<td>0.579</td>
<td>0.062</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FEV(_1) % Predicted(^d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><= 41</td>
<td>47</td>
<td>0.553</td>
<td>0.119</td>
<td>-0.044</td>
<td>-0.41</td>
<td>0.050</td>
<td>0.383</td>
<td></td>
</tr>
<tr>
<td></td>
<td>> 41</td>
<td>50</td>
<td>0.597</td>
<td>0.099</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IBS (Irritable Bowel Syndrome), OA (Osteo-Arthritis), COPD (Chronic Obstructive Pulmonary Disease),
\(a\). Standardised effect size = mean difference divided by the pooled standard deviation.
\(b\). Based on a two-independent samples t-test.
\(c\). Based on U/nm, where U = MW test statistic.
\(d\). Cut off values are the median average for the samples.
REFERENCES

